
www.elsevier.com/locate/ynimg
NeuroImage 25 (2005) 1124–1132
Parameter estimation in the magnitude-only and complex-valued

fMRI data models

Daniel B. Rowe*

Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA

Received 30 July 2004; revised 13 December 2004; accepted 17 December 2004

Available online 2 March 2005
In functional magnetic resonance imaging, voxel time courses are

complex-valued data but are traditionally converted to real magni-

tude-only data ones. At a large signal-to-noise ratio (SNR), the

magnitude-only data Ricean distribution is approximated by a

normal distribution that has been suggested as reasonable in

magnitude-only data magnetic resonance images for an SNR of 5

and potentially as low as 3. A complex activation model has been

recently introduced by Rowe and Logan [Rowe, D.B., and Logan,

B.R. (2004). A complex way to compute fMRI activation. Neuro-

Image, 23 (3):1078–1092] that is valid for all SNRs. The properties of

the parameter estimators and activation statistic for these two models

and a more accurate Ricean approximation based on a Taylor series

expansion are characterized in terms of bias, variance, and Cramer–

Rao lower bound. It was found that the unbiased estimators in the

complex model continued to be unbiased for lower SNRs while those

of the normal magnitude-only data model became biased as the SNR

decreased and at differing levels for the regression coefficients. The

unbiased parameter estimators from the approximate magnitude-only

Ricean Taylor model were unbiased to lower SNRs than the

magnitude-only normal ones. Further, the variances of the parameter

estimators achieved their minimum value in the complex data model

regardless of SNR while the magnitude-only data normal model and

Ricean approximation using a Taylor series did not as the SNR

decreased. Finally, the mean activation statistic for the complex data

model was higher and not SNR dependent while it decreased with

SNR in the magnitude-only data models but less so for the

approximate Ricean model. These results indicate that using the

complex data model and not approximations to the true magnitude-

only Ricean data model is more appropriate at lower SNRs.

Therefore, since the computational cost is relatively low for the

complex data model and since the SNR is not inherently known a

priori for all voxels, the complex data model is recommended at all

SNRs.
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Introduction

Recently, a complex-valued time course model was introduced

by Rowe and Logan (2004) to determine functional brain

activation (Rowe and Logan, 2004). This model builds upon

previous work in which pre magnitude complex-valued voxel time

courses were used to determine brain activation (Lai and Glover,

1997; Nan and Nowak, 1999). This model showed improved

power of detection at low signal-to-noise ratios (SNRs) and low

contrast-to-noise ratios (CNRs) for three distinct thresholding

methods described in Logan and Rowe (2004).

The improvement in power of the complex data model over the

magnitude-only data model may be a combination of having more

quantities to estimate the error variance thus increasing the signifi-

cance of an activation statistic and not making a distributional

approximation. If the improvement were solely due to not making a

distributional approximation, then it would be expected that a

magnitude-only data model that does not approximate the Ricean

distribution with the normal distribution would perform nearly

identical to the complex data model. If the improvement in power of

the complex data model over the magnitude-only data model were

solely due to a reduction in the error variance, then a model that does

not approximate the Ricean distribution with the normal distribution

would perform nearly identical to the magnitude-only data model. In

this paper, a good approximation to the Ricean distribution is

introduced using a truncated Taylor series expansion. It will be seen

that the performance of the Taylor approximation model is between

that of the magnitude-only normal and complex data model.

Subsequently, Rowe and Logan (2005) generalized the complex

model to have no restrictions on the phase time courses. They showed

that this unrestricted phase model was mathematically equivalent to

the usual magnitude-only data model including regression coef-

ficients and voxel activation statistic but philosophically different

due to its derivation from complex data (Rowe and Logan, 2005).
Models

As previously noted, fMRI voxel time courses are complex-

valued. Recently, Rowe and Logan (2004) introduced a complex-
YNIMG-02992; No. of pages: 10; 4C: 5, 6
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valued model to characterize task related magnitude changes. This

model will be briefly summarized and the magnitude-only data

Ricean model derived from it with a Taylor series approximation

and the usual normal approximation.

