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Abstract

In magnetic resonance imaging, complex-valued mea-
surements are acquired in time corresponding to spa-
tial frequency (k-space) measurements in space generally
placed on a Cartesian rectangular grid. These complex-
valued spatial frequency measurements are transformed
into a measured complex-valued image by an image re-
construction method. The most common image recon-
struction method is the two-dimensional inverse Fourier
transform. This paper introduces a real-valued isomor-
phism for the complex-valued spatial frequency mea-
surements and their transformation into complex-valued
image measurements. A (complex-valued) multivari-
ate normal distribution is also described. Using this
isomorphism, the correlation structure between image
voxel measurements when (inverse Fourier) reconstruct-
ing correlated spatial frequency measurements is de-
scribed. One potential application of this methodology
is that there may be a correlation structure introduced
by the measurement process or adjustments made to the
spatial frequencies. The exact statistical relationship be-
tween complex-valued spatial frequency measurements
and complex-valued voxel measurements has now been
established.

Keywords: fMRI, correlation, spatial frequency, k-
space.

1 Introduction

In fMRI, we apply magnetic field gradients to encode
then measure the complex-valued Fourier transformation
(FT) of the effective proton spin density (PSD) in a real-
valued physical object. In fMRI, complex-valued mea-
surements are acquired in spatial frequency space (usu-
ally two dimensional), also called k-space from the use
of the k variables for its axes (kx, ky). These measure-
ments are transformed into a complex-valued image by
an image reconstruction method. The most common im-
age reconstruction method is the inverse Fourier trans-
form. These complex-valued measurements, when placed
at their proper spatial frequency location, are ideally the
discrete FT of the PSD. A discrete inverse Fourier trans-
form (IFT) is applied to the discretely measured signal
to reconstruct a discretely measured PSD or image. The
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original object or PSD is real-valued, but due to imper-
fections in the imaging process, a complex-valued im-
age of PSDs is produced (Haacke et al., 1999). These
complex-valued measurements are collected to yield a
complex-valued time course in each voxel. Traditional
methods to detect brain activation utilize magnitude-only
voxel time courses (Banndettini et al., 1993; Friston et
al., 1994). Work by Menon (2002) and others indicate
that the generally discarded phase portion of the fMRI
voxel time courses contains information about the brains’
vasculature and the entire complex-valued voxel time se-
riesshould be used. Recently complex-valued methods to
detect brain activation have been introduced (Nan and
Nowak, 1999; Rowe and Logan, 2004; Rowe and Logan,
2005; Rowe, 2005a; Rowe 2005b). Preliminary work with
these methods indicate that they can be used in fMRI
to postacquistion suppress venous BOLD (Rowe 2005c;
Nencka and Rowe, 2005; Rowe and Nencka, 2006; Nencka
and Rowe 2006). These complex-valued detection meth-
ods could be combined with the current methods that
connect spatial frequency measurements to voxel mea-
surements and a more natural representation of the noise
utilized.

After Fourier (or non-Fourier) image reconstruction,
images are complex-valued containing a matrix of real
and imaginary components of the measured effective
PSD. The real part of the complex-valued measurements
in each image will be stacked on top of the imaginary
part of the measurements to form a single real-valued
vector of measurements. A one-to-one relationship will
be described between the vector of complex-valued mea-
surements in an image and the real-valued vector with
twice the dimension of stacked measurements. This one-
to-one relationship or correspondence is often called an
isomorphism in the mathematical literature. It is known
that image voxel measurements are spatially correlated,
in measured fMRI data. A property of the inverse
Fourier transformation is that uncorrelated spatial fre-
quency measurements yield spatially uncorrelated voxel
measurements and vise versa. Additionally, correlated
voxel measurements result from correlated spatial fre-
quency measurements. The thrust of this paper is to
relate the signal and noise characteristics of spatial fre-
quency measurements and Fourier reconstructed image
measurements. It will be shown that the true spatial
correlation between voxel measurements could be mod-
ified by correlated noise of spatial frequency measure-
ments and may need to be adjusted to yield an estimate of
the true spatial correlation between voxel measurements.
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This has many implications for fMRI including connectiv-
ity results and activation thresholding (Logan and Rowe,
2004).

