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Characterizing phase-only fMRI data with an angular regression model
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bstract

FMRI voxel time series are complex-valued with real and imaginary parts that are usually converted to magnitude-phase polar coordinates.
agnitude-only data models that discard the phase portion of the data have dominated fMRI analysis. However, when such analyses are performed,

he data that is discarded may contain valuable biologic information that is not in the magnitude data. This biologic information from BOLD
MRI data may be vascular [Menon RS. Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn Reson Med
002;47(1):1–9] or neuronal [Bodurka J, Jesmanowicz A, Hyde JS, Xu H, Estowski L, Li S-J. Current-induced magnetic resonance phase imaging.
Magn Reson 1999;137(1):265–71] in origin.
When phase-only time series that discard the magnitude portion of the data have been analyzed, ordinary least squares (OLS) regression has been

he technique of choice. However, OLS models may fit poorly when phase-wrap or low signal-to-noise ratio (SNR) is present. We have explored
lternatives to the OLS model which will account for the angular response of the phase while also allowing us the flexibility to develop similar
ypothesis tests.

We adopt an angular regression model by Fisher and Lee [Fisher NI, Lee AJ. Regression models for an angular response. Biometrics
992;48:665–77] for our analysis and show its improvement over the OLS model at low SNR in terms of both parameter estimation and inferences.
e found an improvement in parameter estimation along with modeling for the Fisher and Lee method in simulated data while detailing potential
enefits when used with experimentally acquired data. Finally, we look at a map of the statistics testing the association of the observed voxel phase
ime course and the reference function in our acquired data. This shows the possible detection of biological information in the generally discarded
hase.
 2006 Elsevier B.V. All rights reserved.
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. Introduction

Functional magnetic resonance imaging (fMRI) is an invalu-
ble tool used to investigate biological phenomena in both
nimals and humans. However, the results derived from fMRI
epend on the model used to analyze the data. Although voxel
ime courses are complex-valued (Haacke et al., 1999), tradi-
ionally the real–imaginary voxel measurements are converted

o magnitude-phase measurements and only the magnitude por-
ion of the data is analyzed for experimental or task related
hanges (Bandettini et al., 1993; Rowe and Logan, 2005).
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his discards potentially important information. Recently, mod-
ls that determine task related magnitude changes within the
omplex-valued data have shown improvements over those that
xamine magnitude-only data (Rowe and Logan, 2004; Rowe
nd Nencka, 2006).

In addition, there is evidence that the phase portion of the data
lso contains biological information not wholy contained in the
agnitude portion, namely, data indicative of vascularization

Menon, 2002; Nencka and Rowe, 2005, 2006) or of possible
irect detection of neuronal firing (Borduka et al., 1999). Thus it
s also important to analyze the phase portion of the fMRI data.

Historically, when phase-only data has even been analyzed,
n ordinary least squares (OLS) regression model is used. But

his method neglects the problem of the phase angle wrapping
ack over itself after it has crossed the ±� value. Fisher and Lee
1992) developed an angular regression model which has never
een applied to fMRI data. We aim to improve the modeling of

mailto:dbrowe@mcw.edu
dx.doi.org/10.1016/j.jneumeth.2006.10.024
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he generally discarded phase portion of the data by using the
isher and Lee model compared to OLS without unwrapping and
n intermediate approach of OLS which attempts to (artificially)
nwrap the data.

. Background

As previously mentioned, the model for brain function and
istributional specifications are essential for fMRI analysis
esults. It is well established that the real and imaginary parts of
he complex-valued voxel observations are normally distributed
Gudbjartsson and Patz, 1995; Haacke et al., 1999) provided the
ominant noise is scanner related. When viewed from the mag-
itude and phase angle, ρ and θ, point of view, the phase lies in
plane taking on values only between and including −π to +π.
he angle −π is the same as +π.