Complex model

Voxelwise complex-valued fMRI data can be characterized by a

nonlinear multiple regression model with n � (q + 1) dimensional

design matrix X = (x1,. . .,xn)V as described in Rowe and Logan

(2004) where n is the number of time points and q is the number of

non-baseline regressors. For example, a simple model could have a

baseline, a linear trend, and a reference function. In this simple

model, X would have three columns, the first being a column of

ones, the second a column of counting numbers, and the third a

column containing the reference function. In this model which

includes a phase imperfection h, the complex-valued voxel

observations at time t are given by

yt ¼ x Vtbð Þcos h þ gRt½ � þ i xVt bð Þsinh þ gI t½ � ð2:1Þ

where x Vt b ¼ b0 þ b1x1t þ : : : þ bqxqt; gRt; gI tð ÞVfN 0;Rð Þ and

S = r2I2.

The distributional specification is on the real and imaginary

parts of the observed signal and not on the magnitude. The phase

imperfection in Eq. (2.1) is assumed to be fixed and unknown, but

may be estimated voxel-by-voxel as in Rowe and Logan (2004).

Alternatively, the observed data can be represented at time point

t as a 2 � 1 vector instead of as a complex number

yRt
yIt

�
¼ x Vt b cos h

x Vt b sin h

�
þ gRt

gI t

�
; t ¼ 1; N ; n:

���

This model can also be written to describe the observations at all

time points simultaneously as

y

2n� 1

¼

 
X 0

0 X

!

2n� 2 qþ 1ð Þ

 
b cos h
b sin h

!

2 qþ 1ð Þ � 1

þ g

2n� 1

ð2:2Þ

where it is specified that the observed vector of data y = (yVR, yVI)Vis
the vector of observed real values stacked on the vector of observed

imaginary values and the vector of errors g ¼ gVR; gVIð ÞVfN
0;R � Uð Þ is similarly defined. Here, it is assumed that R = r2I2
and A = In.

With the aforementioned distributional specifications, the like-

lihood of the complex-valued data model is

(2.3)

p y jX ; b; h; r2
� �

¼ 2pr2
� �
n

� exp

�

 1

2r2
y


Xb cos h

X b sin h

� �� 	V

� y

X b cos h

X b sin h

� �� 	


from which maximum likelihood estimators (MLEs) and Cramer–

Rao lower bounds (CRLBs) can be computed.

Ricean model

In fMRI, repeated measurements are taken over time while a

subject is performing a task. In each voxel, we usually compute a

measure of association between the observed time course and a
preassigned reference function that characterizes the experimental

paradigm. The typical method to compute activations (Bandettini

et al., 1993; Cox et al., 1995) is to use only the magnitude at time t

denoted by rt and written as

rt ¼ x Vtb cos h þ gRtð Þ2 þ x Vtb sin h þ gI tð Þ2
h i1

2

: ð2:4Þ

As previously outlined (Rowe and Logan, 2004), the magnitude

of a complex valued observation at time t is Ricean distributed

(Gudbjartsson and Patz, 1995; Rice, 1944) and given by

(2.5)

p rt jxt; b; r2
� �

¼ rt

r2
exp 
 1

2r2
r2t þ x Vtbð Þ2
h i� 


�
Z p

/t ¼ 
p

1

2p
exp

x Vtbrt
r2

cos /t 
 hð Þ


d/t;

�

where a general linear model is assumed and the integral factor

often denoted Io (xtVbrt/r
2) is the zeroth order modified Bessel

function of the first kind. It is well known that for blargeQ SNRs,
the Ricean distribution of the magnitude rt in Eq. (2.5) is

approximately normal with mean xVtb and variance r2. When the

SNR is zero, the Ricean distribution is a Rayleigh distribution. It is

intermediate SNR values that are of interest along with guidelines

for what is considered a blargeQ SNR.
Maximum likelihood estimates of the parameters (b,r2) can be

determined for both restricted null and unrestricted alternative

hypotheses. For example with unrestricted null and alternative

hypotheses H0:Cb = c versus H1:Cb p c where C is a full row rank

matrix where the hypotheses to be tested are in the form of linear

constraints in the rows and c is a column vector of dimension equal

to the full row rank of C. The likelihood

p rjX ; b; r2
� �

¼ r2
� �
n

Yn
t ¼ 1

rt

!
exp 
 1

2r2

 Xn
t ¼ 1

r2tþ
Xn

t ¼ 1

x Vtbð Þ2
( ! )