2 Statistical Theory

In this section, the statistical properties of the
complex-valued spatial frequency measurements are de-
scribed for a single time point image. The statistical
properties of the complex-valued image measurements
from a complex-valued inverse Fourier transformation of
the complex-valued spatial frequency measurements are
described. This is done for a one dimensional image
where the characteristics of the transformation in terms
of mean and covariance are easier to understand then
generalized for a two dimensional image.

2.1 One Dimension

Consider a one dimensional horizontal complex-valued
magnetic resonance image with px complex-valued voxels.
To obtain this image, we must measure px spatial frequen-
cies corresponding to the ky = 0 center line. In this one
dimensional magnetic resonance image, complex-valued
k-space measurements are taken in time but correspond
to specific spatial frequencies. We will assume that the
k-space measurements are acquired from left to right.

Let sC = (sC1, ..., sCpx)T be these px measured
complex-valued spatial frequencies stacked into a px × 1
complex-valued vector sC that is the sum of s0C , a vector
of true noiseless complex-valued spatial frequencies and
εC , a vector of complex-valued measurement error as in
Appendix A where “T” denotes transposition. As shown
in Appendix A, the measurements can be represented as
a single real-valued vector by stacking the px real mea-
surements upon the px imaginary measurements to yield
the vector s, that is the sum of a vector of true noise-
less complex-valued spatial frequencies s0, and a vector
of complex-valued measurement error ε. Since the vec-
tor s is what is measured with error, it is assumed to be
characterized as having a multivariate normal distribu-
tion with mean s0 and covariance matrix Λ as described
in Appendix A.

The Fourier image reconstruction process to generate
a complex-valued measured image ρC consists of pre-
multiplying the measured spatial frequencies sC by the
Fourier matrix ΩCx in Eqn. A.2. As shown in Ap-
pendix A, this is equivalently represented as the pre-
multiplication if the real-valued vector of measured spa-
tial frequencies s by the real-valued matrix Ωx to arrive at
the real-valued representation of the measured image ρ.
The real-valued representation of the measured image ρ is
a linear transformation of the real-valued representation
of the measured spatial frequencies and thus normally
distributed with mean ρ0 = Ωxs0 and covariance matrix
∆ = ΩxΛΩT

x .
An example of this methodology might be useful. Al-

though explicit analytic expressions exist for the mean

and covariance of the complex-valued transformed one
dimensional images measurements given the mean and
covariance of the one dimensional spatial frequency mea-
surements, simulations were carried out to verify the
analytic results in addition to determining those for
magnitude-only image measurements where closed form
analytic solutions do not exist due to the nonlinear and
non one-to-one mapping. The simulations were per-
formed under known conditions. These can be used to
precisely characterize the signal and noise of the trans-
formed measurements. All computations utilized Matlab
(The Mathworks, Natick, MA, USA). Data was gener-
ated to mimic a one dimensional MRI experiment. Al-
though this simulation is a mathematical ideal and pos-
sibly unrealistic, its results are useful in understanding
the properties of the described methodology. Random
complex-valued error vectors of dimension px were gen-
erated in the form of the real-valued representation. A
large number, L of random vectors of dimension 2px for
the px real measurements stacked upon the px imaginary
measurements denoted by s1, ..., sL were generated from a
normal distribution with mean s0 and covariance Λ1⊗Λ2.
Without loss of generality, s0 = 0 while Λ1 and Λ2 are
taken to be unit variance correlation matrices. The 2× 2
correlation matrix Λ1 is taken to have an off diagonal cor-
relation of %1 = .5 while the px×px correlation matrix Λ2

is taken to be an AR(1) correlation matrix with (i, j)th

element %|i−j|
2 where %2 = 0.25. The number of randomly

generated vectors was selected to be L = 106.