.1. Real–imaginary data

The real and imaginary components (yR, yI) of the complex-
alued data in a voxel at a particular time point have been
escribed as

R = ρ cos θ + ηR, yI = ρ sin θ + ηI (2.1)

here ρ and θ are the magnitude and phase from a conversion to
olar coordinates and ηR and ηI are the real and imaginary noise
omponents (Nan and Nowak, 1999; Rowe and Logan, 2004).
dditionally, the real and imaginary noise has been well charac-

erized as independent normally distributed with mean zero and
ariance σ2. The joint distribution of (yR, yI)′ is bivariate nor-
al with phase coupled mean (ρ cos θ, ρ sin θ)′ and covariance
atrix σ2I2. The above description is for a single time point and
t subscript for temporally ordered observations will be omitted
ntil specifically noted.

.2. Magnitude-phase data

The above mentioned complex-valued data is commonly
ransformed into magnitude and phase polar coordinates r =

y2
R + y2

I and φ = tan−1(yI/yR) with Jacobian r. It is important
o understand that the previous distributional specifications were
n the observed real and imaginary parts of the data and not on
he magnitude or phase that to which the data are transformed.
he derivation of the joint distribution of r and φ is presented in
owe and Logan (2004) and has the form:

(r, φ) = r

2πσ2 e−(1/2σ2)[r2+ρ2−2ρr cos(φ−θ)] (2.2)

here r, ρ, σ > 0 and −π < φ, θ ≤ π. Note that r and φ are not
tatistically independent.
.3. Phase-only data

The magnitude information in Eq. (2.2) can be integrated out
nd the resulting marginal distribution for the phase is (Rowe
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nd Logan, 2004):

(φ) = e−(ρ2/2σ2)

2π

[
1 + ρ cos(φ − θ)

2πσ
e
ρ2 cos2(φ − θ)

2σ2 Φ

×
(

ρ cos(φ − θ)

σ

)]
(2.3)

here −π < φ, θ ≤ π, ρ, σ > 0, and Φ (·) is defined to be the
umulative distribution function (CDF) for the standard normal
istribution. The marginal distribution of the phase approaches
he normal distribution

(φ) =
[

2π

(
σ

ρ

)2
]−1/2

e−((φ−θ)2/2(σ/ρ)2) (2.4)

ith mean θ and variance (σ/ρ)2 for large signal-to-noise (SNR)
s described in Gudbjartsson and Patz (1995). We define SNR
o be ρ/σ.

However, phase data lies within an interval of (−π, π] which
eaves it vulnerable to phase-wrap and can cause the OLS model
t to be questionable. We define phase-wrap to be the event of
uccessive temporal phase measurement points crossing a |π|
alue. Phase-wrap is detected by differencing pairs of tempo-
ally adjacent phase values and defining a phase-wrap when the
ifference is greater than |π|.

Introducing the subscript t for each time point combined with
he limiting distribution, we are able to model the phase:

t = tan−1
4

[
ρt sin(θt) + ηIt

ρt cos(θt) + ηRt

]
, t = 1, . . . , n (2.5)

ith a normal distribution and an OLS model. One can see that
he argument of the four quadrant inverse tangent is the ratio
f noncentral normal variates. The ratio of noncentral normal
ariates has been studied by Marsaglia (1965) who showed that
t can be symmetric, asymmetric, unimodal or bimodal.

. Models for phase data analysis

As previously noted, phase-only time series data is not gen-
rally analyzed in fMRI, because it is sensitive to physiologic
oise. It has been argued that respiration causes movement of
nternal organs which in turn alters the B-field and thus the phase
Pfeuffer et al., 2002). Pfeuffer et al. (2002) used the common
hase data across a whole slice to correct for this respiration
aused movement.

When fMRI phase time series data is analyzed, the OLS
odel is utilized (Borduka et al., 1999). Before an OLS model

an be fit, the time series is generally artificially unwrapped.
he process of artificially unwrapping the data and then fitting
n OLS model to it will be described shortly. Menon (2002)
ooked at phase time series after unwrapping and noticed an
e believed was attributed to large blood vessels and thus bio-
ogical information in the phase. The OLS model will be briefly
ummarized, then an alternative model will be introduced along
ith its advantages and disadvantages.