�
Yn
t ¼ 1

Io x Vtbrt=r
2

� �
;

or the logarithm of the likelihood

LL ¼ 
 n log r2
� �

þ
Xn
t ¼ 1

logrt


 1

2r2

Xn
t ¼ 1

r2t þ
Xn
t ¼ 1

x Vtbð Þ2
!
þ
Xn
t ¼ 1

log Io x Vtbrt Ar
2

� � 

ð2:6Þ
is maximized where r = (r1,. . .,rn)V. When maximizing the log

likelihood under the restricted null hypothesis, the Lagrange

multiplier constraint wV(Cb 
 c) is added. If the parameter

estimates under the restricted null hypothesis are denoted (b̃, r̃ 2)

and those under the unrestricted alternative hypothesis (b̂, r̂2), then

substituting back into the likelihood and the ratio k of restricted null

over unrestricted alternative leads to the large sample v2 distributed

statistic


 2logk ¼ 2n log r̃r2=r̂r2
� �

þ 1

r̃r2

 Xn
t ¼ 1

r 2
t þ

Xn
t ¼ 1

r Vtb̃b
� �2!


 1

r̂r2

 Xn
t ¼ 1

r2t þ
Xn
t ¼ 1

x Vt b̂b
� �2!


 2
Xn
t ¼ 1

log Io x Vtb̃brt=r̃r
2

� �
=Io
�
x Vtb̂brt=r̂r

2
�ih

with degrees of freedom equal to the full row rank of C.
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Taylor model

However, an exact solution that maximizes the logarithm of the

likelihood given in Eq. (2.6) under both hypotheses is difficult in

practice and requires nonstandard numerical maximization. An

approximation to the Ricean distribution will be explored that is

valid at lower SNRs than the usual normal approximation. A more

accurate approximation to the Ricean distribution is

p rt jxt; b; r2
� �

¼
ffiffiffiffiffiffiffi
rt

xVt b

r
1ffiffiffiffiffiffiffiffiffiffi
2pr2

p

� exp 
 1

2r2

"
rt 
 x Vtbð Þ

#28<
:

9=
;; ð2:7Þ

which is found by approximating the cosine term in Eq. (2.5) by

the first two terms of its Taylor series expansion cos(/t 
 h) = 1 

(/t 
 h)2/2 and integrating.
Normal model

As described in Rowe and Logan (2004), the Ricean

distribution in Eq. (2.5) can be approximated by the normal

distribution

p rt jxt; b; r2
� �

¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp 
 1

2r2

"
rt 
 x Vtbð Þ

#28<
:

9=
;; ð2:8Þ

at high SNR. This can also be seen from Eq. (2.7) by

approximating the leading square root factor by unity. Then the

likelihood function

p r jX ; b; r2
� �

¼ 2pr2
� �
n=2

exp 
 1

2r2
r 
 Xbð Þ V

r 
 Xbð Þ


;

�

is formed, from which MLEs and CRLBs can be computed.
Statistics

For each of the three models, MLE statistics can be found under both the restricted null and unrestricted alternative hypotheses. Unbiased

versions of theMLEs and activation statistics can be found from a generalized likelihood ratio test. Subscripts will be used to associate statistical

quantities with the three models introduced in the previous section: N and T for the Normal and Taylor series approximations to the Ricean

distribution, respectively, and C for the complex data bivariate normal distribution. The MLEs for the three models under the unrestricted

alternative and restricted null hypotheses denoted with hats and tildes respectively are