A value of px was chosen to be 8. Although the
methodology equally applies to larger values, they are
not shown to maintain the clarity of presentation. The
sample correlation matrix from the L randomly gener-
ated one dimensional spatial frequency vectors was com-
puted as displayed in Fig. 1a. Further, each random one
dimensional spatial frequency vector was pre-multiplied
by the appropriate inverse Fourier transform matrix Ωx

given in Eqn. A.3 to produce random one dimensional
images. The sample correlation matrix of the real-valued
representation ρ of the complex-valued one dimensional
image measurements ρc was computed as displayed in
Fig. 1b. The sample spatial frequency correlation ma-
trix matched its theoretical population correlation ma-
trix in Eqn. A.4 and the sample image correlation matrix
matched the population value in Eqn. A.5 utilizing the
previously described theory. Further, since an analytic
expression for the theoretical covariance or correlation
matrix for magnitude-only image quantities can not be
found, the L vectors containing real and imaginary im-
age measurements of dimension 2px were converted to L
vectors of dimension px containing magnitude-only im-
age quantities. The sample correlation matrix of the
magnitude-only image vectors was computed for the as
displayed in Fig. 1c. Note that both complex-valued vox-
els and real-valued magnitude-only voxels are correlated.
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2.2 Two Dimensions

In a two dimensional echo planar magnetic resonance
image, complex-valued measurements are taken in time
but correspond to specific spatial frequencies on a Carte-
sian (kx, ky) grid. In a standard echo planar imaging
(EPI) experiment, the measurements are taken in a “zig-
zag” pattern. For example, with positive phase encode
steps, the pattern starts at the bottom left of the grid
with negative (kx, ky) values and moves from left to right,
then right to left and so on, while going from bottom to
top. The left-right direction is called the frequency en-
code direction while the top-bottom direction is called the
phase encode direction. We will assume that the data is
collected according to this standard EPI trajectory.

Let SC be a py × px complex-valued matrix of two di-
mensional measured spatial frequencies that is the sum
of S0C , a matrix of true noiseless complex-valued spatial
frequencies and EC, a matrix of complex-valued measure-
ment error as in Appendix B. As shown in Appendix B,
the matrix of spatial frequency measurements can be rep-
resented as a single real-valued vector by stacking the
rows to form

s = vec(Re(ST
C ), Im(ST

C ))

where Re() and Im() denote the operators that return
the real and imaginary parts of their arguments and vec()
denotes the the vectorization operator that stacks the
columns of its matrix argument. This vector s, is the
sum of a vector of true noiseless complex-valued spatial
frequencies, s0, and a vector of complex-valued measure-
ment error, ε. Since the vector s is what is measured with
error, it is assumed to be characterized as having a multi-
variate normal distribution with mean s0 and covariance
matrix Φ as described in Appendix B.

The Fourier image reconstruction process to generate
a complex-valued measured image RC consists of pre-
multiplying the measured spatial frequencies SC by the
Fourier matrix ΩCy in Eqn. B.1 and post-multiplying it
by ΩT

Cx in Eqn. B.1. As shown in Appendix B, this is
equivalently represented as the pre-multiplication of the
real-valued vector of measured spatial frequencies s by
the real-valued matrix Ω as in Eqn. B.6 to arrive at the
real-valued representation of the measured image ρ. The
real-valued representation of the measured image ρ is a
linear transformation of the real-valued representation
of the measured spatial frequencies and thus normally
distributed with mean ρ0 = Ωs0 and covariance matrix
Γ = ΩΦΩT . The measured py×px complex-valued image
RC can be found by sequentially putting every px ele-
ments of the vector ρR + iρI into a matrix then taking
the transpose.

An example of this methodology might be useful. Al-
though explicit analytic expressions exist for the mean
and covariance of the complex-valued transformed two
dimensional images measurements given the mean and
covariance of the two dimensional spatial frequency mea-
surements, simulations were carried out to verify the

analytic results in addition to determining those for
magnitude-only image measurements where closed form
analytic solutions do not exist due to the nonlinear and
non one-to-one mapping. The simulations were per-
formed under known conditions. These can be used to
precisely characterize the signal and noise of the trans-
formed measurements. All computations utilized Matlab
(The Mathworks, Natick, MA, USA). Data was generated
to mimic a two dimensional magnetic resonance imaging
experiment. Although this simulation is a mathematical
ideal and possibly unrealistic, its results are useful in un-
derstanding the properties of the described methodology.