Dan Rowe
Cross-Out

Dan Rowe
Callout
sqrt(2pi)
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.1. Ordinary least squares regression models for phase

The OLS model (Rowe, 2003; Rowe and Hoffmann, 2006)
or the phase assumes that the phase varies linearly with the task
elated reference function. The phase-only data model at time t
or an arbitrary voxel can be written as

t = u′
tγ + δt (3.1)

here φt is the observed phase angle measurements, u′
t a specific

ow of a design matrix U, an example of which is presented in Eq.
3.2), the γ are the fixed but unknown phase regression coeffi-
ients, and δt is the measurement error. This measurement error
s assumed to originate from the normal distribution N(0, τ2

t )
here if τ2

t = σ2/ρ2
t . Estimation of the linear regression model

arameters by OLS does not require any distributional assump-
ion. A distributional assumption is necessary in order to draw
nferences. The OLS model and the OLS model plus a normal
istribution specification on the errors produce identical model
arameter estimates.

For our examples in the following sections, U = (u1, . . ., un)′
s constructed to have three covariates:

′ =

⎛
⎜⎝

1 1 · · · 1 · · · 1

1 2 · · · 17 · · · 256

1 1 · · · −1 · · · −1

⎞
⎟⎠ (3.2)

The above design matrix includes a column of 1′s to model
he intercept, a column of counting numbers to account for a
ossible linear trend over time (Smith et al., 1999), and a third
olumn with alternating sets of 16 1′s and −l′s to characterize a
ask related reference function. Sets of 16 are used in our matrix
o coincide with both our simulated and acquired experimental
ata which have stimulus lengths of 16 observations. Clearly,
his can easily correspond to more complicated sets of tasks (or
ven event-related data).

The SNR at time t is defined to be ρt/σ = (β0 + β1t + β2x2t)/σ
ut β1t + β2x2t is generally very small when compared to β0
ithin the brain and should be zero outside the brain. The

pproximation ρt/σ ≈ β0/σ is utilized and the phase variance
n a given voxel becomes constant over time. For a large SNR,
he OLS model corresponds to a phase angle that is concen-
rated over a small range of values. When the phase-only data
s described with the large SNR OLS model, phase hypotheses
an be tested using a d × (q + 1) contrast matrix D where d is
he number of orthogonal constraints in the rows of D and q is
he number of non-baseline regressors. Inferences can be drawn
sing standard regression analysis tests—likelihood ratio tests
r OLS Wald type z-tests.

However, there are three conditions that can lead to dif-
culties with the OLS model: the first is when the baseline
ngle is located near the ±π value where the phase angle
within the OLS models) becomes discontinuous; the second
s when a linear trend pushes the data past the ±π value and

he third is the case where the amplitude of the magnitude is
ow (a low SNR). In these three cases, the angular response
f the phase-only OLS model can cause modeling problems at
he phase-wrap junction if not accounted for properly. These
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onditions result in poor parameter estimation and incorrect
nferences.

Conversely, when the three following conditions are valid
e can describe the phase data with little concern using our

tandard OLS regression model. These conditions are (1) a large
NR, (2) a baseline angle, γ0, that is not near the ±π value,
nd (3) the linear trend is small enough that the data does not
ise or fall beyond the ±π value. The large SNR assumption
akes the probability of a large difference between successive
easurements very small; the other conditions bound the phase

ngle away from the problematic value of ±π.

.2. Unwrapped OLS model for phase

In real acquired experimental fMRI data the SNR and mean
hase in voxels varies greatly over space. The above stringent
onditions are, in general, not met across an image. Often within
n fMRI data set phase angles are observed close to ±π. As
reviously mentioned, the method generally used to deal with
his issue is “unwrapping.” Time series unwrapping is the pro-
ess of beginning with the first observation, proceeding through
he time series and flagging an observation in which the next
oint in the time series has an absolute difference greater than
r equal to a predefined value, generally π, then shifting the
est of the time series by ±2π. This process is repeated to the
nd of the time series. However, when the assumption of high
NR becomes suspect, the model fails and the investigator needs
nother model.

In many instances there is no phase-wrap and simply fitting
n OLS regression line to the data is sufficient. This situation
ill be defined as the “control” case. However, when there is
hase-wrap and low SNR, unwrapping may not be the proper
rocedure. We will define this as a “test” case. This implies
he need for another model that can account for the angular
esponse even with low SNR. Instead, we explore angular mod-
ls and look at fitting the data under an angular regression model
long with OLS and OLS after unwrapping. Implementing an
ngular regression model procedure to deal with the angular
ature of the response will allow us to relax the large SNR
equirement.