Complex model

ĥhC ¼ 1

2
tan
1 b̂b V

R XVXð Þb̂bI

b̂b V
R XVXð Þb̂bR 
 b̂b V

I XVXð Þb̂bI

� �
=2

3
5

2
4

b̂bC ¼ b̂bR cos ĥhC þ b̂bI sin ĥhC

r̂r2
C ¼ 1

2n

yR 
 X b̂b cos ĥhC

yI 
 X b̂b sin ĥhC

�V
yR 
 X b̂b cos ĥhC

yI 
 X b̂b sin ĥhC

�� 

h̃hC ¼ 1

2
tan
1 b̂b V

RW XVXð Þb̂bI

b̂b V
RW X VXð Þb̂bR 
 b̂b V

I W X VXð Þb̂bI

� �
=2

3
5

2
4

b̃bC ¼ W b̂bR cos h̃hC þ b̂bI sin h̃hC

� �

r̃r2
C ¼ 1

2n

�
yR 
 X b̃b cos h̃hC

yI 
 X b̃b sin h̃hC

�V
yR 
 X b̃b cos h̃hC

yI 
 X b̃b sin h̃hC

��
ð3:1Þ
Taylor model

b̂bT ¼ b̂bN 
 r̃r2
T

2
X VX
� �
1Xn

t ¼ 1

xt= x V
t b̂bT

� �

r̂r2
T ¼ 1

n
r 
 X b̂bT

� �V
r 
 X b̂bT

� �
b̃bT ¼ b̃bN 
 W

r̃r2
T

2
X VX
� �
1Xn

t ¼ 1

xt= xVt b̃bT

� �

r̃r2
T ¼ 1

n
r 
 X b̃bT

� �V
r 
 X b̃bT

� �
ð3:2Þ
Normal model

b̂bN ¼ X VX
� �
1X Vr

r̂r2
N ¼ 1

n
r 
 X b̂bN

� �
V
r 
 X b̂bN

� �
b̃bN ¼ W X VX

� �
1X Vr

r̃r2
N ¼ 1

n
r 
 X b̃bN

� �
V r 
 X b̃bN

� �
ð3:3Þ
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where W = Iq + 1 
 (X VX)
1 CV[C(X VX)
1CV]
1C, b̂R = (X VX)
1 X VyR, and b̂I = (X VX)
1 X VyI, while yR and yI are the n � 1 vectors of real

and imaginary observations. The parameters for the approximate Taylor series model are iteratively estimated (Rowe, 2001, 2003).

Unrestricted alternative hypothesis estimators will be evaluated in terms of the deviation of their mean and variance from the true

value and their CRLB. An estimator s of h is said to be unbiased if E(s) = h for all h (Hogg and Craig, 1978). The deviation of

the mean of an estimator from the true value is called the bias, b(s) = E(s) 
 h. However, since the CRLB is for unbiased

parameter estimators, the unrestricted alternative hypothesis estimators for the variance are multiplied by n/(n 
 q 
 1) for the

magnitude-only models and 2n/(2n 
 q 
 2) for the complex model.

As outlined in Appendix B, the CRLB for the complex data activation model of Rowe and Logan (2004) can be found to be

b r2 h

CRLBC ¼
b
r2

h

r2 XVXð Þ
1
0 0

0 r4=n 0

0 0 r2=bV XVXð Þb

3
5;

2
4 ð3:4Þ

for the magnitude-only data Taylor series approximation to the Ricean distribution model is found to be

(3.5)

CRLBT¼ b

r2

r2 XVXð Þ
1
I
 r̃r2

2
X VX
� �
1

Xn
t ¼ 1

xt=ðx V
t bÞ

" #
1

0

0 2r4=n

2
664

3
775;

and for the magnitude-only data normal activation model is found to be

CRLBN ¼ b
r2

r2 XVXð Þ
1
0

0 2r4=n

	
:

�
ð3:6Þ

Note that the CRLB for the variance of an unbiased estimate of the observation variance is two times larger in the magnitude-only data

models than in the complex data model. On average, the mean of the variance of an estimator may not achieve the CRLB for finite

sample sizes. If the variance of an unbiased parameter estimator achieves the CRLB for any sample size, then the estimator is said to be

efficient, while if it achieves the CRLB asymptotically as the sample size increases, then it is said to be asymptotically efficient. For

comparability between the three models, activation statistics are taken to be 
2logk with k being the likelihood ratio statistic described in

Appendix A.

b r2

b r2
Simulation

Data is generated to simulate voxel activation from a bilateral

finger tapping fMRI block design experiment as in Rowe and

Logan (2004). The simulation consisted of n = 256 points where

the true activation structure is known so that the three models can

be evaluated.