A large number, L of random matrices of dimension
py ×px were generated for the pypx real spatial frequency
measurements stacked upon the pypx imaginary spatial
frequency measurements denoted by s1, ..., sL that were
generated from a normal distribution with mean s0 and
covariance Λ1⊗Λ2⊗Λ3. Without loss of generality, s0 =
0 while Λ1, Λ2, and Λ3 are taken to be unit variance
correlation matrices. The py × py correlation matrix Λ1

is taken to be an AR(1) correlation matrix with (i, j)th

element %|i−j|
1 where %1 = 0.25, the 2 × 2 correlation

matrix Λ2 is taken to have an off diagonal correlation of
%2 = .5 while the px × px correlation matrix Λ3 is taken
to be an AR(1) correlation matrix with (i, j)th element
%
|i−j|
3 where %3 = 0.5. The number of randomly generated

vectors was selected to be L = 106.

A value of py = px = 8 was chosen. Although the
methodology equally applies to larger values, they are not
shown to maintain the clarity of presentation. The corre-
sponding sample correlation matrix from the L randomly
generated noisy spatial frequency matrices in vector form
was computed as displayed in Fig. 2a. Further, each ran-
dom complex-valued spatial frequency matrix in vector
form was pre-multiplied by Ω in Eqn. B.6 equilavent to
pre- and post-multiplying in matrix form by the appro-
priate inverse Fourier transform matrices ΩCy and ΩT

Cx

given in Eqn. B.1. The sample correlation matrix of the
real-valued representation ρ of the complex-valued image
measurements R was computed as displayed in Fig. 2b.
The sample spatial frequency correlation matrix matched
its theoretical population correlation matrix in Eqn. B.8
and the sample image correlation matrix matched the
population value in Eqn. B.9 utilizing the described the-
ory.

Further, since a simple closed form analytic expression
for the theoretical covariance matrix for magnitude-only
image quantities can not be found, the L matrices of di-
mension py = px containing real and imaginary measure-
ments were converted to L matrices of dimension py × px

containing magnitude-only image quantities. The sample
correlation matrix of the magnitude-only image matrices
was computed using the real-valued representation as dis-
played in Fig. 2c. Note that both complex-valued voxels
and real-valued magnitude-only voxels are correlated.
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3 Conclusions

This paper presented the resulting spatial correlation
between voxels when Fourier reconstructing correlated
spatial frequency measurements. However, the current
methodology is applicable to any linear transformation.
This includes non-Fourier reconstruction of Fourier en-
coded data (Cox and McCall, ) or non-Fourier reconstruc-
tion of non-Fourier encoded data (Panych et al., 1996).
Additionally, the previously described Fourier Ω matri-
ces can easily be adjusted to include phase terms as done
when adjusting for magnetic field inhomogenieties with a
field map (Jezzard and Balaban, 1995)

Spatially correlated voxels result from correlated
spatial frequency measurements. These correlation
results may have implications for functional magnetic
resonance imaging. In particular, temporally autocorre-
lated spatial frequency measurements produce spatially
correlated voxels. This may have specific implications
for functional connectivity. The true voxel connectivity
may be less than previously thought. This methodology
could be utilized to characterize noise correlation in its
original form and adjust for it. The baseline spatial
correlation needs to be considered and accounted for
when making statements regarding connectivity between
voxels in fMRI. Although the normal distribution has
been utilized in the present work, other statistical
distributions could be used. Regardless of the chosen
statistical distribution to model the noise, the mean and
covariance results are still applicable. Additionally, some
voxel correlation may be lost by the magnitude-only
procedure. Making statistical inferences, interpreting
analysis results, and drawing conclusions should be done
in light of the current research.
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A One Dimensional Image

The px × 1 dimensional complex-valued spatial fre-
quency measurements sC consisting of px×1 dimensional
true underlying noiseless complex-valued spatial frequen-
cies s0C and px×1 dimensional complex-valued measure-
ment error εC can be represented as

sC = s0C + εC
= (s0R + is0I) + (εR + iεI)
= (s0R + εR) + i(s0I + εI)

