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Introduction: Correlations between image-space voxels over time have been used to identify functionally connected regions of the cortex of subjects 
in the resting state (1). Such analysis assumes that image-space voxel correlations arise only from physiologic fluctuations. Much work has been 
done to temporally filter the image-space voxel time series to frequency windows in which voxel correlations arise from functional physiologic 
correlations. However, little consideration has been made of the commonly used image processing techniques which necessarily induce voxel 
correlations in image-space. Such image processing techniques, however, alter the observed time series correlations as one voxel’s signal may be 
spread over several voxels. Some work has been done to consider the contributions of common image processing techniques on the correlations of 
the complex-valued image-space observations (2,3). This extends the previous work to the more relevant correlations within the magnitude-squared 
data, which are asymptotically equivalent to the magnitude correlations, as most correlation studies consider magnitude data. 
Theory: It has been shown that correlations in complex-valued image-space data caused by common image preprocessing can be determined by 
linear algebra (2). Consider the complex-valued image data with a real-valued isomorphism of a vector of real observations stacked above imaginary 
observations (4). Let kO  be a linear operation performed on the complex-valued k-space observations, Ω  be a Fourier reconstruction matrix, and rO  
be a linear operation performed on the reconstructed complex-valued image-space observations. Then if 0s  and Γ  are the true mean and covariance 
matrix of the k-space observations, the resulting image-space mean image is 0sOO krΩ=μ  and covariance matrix is 

T
r

TT
kkr OOOO ΩΓΩ=Σ . This image 

space covariance matrix can be written as [ , ; , ]R RI RI I′Σ = Σ Σ Σ Σ  where RΣ  is the within real observations covariance matrix, IΣ  is the within imaginary 
observations covariance matrix, and RIΣ  is the between real and imaginary observations covariance matrix.  Define [ , ; , ]jj Rjj RIjj RIjj IjjA = Σ Σ Σ Σ  and 

[ , ; , ]jk Rjk RIjk RIjk IjkB = Σ Σ Σ Σ . Then assuming normally distributed k-space observations, the mean of a magnitude square observation in voxel j is 
( )j jj j jtr Aτ μ μ′= + , the variance is 2 ( ) 4jj jj jj j jj jtr A A Aμ μ′ ′Λ = + , and the covariance between voxels j and k is 2 ( ) 4jk jk jk j jk ktr B B Bμ μ′ ′Λ = + . In the above, 

( cos , sin ) 'j j j j jμ ρ θ ρ θ=  is the reconstructed real and imaginary observations of voxel j with magnitude and phase jρ  and jθ . 
 To examine the effects only from image processing, the image data is examined with a k-space mean of zero ( 00 =s ) and identity covariance matrix 
( I=Γ ). Thus the image-space covariance matrix simplifies to TTT POOP ΩΩ=Σ . For clarity of presentation, the case where Rjj IjjΣ = Σ  is considered. 
The correlation matrices are computed as 

2/12/1 −
Σ

−
ΣΣ Σ= DDR  and 

2/12/1 −
Λ

−
ΛΛ Λ= DDR  where ΣD   and ΛD  are diagonal with variances from Σ  and Λ . 

Methods: Linear operators for three common k-space image processing techniques were created. A 32×32 image acquisition matrix was considered. 
These operators include: a Gaussian smoothing filter with an image-space FWHM of 1.1774 voxels; a Tukey apodization filter commonly used in 
spiral reconstruction with a plateau width of 12 voxels and a slope width of 4 voxels; and an operator to perform extrapolation of the symmetric half 
of k-space as is common in partial k-space acquisitions. The complex data image-space covariance matrix Σ  and corresponding magnitude squared 
covariance matrix Λ were computed and correlation matrices RΣ

 and RΛ
 were determined from them. Image-space correlations for the center voxel 

after applying the processes individually and serially are shown in Figure 1. 
Results: Correlations from k-space 
pre-processing are as expected. 
From the above equations, 
magnitude squared correlations are 
less than complex correlations when  

125.0<ΣRIjk , and the complex 
data variance is one. When simple 
convolution is applied as in the 
cases of smoothing and apodization, 
the image-space correlations reflect 
convolution with the Fourier 
transform of the k-space kernel. 
This method allows the examination 
of induced image-space correlations 
from nonintuitive processes. It is 
seen that slight correlations in the 
phase encode direction are induced 
by homodyne reconstruction.  
Conclusion: The image-space correlations that are induced by multiple image-processing steps can be easily considered in this framework. This 
theoretical work provides the basis for future work to improve functional connectivity studies. By quantifying the image-space correlations caused by 
pre-processing methods, the pre-processing induced correlations can be removed and separated from the true biological correlations. After removal of 
induced correlations, cleaner biological correlations will remain. This will enhance and refine all future fMRI connectivity studies. 
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Figure 1 Image-space correlations for center voxel in real and magnitude squared data. Center 2 of 256 colorbar values black. 
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