Simulated fMRI data is constructed according to a general non-

linear regression model which consists of an intercept b0, a

coefficient b1 for a time trend t for all voxels and a coefficient b2

for a reference function x2t related to a block experimental design

where xt = (1,x1t, x2t)V. This model dictates that at time t,

yt ¼ b0 þ b1t þ b2x2tð Þcos h þ gRt½ �

þ i b0 þ b1t þ b2x2tð Þsin h þ gI t½ �;

where gRt and gIt are independent identically distributed normal

random variates with mean zero and variance r2 simply denoted

i.i.d. N(0, r2).

For all voxels in this simulation study, the phase was

generically selected to be h = p/6, while b1 = 0.00001, and

r = 0.04909 which are values taken from a bhighly activeQ voxel
(Rowe and Logan, 2004). The coefficient for the reference

function b2 has a value determined by a contrast-to-noise ratio

(CNR = b2/r) of 1/2. Therefore, since the variance is held fixed,

the SNR is parameterized by varying b0 so that the ratio SNR =

b0/r takes on values 1, 2.5, 5, 7.5, 10, 12.5, and 15. For each SNR
combination, 106 simulated voxel time courses were generated and

the parameters estimated by all three models.

The means (Fig. 1) and variances (Fig. 2) of the unbiased

parameter estimates and activation statistics from the simulations

were computed for the various SNRs. Note that the mean and

variance of the parameter estimates in the magnitude-only data

normal approximate model (in red) and Taylor series approximate

model (in cyan) deviate from the true value (in magenta) as the

SNR decreases while the parameter estimates in the complex data

model (in blue) achieve their correct value (in magenta) and remain

fairly constant. Also included in Fig. 1 are the true parameter values

and in Fig. 2 the CRLBs for the magnitude-only data approximate

normal model, the magnitude-only data Taylor series approximate

model, and complex data model, in green, yellow, and magenta,

respectively. Since the true mean values for the parameters are the

same for the three models considered, only the true value curve for

the complex data model in magenta is shown in Fig. 1. In panel (e)

of Figs. 1 and 2, the approximate normal and Taylor magnitude-

only data models do not include a phase parameter and thus curves

are not included. In panel (f) of Figs. 1 and 2, the parameter and

activation statistic means or variances are not analytically known

for the three models and thus curves are not included.

It can be seen in Fig. 1a that the estimated intercept

coefficient or baseline b0 appears to be unbiased for the

magnitude-only data normal model (in red) to about an SNR of

7.5 and the magnitude-only data Taylor series approximate

model (in cyan) down to an SNR of about 2.5 but is unbiased

for the complex data model (in blue) for all SNRs considered.



Fig. 1. Plot of estimated parameter means with varying SNR.
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In Fig. 1b, the coefficient b1 for the linear trend appears to be

unbiased for the magnitude-only data normal model to about an

SNR of 10 and the magnitude-only data Taylor model down to

an SNR of about 5 but unbiased for the complex data model

for all SNRs considered. Additionally, it can be seen in Fig. 1c

that the reference function coefficient b2 appears to be unbiased

for the magnitude-only data normal model to about an SNR of

10 and the magnitude-only data Taylor model down to an SNR
of about 5 but unbiased for the complex data model for all

SNRs considered. In Fig. 1d, the variance r2 appears to be

unbiased for the magnitude-only data normal model to about an

SNR of 10 and the magnitude-only data Taylor model down to

an SNR of about 7.5 but unbiased for the complex data model

for all SNRs considered. In Fig. 1e, the phase imperfection h
only present in the complex data model appears to be unbiased

for all SNRs considered. In Fig. 1f, the activation statistic



Fig. 2. Plot of estimated parameter variances with varying SNR.
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2log(k) is uniformly lower for the two magnitude-only data

models than the complex data model however it appears to be

unbiased for the magnitude-only data normal model to about an

SNR of 10 and the magnitude-only data Taylor model down to

an SNR of about 7.5 but it is uniformly higher and appears to

be unbiased for the complex data. Reiterating the results in this

figure, the complex data model produces higher activation
statistics or a better ability to detect activation than the

magnitude-only data models that does not decrease with SNR.