(A.1)

where i is the imaginary unit while s0R, s0I , εR and εI
are px × 1 dimensional real and imaginary vector valued
parts of the true signal and measurement noise. Let ΩCx

be a px×px complex-valued matrix such as a Fourier type
matrix such that

ΩCx = ΩRx + i ΩIx (A.2)

where ΩRx and ΩIx are real and imaginary matrix val-
ued parts. Then, the px × 1 dimensional complex-valued
inverse Fourier transformation ρC of sC can be written
(Strang, 1988) as the pre-multiplication by the complex-
valued Fourier matrix as

ρC = ΩCxsC

= (ΩRx + iΩIx)[(s0R + εR) + i(s0I + εI)]
= (ρ0R + ηR) + i(ρ0I + ηI)
= ρR + iρI

where ρ0R, ρ0I , ηR, and ηI are real and imaginary vector
valued parts of the Fourier transformed true signal (im-
age) and transformed measurement noise. If ΩCx were a
Fourier matrix, it is [ΩCx]jk = κ

(
ωjk

)
where κ = 1 and

ω = exp[−i2π(j − 1)(k− 1)/px] for the forward transfor-
mation while κ = 1/px and ω = exp[+i2π(j−1)(k−1)/px]
for the inverse transformation, where j, k = 1, ..., px.

This pre-multiplication of a complex-valued vector by
a complex-valued matrix can be equivalently represented
with the 2px dimensional real-valued representation

ρ = Ωx s(
ρR

ρI

)
=

(
ΩRx −ΩIx

ΩIx ΩRx

) (
s0R + εR
s0I + εI

)
.

(A.3)
As previously described, data collected from a scien-

tific experiment is never precisely known and thus con-
tains both true signal and measurement error. Scientific
measurement error is quantified with statistical distri-
butions and inferences drawn. In most instances, real-
valued measurements are taken and real-valued statis-
tical distributions utilized. However, in MRI complex-
valued measurements are taken and a complex-valued
statistical distribution needs to be utilized. The data
can be represented using a real-valued representation and
a multivariate normal distribution (Rowe, 2003). The
real-valued representation used here is very general and
within this framework contains the particular represen-
tation used to represent the complex-valued multivari-
ate normal distribution (Wooding, 1956; Anderson et al.,
1995). The transformation from complex-valued spatial
frequency space to image space modifiesboth the true
noiseless signal and the measurement noise. The re-
lationship between correlated complex-valued measure-
ments made in spatial frequency space and the modified
correlation between inverse Fourier transformed or recon-
structed complex-valued measurements in image space is
examined.

Using the real-valued representation in Eqn. A.3, let
the 2px dimensional vector s = (sT

R, s
T
I )T be multivariate

normally distributed (Rowe, 2003) with mean and covari-
ance matrix

s0 =
(
s0R

s0I

)
and Λ =

(
Λ11 Λ12

ΛT
12 Λ22

)
. (A.4)

Complex multivariate normal structure occurs when
Λ11 = Λ22 = Ψ, −Λ12 = Υ, and ΛT

12 = Υ. That is,
when the covariance matrix is of a skew-symmetric form
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as (Wooding, 1956; Anderson et al., 1995). The current
representation is more general and less restrictive than
multivariate complex normal structure. By carrying out
a multivariate transformation of variable with the real-
valued representation from s to ρ through ρ = Ωxs, the
statistical distribution of ρ is also multivariate normally
distributed but with mean ρ0 given by

(
ρ0R

ρ0I

)
=

(
ΩRxs0R − ΩIxs0I

ΩRxs0I + ΩIxs0R

)

and covariance matrix ∆ = ΩxΛΩ′
x given by

∆ =
(

ΩRx −ΩIx

ΩIx ΩRx

)(
Λ11 Λ12

ΛT
12 Λ22

)(
ΩT

Rx ΩT
Ix

−ΩT
Ix ΩT

Rx

)