.3. Linear-circular regression models for phase

As previously described, fitting an OLS regression model
o artificially unwrapped data may not be an ideal method
nd is especially poor for low and moderate SNR data. There
re models in the statistical literature that deal with angular
esponses and linear predictors (Fisher and Lee, 1992; Gould,
969; Johnson and Wehrly, 1978). This type of model with lin-
ar explanatory variables and an angular response is referred
o as linear-circular regression (Jammalamadaka and SenGupta,
001).

The key concept in these angular regression models is the von

ises distribution, also known as the circular normal distribu-

ion. This distribution specifically deals with random variables
n the interval of (−π, π]. The general von Mises distribution
s the conditional distribution of the phase given the magnitude.
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The von Mises distribution has the following form:

(φ|r) = eκ cos(φ−θ)

2πI0(κ)
(3.3)

here κ = rρ/σ2, −π ≤ φ, θ < π, and 0 ≤ κ < ∞. In the von Mises
istribution, I0(·) is the zeroth order modified Bessel function of
he first kind. This conditional distribution is referred to as a
on Mises with mean θ and concentration κ (Jammalamadaka
nd SenGupta, 2001). The von Mises distribution has a limit-
ng normal distribution with mean θ and variance 1/κ when κ

s large. The linear-circular regression models utilize the von
ises distribution conditional upon the population and sample
agnitudes being unity. If κ is small, the von Mises distribution

ends to the uniform distribution. If κ is large, the distribution
ends to look like a normal distribution with its two tails tied
ogether at θ − π for positive θ and θ + π for negative θ through
he ±π value.

Gould (1969) introduced a model for the phase angle which
stimated the overall mean direction of each data point in
erms of the number of time points and the covariates mod-
lus 2π. The modulus 2π is chosen because in a circular
istribution the angle continues around 360◦ or 2π just like
barber pole in complex variable space through time. Esti-
ates for the coefficients of the covariates are obtained via

n iterative process. However, in fMRI data the phase angle
arely wraps around more than once in time unless the SNR is
xtremely low as would be seen outside the brain. In addition the
LE estimates (Johnson and Wehrly, 1978) are non-unique in

his model because the likelihood function has infinitely many
qually high peaks. Thus this model by Gould (1969) will not
e used.

Johnson and Wehrly (1978) introduced an alternative model
o be used for angular response data with linear predictors. Their

odel assumed that the predictor variable u1t was random with a
nown distribution rather than the fixed covariates that are usu-
lly assumed in fMRI. They also restricted the phase angle not
o wrap around more than once. Using a von Mises distribution
or the random covariates allowed them to derive the joint distri-
ution for p(φ|U). They also show that the maximum likelihood
stimates for the mean angle γ0 and the concentration κ are well
efined for this model. However, this model has the drawback
f needing to know the distribution of each u1t. We often do not
now the PDF or CDF of our predictor variables and tend to
iew them as fixed numbers that do not originate from a known
istribution. Also, their model only allowed for a single predic-
or u1t. Thus this model by Johnson and Wehrly (1978) will not
e used.

Fisher and Lee (1992) generalized the Johnson and Wehrly
odel to allow for multiple predictor variables and eliminated

he need for distributional assumptions on the design matrix.
heir model assumes the angular observations φ1, . . ., φn are
emporally independent von Mises distributed with constant
oncentration parameter κ. In other words, each φt originates
rom a von Mises distribution with mean θt and concentration
. We will use this model by Fisher and Lee (1992).
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The fixed effect model for the mean of the phase angle over
ime is

(φt) = θt − γ0 + g(w′
tγ) (3.4)

here γ0 is the intercept and g(·) is a link function to ensure
hat the linear regression function of the design matrix w′

tγ is
apped to the interval −π to π. The link function that we will

se (see Appendix A):

(w′
tγ) = 2 tan−1

2 (sgn(w′
tγ)|w′

tγ|) (3.5)

ncludes any covariates. Since γ0 includes the intercept, wt does
ot need to include it. In addition, the use of this link function
cales the γ coefficients by 1/2 compared to the corresponding
oefficients from the OLS and unwrapped OLS. This link func-
ion also scales the variances by 1/4; thus the Wald tests are the
ame for all three models. We will adjust the estimates for these
cale factors in subsequent sections.