In general, the parameter estimates for the complex data model

appear to have less bias than the magnitude-only data models

for all SNRs considered.

It can be seen in Fig. 2a that the estimated intercept

coefficient or baseline b0 appears to be efficient for the
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magnitude-only data normal model (in red) to about an SNR of

10, is above the CRLB for the magnitude-only data Taylor

model (in cyan) down to an SNR of about 2.5, then decreases

rapidly when the SNR is decreased to 1. The unbiased value

for the complex data model (in blue) achieves the CRLB for

all SNRs considered. In Fig. 2b, the variance of the coefficient

b1 for the linear trend appears to be efficient for the

magnitude-only data normal (in red) and Taylor (in cyan)

models to about an SNR of 10. The unbiased value for the

complex data model (in blue) achieves the CRLB for all SNRs

considered. Additionally, it can be seen in Fig. 2c that the

variance of the coefficient b2 for the linear trend appears to be

efficient for the magnitude-only data normal (in red) and Taylor

(in cyan) models to about an SNR of 10. The unbiased value

for the complex data model (in blue) achieves the CRLB for

all SNRs considered.

In Fig. 2d, the variance of the variance r2 does not appear to

be efficient or achieve the CRLB for the three models considered,

the magnitude-only data normal model (green), the magnitude-

only data Taylor model (omitted because it is not pictorially

different from the normal model CRLB), or the complex data

model (in magenta).

However, there is a value that each model achieves for high

SNR which may tend to the CRLB or be asymptotically

efficient at a larger sample size. The unbiased estimator for r2

appears to achieve its asumptotic CRLB value for the

magnitude-only data normal model (in red) at the largest SNR

value considered of 15 then decrease with SNR while the

magnitude-only data Taylor model (in cyan) achieves its

asymptotic CRLB value down to an SNR of about 7.5 then

decrease with SNR. The unbiased estimator for r2 achieves its

asymptotic CRLB value for the complex data model (in blue)

for all SNRs considered. Also note that the error variance

estimates are approximately twice as large for the magnitude-

only data models than for the complex data model, even for the

largest value of SNR. This factor of two disparity is as stated

by the CRLBs. In Fig. 2e, the variance of the unbiased

estimator for the phase imperfection h only present in the

complex data model (in blue) appears to be efficient for all

SNRs considered and achieve its CRLB (in magenta) for all

SNRs considered. In Fig. 2f, the variance of the activation

statistic 
2log(k) is smaller for the two magnitude-only data

models as compared to the complex data model but this is

about a lower mean activation statistic. However, the variance

of the activation statistic appears to be constant for the

magnitude-only data normal model (in red) to about an SNR

of 7.5 and the magnitude-only data Taylor model (in cyan)

down to an SNR of about 5. The variance of the activation

statistic is slightly higher but is constant for the complex data

model for all SNRs considered. In general, the parameter

estimates for the complex data model appear to be more

efficient than the magnitude-only data models for all SNRs

considered.
Conclusions

A recently proposed complex data fMRI model by Rowe

and Logan (2004) as an alternative to the typical magnitude-

only data normal data model was outlined along with a model

that uses a Taylor series approximation in the Ricean
distribution. Maximum likelihood parameter estimates and

Cramer–Rao lower bounds for the parameters of each model

were also described. The CRLB for the variance of the

observation variance was half as large in the complex data

model as it is in the two magnitude-only data models.

Simulations were performed for several SNRs and the

parameters for each model estimated along with an activation

statistic. The mean and variance of the estimated parameter

values and activation statistics were computed and compared

with the true values and CRLBs where applicable.