∆11 = ΩRxΛ11ΩT
Rx − ΩIxΛT

12Ω
T
Rx + ΩRx(−Λ12)ΩT

Ix

+ΩIxΛ22ΩT
Ix

∆22 = ΩIxΛ11ΩT
Ix + ΩRxΛT

12Ω
T
Ix − ΩIx(−Λ12)ΩT

Rx

+ΩRxΛ22ΩT
Rx

∆12 = ΩRxΛ11ΩT
Ix − ΩIxΛT

12Ω
T
Ix − ΩRx(−Λ12)ΩT

Rx

−ΩIxΛ22ΩT
Rx

∆21 = ∆T
12

where Ωx is of full rank if it is a Fourier matrix. Again,
this representation is more general and less restrictive
than multivariate complex normal structure (Wooding,
1956; Anderson et al., 1995). In the multivariate com-
plex normal case (Wooding, 1956; Anderson et al., 1995)
where Λ11 = Λ22 = Ψ, −Λ12 = Υ, and ΛT

12 = Υ, the
covariance matrix ∆ is

∆11 = ΩRxΨΩT
Rx − ΩIxΥΩT

Rx + ΩRxΥΩT
Ix + ΩIxΨΩT

Ix

∆12 = ΩRxΨΩT
Ix − ΩIxΥΩT

Ix − ΩRxΥΩT
Rx − ΩIxΨΩT

Rx

∆21 = −∆12

∆22 = ∆11

where Υ is a skew symmetric matrix, ΥT = −Υ.
It can readily be seen that if the measurement process

produces uncorrelated real and imaginary channels, that
is, Λ12 = ΛT

12 = 0 but correlated within the real and
imaginary channels, then after transformation the real
and imaginary channels are correlated both between and
within. It should be noted that if Υ = 0 and Ψ = ψ2Ipx ,
then ∆ = δ2I2 ⊗ Ipx where δ = ψ2/px for the inverse
transformation and δ = ψ2px for the forward transfor-
mation. The Kronecker product ⊗ was utilized which
multiplies every element of its first matrix argument by
its entire second matrix argument.

The above specific multivariate complex normal struc-
ture could alternatively be developed utilizing the com-
plex multivariate normal distribution (Wooding, 1956;
Anderson et al., 1995). A property of the complex multi-
variate normal distribution is that if sC ∼ NC (s0C ,ΛC),
then ρC = ΩCxsC is also complex normal distributed,
ρC ∼ NC

(
ΩCxs0C ,ΩCxΛCΩH

Cx

)
where ΛC = Ψ+ iΥ and

“H” is the Hermitian or complex conjugate transpose.

After image reconstruction, the usual procedure is to
convert from real and imaginary images to magnitude
and phase images. The phase is generally discarded in
fMRI and magnitude-only time course data are analyzed.
The conversion from real and imaginary images to mag-
nitude and phase images is a nonlinear transformation
and thus the joint distribution of the magnitude image
measurements is not straight forward. On an individual
basis, the measured magnitude quantity in voxel j in each
magnitude image is

mj =
√

(ρ0Rj + ηRj)2 + (ρ0Ij + ηIj)2

where ρ0Rj and ρ0Ij are the means in the real and imag-
inary parts while ηRj and ηIj are the zero mean real
and imaginary Gaussian error terms with variances ∆jj

and ∆px+j,px+j , j = 1, ..., px, generally assumed to be
the same. It is well known (Rice, 1944; Gudbjarts-
son and Patz, 1995; Rowe and Logan, 2004) that the
measured magnitude voxel intensity mj is Ricean dis-

tributed with parameters ρ0j =
√
ρ2
0Rj + ρ2

0Ij , being the
pixel magnitude intensity in the absence of noise, and
∆j = ∆jj = ∆px+j,px+j , being the equal variances of the
real and imaginary parts. The population correlation be-
tween Ricean distributed magnitude image measurements
will be examined through simulation.