It was found that the complex model performed extremely

well at estimating the true parameter values and achieving its

CRLBs even for very low SNR. The magnitude-only data

models did not perform as well as the complex model.

Additionally, even for very large SNRs, the variance of the

error variance was twice as large for the magnitude-only models

as for the complex model. These results indicate that using the

complex data model instead of approximations to the Ricean

distribution of the magnitude-only data are more useful at low

SNR and yield higher activation statistics regardless of SNR.

Since the SNR in a voxel is not known a priori and the models

are equivalent at high SNR, the complex data model is

recommended over the magnitude-only data models.
Appendix A. MLEs for Taylor model

The logarithm of the likelihood for the Taylor series approx-

imation of the Ricean distribution of magnitude-only data

observations is

LL ¼ 
 n

2
log 2pð Þ þ 1

2

Xn
t ¼ 1

logrt 

n

2
log r2
� �


 1

2

Xn
t ¼ 1

log x V
t b

� �

 1

2r2
r 
 Xbð ÞV r 
 Xbð Þ:

Unrestricted alternative hypothesis MLEs

Unrestricted alternative hypothesis MLEs will be found by

maximizing the unrestricted logarithm of the likelihood given in

Eq. (A.1) with respect to the parameters and yields

BLL

Bb
¼ 
 1

2r2
2 X VX
� �

b 
 2X Vr
$ %


 1

2

Xn
t ¼ 1

1

x V
t b

xt

BLL

Br2

 2n

2

1

r2
þ h

2

1

r2ð Þ2

where h = (r 
 Xb)V(r 
 Xb). By setting these derivatives equal to

zero and solving, we get the alternative hypothesis MLEs under the

unrestricted model given in Eq. (3.2).

Restricted null hypothesis MLEs

Restricted null hypothesis MLEs will be found by maximizing

the logarithm of the likelihood in Eq. (A.1) with respect to the
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parameters with the Lagrange multiplier term wV(Cb 
 c) added
for the alternative hypothesis restriction and yields

BLL

Bb
¼ 
 1

2r2
2 X VX
� �

b 
 2X Vr
$ %


 1

2

Xn
t ¼ 1

1

x V
t b

xt 
 CVw

BLL

Bw
¼ Cb 
 cð Þ

BLL

Br2

 2n

2

1

r2
þ h

2

1

r2ð Þ2
:

By setting these derivatives equal to zero and solving, we get

the null hypothesis MLEs under the restricted model given in

Eq. (3.2).