B Two Dimensional Image

The py × px dimensional complex-valued spatial fre-
quency measurements SC consisting of py × px dimen-
sional true underlying noiseless complex-valued spatial
frequencies S0C and py × px dimensional complex-valued
measurement error EC can be represented as

SC = (S0R + iS0I) + (ER + iEI)
= (S0R + ER) + i(S0I + EI)

where i is the imaginary unit while S0R, S0I , ER and EI

are real and imaginary matrix valued parts of the true
spatial frequencies signal and measurement noise. Let
ΩCx and ΩCy be px × px and py × py complex-valued
Fourier matrices such that

ΩCy = ΩRy + iΩIy

ΩCx = ΩRx + iΩIx
(B.1)

where ΩRy and ΩRx are real while ΩIy and ΩIx are imag-
inary matrix valued parts.

Then, the py×px complex-valued inverse Fourier trans-
formation RC of SC can be written as

RC = ΩCySCΩT
Cx

= (R0R +NR) + i(R0I +NI)
= RR + iRI

where

R0R = (ΩRyS0RΩT
Rx − ΩRyS0IΩT

Ix − ΩIyS0RΩT
Ix
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−ΩIyS0IΩT
Rx)

NR = (ΩRyERΩT
Rx − ΩIyEIΩT

Rx)
R0I = (ΩRyS0RΩT

Ix + ΩRyS0IΩT
Rx + ΩIyS0RΩT

Rx

−ΩIyS0IΩT
Ix)

NI = (ΩRyERΩT
Ix + ΩRyEIΩT

Rx + ΩIyERΩT
Rx

−ΩIyEIΩT
Ix)

are real and imaginary matrix valued parts of the in-
verse Fourier transformed true signal (image) and mea-
surement noise. Each row in the curled bracket part of the
expression for RC is a one dimensional complex-valued
transformation

SCΩT
Cx =




(ΩCxsC1)T

...
(ΩCxsCpy )T


 (B.2)

as in the previous one-dimensional case where sT
Cj rep-

resents the jth row in SC that is px dimensional, j =
1, ..., py. The complex matrices ΩCy and ΩCx can be
Fourier matrices. This pre- and post-multiplication of a
complex-valued matrix by complex-valued matrices could
be equivalently represented with a similar real-valued rep-
resentation. This could be accomplished by forming a
py × 2px dimensional matrix where a given row j, is
(sT

jR, s
T
jI)

T , a real-valued representation of the rows of
SC . This real-valued matrix is then post-multiplied by
ΩT

x . The resultant real-valued matrix is then reformed
into a complex-valued matrix and another real-valued
representation made from the columns to form a 2py ×px

matrix. This new real-valued representation is then pre-
multiplied by Ωy and the resultant real-valued matrix is
then reformed into a complex-valued matrix being the
measured two dimensional image. In the prodedure just
described, it is difficult to kep track of individual mea-
surements and the correlations between other measure-
ments within the array.

A simple representaion from matrix algebra can be uti-
lized to assist with this endeavor. It is known (Harville,
1997) that the vectorization of the triple product of con-
formable matrices A, B, and C can be written as

vec(ABC) = (CT ⊗ A)vec(B)

which translates to our application as

ρC = (ΩCy ⊗ ΩCx)vec(ST
C )

where vec is the vectorization operator that stacks the
columns of its matrix argument and ρC = vec(RT

C).
As previously noted, the spatial frequency measure-

ment matrix can be described with a real-valued repre-
sentation. The Kronecker product can be represented as

ΩC = ΩCy ⊗ ΩCx (B.3)
= (ΩyR + iΩyI ) ⊗ (ΩxR + iΩxI ) (B.4)
= [(ΩyR ⊗ ΩxR) − (ΩyI ⊗ ΩxI)]

+i[(ΩyR ⊗ ΩxI) + (ΩyI ⊗ ΩxR)] (B.5)
= ΩR + iΩI . (B.6)

The complex-valued image vector can be represented as
ρC = ΩCsC . We can pre-multiply the complex-valued
spatial frequency vector by this complex-valued matrix as
in the one dimensional image case, or equivalently with
a similar real-valued representation

ρ = Ω s(
ρR

ρI

)
=

(
ΩR −ΩI

ΩI ΩR

) (
s0R + εR
s0I + εI

)

(B.7)
where the real-valued vector of spatial frequencies is
formed by

s = vec(Re(ST
C ), Im(ST

C ))

while Re() and Im() denote the operators that return the
real and imaginary parts of their arguments and vec()
denotes the the vectorization operator that stacks the
columns of its matrix argument.