Note that the maximum likelihood variance estimators are r̂2 =

ĥ/(2n) and r̃2 = h̃/(2n). Then the generalized likelihood ratio

statistic is

k ¼
p r jb̃b; r̃r2; h̃h;X
� �

p r jb̂b; r̂r2; ĥh;X
� �

¼ r̃r2ð Þ
2n=2
e
2h̃hn= 2h̃hð Þ

r̂r2ð Þ
2n=2
e
2ĥhn= 2ĥhð Þ

¼ ĥh=h̃h
� �n

: ðA:2Þ

This is the ratio of residual sums of squares for the alternative

and null hypotheses raised to the nth power. It should be noted that

the likelihood ratio statistic is bounded, 0 V k V 1 because the

residual sum of squares will always be smaller for the unrestricted

alternative hypothesis. For example, say that we have a regression

model with two regressors besides the mean, so that b =

(b0,b1,b2)V, and would like to test to see if b2 = 0. The null

hypothesis can be described with C = (0,0,1) and c = 0. Under the

null hypothesis, we essentially estimate the model parameters with

b2 fixed to be zero and under the alternative hypothesis estimate

the parameters with b2 unrestricted or free to take on any value. If

the unrestricted estimate of b2 were zero, then the experimental

results tend to confirm the null hypothesis and the likelihood ratio

statistic is unity. If the unrestricted estimate of b2 deviated

considerably from zero, then the experimental results tend to

confirm the alternative hypothesis and the likelihood ratio statistic

is bcloseQ to zero. So if k were used as a test criterion, then a

natural procedure is to reject the null hypothesis if k were less than

some critical value k0 that is statistically determined. Often some

algebra can be performed and the likelihood ratio statistic reduced

to a familiar t of F statistic. Occasionally, a useful simplification

cannot be found; however, it has been noted that under very

general conditions, 
2logk is approximately v2 distributed in large

samples (Wald, 1943).
Appendix B. Cramer–Rao lower bounds

The CRLB for the variance of an unbiased estimate of a

model parameter requires the second derivatives of the log

likelihoods LL with respect to the model parameters.
Complex model

The second derivatives of the log likelihood for the complex

data model are

HC 1; 1ð Þ ¼ B
2LL

BbBbV
¼ 
 1

2r2
2 X VX
� �$ %

HC 2; 2ð Þ ¼ B
2LL

Bh2
¼ 
 1

2r2

 2bVð
 X VyRcos h 
 X VyI sin h
$ �

�

HC 3; 3ð Þ ¼ B
2LL

B r2ð Þ2
¼ 
 2n

2

 1ð Þ r2

� �
2 þ h

2

 2ð Þ r2

� �
3

HC 1; 2ð Þ ¼ B
2LL

BbBh
¼ 
 1

r2
X VyRsin h 
 X VyIcos h
$ %

HC 2; 1ð Þ ¼ B
2LL

BhBbV
¼ HC 1; 2ð ÞV

HC 1; 3ð Þ ¼ B
2LL

BbBr2
¼ 
 1

r4
X VyRcos h 
 X VyI sin h 
 X VX

� �
b

$ %

HC 3; 1ð Þ ¼ B
2LL

Br2BbV
¼ HC 1; 3ð ÞV

HC 2; 3ð Þ ¼ B
2LL

BhBr2
¼ 
 1

r4
b VX VyRsin h 
 yIcos h½ �

HC 3; 2ð Þ ¼ B
2LL

Br2Bh
¼ HC 2; 3ð Þ:

Taylor model

The second derivatives of the log likelihood for the Taylor

approximate model are

HT 1; 1ð Þ ¼ B
2LL

BbBbV
¼ 
 1

2r2
2 X VX
� �$ %


 1

2

Xn
t ¼ 1

xt 
 1ð Þ x V
t b

� �
2
x V
t

HT 2; 2ð Þ ¼ B
2LL

B r2ð Þ2
¼ 
 n

2

 1ð Þ r2

� �
2 
 2
h

2
r2
� �
3

HT 1; 2ð Þ ¼ B
2LL

BbBr2
¼ X Vr 
 X VX

� �
b

$ %

 1ð Þ r2

� �
2

HT 2; 1ð Þ ¼ B
2LL

Br2BbV
¼ HT 1; 2ð ÞV:
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Normal model

The second derivatives of the log likelihood for the normal

approximate model are

HN 1; 1ð Þ ¼ B
2LL

BbBb V
¼ 
 1

2r2
2 X VX
� �$ %

HN 2; 2ð Þ ¼ B
2LL

B r2ð Þ2
¼ 
 n

2

 1ð Þ r2

� �
2 
 2
h

2
r2
� �
3

HN 1; 2ð Þ ¼ B
2LL

BbBr2
¼ X Vr 
 X VX

� �
b

$ %

 1ð Þ r2

� �
2

HN 2; 1ð Þ ¼ B
2LL

Br2BbV
¼ HN 1; 2ð ÞV:

The matrix of CRLBs is the inverse of the Fisher information

matrix. By taking expectations of the block elements of the Hessian

matrices, the CRLBs in Eqs. (3.4) and (3.5) are found. The

symmetric Hessian matrices generically denoted H are formed

from the second derivatives which are seen to be negative

definite and therefore the estimated values from the first

derivatives are maxima and not minima. The Fisher information

matrices generically denoted I are 
E(H |b,r2) for the normal and

Taylor models, that is, the expectation of the Hessian matrices

with respect to r given b and r2. The Fisher information matrix

IC is 
E(HC|b,h,r
2), that is, the expectation of the Hessian

matrix HC with respect to yR and yI given b, h, and r2.
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