The Fourier image reconstruction process to generate
a complex-valued measured image RC consists of pre-
multiplying the measured spatial frequencies SC by the
Fourier matrix ΩCy in Eqn. B.1 and post-multiplying it
by ΩT

Cx in Eqn. B.1. As shown above, this is equiva-
lently represented as the pre-multiplication of the real-
valued vector of measured spatial frequencies s by the
real-valued matrix Ω in Eqn. B.7 to arrive at the real-
valued representation of the measured image ρ. The vec-
tor s is assumed to be characterized as having a multi-
variate normal distribution with mean s0 and covariance
matrix Φ denoted as

s ∼ N (s0,Φ) . (B.8)

The real-valued representation of the measured image
ρ is a linear transformation of the real-valued represen-
tation of the measured spatial frequencies and thus nor-
mally distributed with mean ρ0 = Ωs0 and covariance
matrix Γ = ΩΦΩT denoted as

ρ ∼ N (ρ0,Γ) . (B.9)

The measured py × px complex-valued image RC can be
found by sequentially putting every px elements of the
vector ρR + iρI into a matrix then taking the transpose.

In terms of complex-valued matrices, the mean of the
transformed variables can be written as

R0C = ΩyS0CΩT
x

= (ΩyR + iΩyI )(S0R + iS0I)(ΩT
xR + iΩT

xI)
= R0R + iR0I

as previously defined but the covariance of the trans-
formed measurements is not easily represented with com-
plex numbers and requires the larger real-valued repre-
sentation.

Again, after image reconstruction, the usual procedure
is to convert from real and imaginary images to magni-
tude and phase images. The phase is generally discarded
in fMRI and magnitude-only time course data is ana-
lyzed. The conversion from real and imaginary images
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to magnitude and phase images is a nonlinear not one-
to-one transformation and thus the joint distribution of
the magnitude-only image quantities is not straight for-
ward. However an approximation to the correlation of
the square of the magnitudes, or in general any quadratic
form exists. Further, the correlation of squared magni-
tudes is a good approximation to the correlation of mag-
nitudes. If any pair of random variables is transformed by
the same function (here the square root), their correlation
remains roughly the same, by a Taylor series argument.

On an individual basis, the measured magnitude quan-
tity in voxel (i, j) in each magnitude image is

Mjk =
√

(R0Rjk +NRjk)2 + (R0Ijk + NIjk)2

where R0Rjk and R0Ijk are the means in the real and
imaginary parts, NRjk and NIjk are the zero mean
real and imaginary Gaussian error terms with variances
Γjpx+k,jpx+k and Γpxpy+jpx+k,pxpy+jpx+k, j = 1, ..., px,
k = 1, ..., py, generally assumed to be the same.

It is well known (Rice, 1944; Gudbjartsson and Patz,
1995; Rowe and Logan, 2004) that the measured mag-
nitude voxel intensity mj is Ricean distributed with pa-

rameters Mjk =
√
R2

0Rjk +R2
0Ijk, being the pixel mag-

nitude intensity in the absence of noise, and Γjk =
Γjpx+k,jpx+k = Γpxpy+jpx+k,pxpy+jpx+k, being the equal
variances of the real and imaginary parts. The population
correlation between Ricean distributed magnitude image
measurements will be examined through simulation.
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Figure 1: Correlation maps, px = 8, L = 106.
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(a) Correlation between complex spatial fre-
quency measurements, Corr(s, s).
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(b) Correlation between complex image voxel
measurements, Corr(r, r).
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(c) Correlation between magnitude image voxel
measurements, Corr(m, m).

Figure 2: Correlation maps, px = py = 8, L = 106.
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(a) Correlationbetween complex spatial frequency
measurements, Corr(s, s)
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(b) Correlation between complex image voxel
measurements, Corr(r, r)
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(c) Correlation between magnitude image voxel
measurements, Corr(m, m)
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