Fisher and Lee give us equations to obtain parameter esti-
ates and draw inferences using the model in Eq. (A.1) with the

ink function given in Eq. (A.2), where ν = 1. Fisher and Lee also
ive us a solution for the large sample asymptotic variance of
he estimated coefficient vector, var(γ̂) (see Appendix A) which
ill allow us to draw inferences on our covariates within γ , and

or γ̂0 using asymptotic Wald tests.
This now provides us with an estimate for the phase regres-

ion coefficients, γ , and their variances. The fitted phase time
ourse can then be plotted to compare to the observed time course
tilizing:

ˆ
t = tan−1

4

[
sin(γ̂0 + g(w′

t γ̂))

cos(γ̂0 + g(w′
t γ̂))

]

ecause, although g(·) is within −π to π, the addition of γ̂0
ay shift it out of this interval. We can then use a large sample

ormal approximation to test the hypothesis, H0: γm = 0 versus
1: γm �= 0 for the mth element of γ using the constructed test

tatistics, γ̂m/
√

var(γ̂m). Alternatively, one could set up linear
ontrast hypothesis tests and obtain the likelihood ratio statistic
2 log λ, then use the large sample asymptotic χ2

d distribution or
hen d = 1 a signed likelihood ratio statistic sign (γ̂m)

√−2 log λ

hat has a large sample asymptotic normal distribution to draw
nferences.

. Results with simulated fMRI phase-only data

In order to compare the three phase-only models: (1) OLS
ithout unwrapping, (2) OLS with manual unwrapping and

3) the FL model with automatic unwrapping via angular
egression, we use data simulated data from two separate
ases.

Case one is where the baseline magnitude is large relative to
he standard deviation (high SNR = β0/σ) and the mean phase is
ot near the ±π boundary. For this case the three models should

gree. Case two has a small baseline magnitude relative to the
tandard deviation (low SNR) and the mean phase is near the ±π

oundary. In this case unwrapping is necessary to properly track
he data and the models should differ in their interpretation of
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Table 1
Control case estimated values

γ̂0 γ̂1 γ̂2 var(γ̂0) var(γ̂1) var(γ̂2) σ̂2 z(γ̂2)

OLS 0.5198 0.0100 0.0788 0.0389 0.1160 0.0390 0.0100 12.6268
UNW 0.5198 0.0100 0.0788 0.0389 0.1160 0.0390 0.0100 12.6268
FL 0.5198 0.0099 0.0789 0.0392 0.1163 0.0391 0.0099 12.6161
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oefficient variances were multiplied by 103. FL non-baseline coefficients were

he data. This also represents the case that is usually encountered
hrough space in real fMRI phase data.

We generated data to simulate activation in a voxel which
s similar to that observed from a bilateral finger tapping fMRI
lock design experiment as described in Section 5. The simu-
ated time series consisted of n = 256 points where the true values
or the data are known before random noise is added accord-
ng to a pre-specified normal distribution. The simulated fMRI
ata was constructed according to a general non-linear model as
escribed by Rowe and Logan (2005) which for the magnitude
onsists of an intercept β0; a time trend coefficient β1; and a
oefficient β2 for a reference function, related to a block exper-
mental design. We also included regression coefficients for our
hase change which consists of γ0, γ1, and γ2, as before. This
llows the complex-valued data to have the following form:

t = [(β0 + β1x1t + β2x2t) cos(θt) + ηRt]

+ i[(β0 + β1x1t + β2x2t) sin(θt) + η1t] (4.1)

where

t = γ0 + γ1u1t + γ2u2t (4.2)

or t = 1, . . ., n, and (ηRt, ηIt) ∼ N(0, σ2I2).
After creating the data we obtained the corresponding phase

ime series by taking the four-quadrant inverse tangent of the
maginary component over the real component which we have
reviously shown to have the complicated distribution given in
q. (2.3), which is normal for large SNR. For the current sim-
lations we looked at two basic cases for the fMRI phase time
eries and fit both the standard OLS model along with the Fisher
nd Lee angular model to the data. We looked at the two fits
raphically and examined the parameter estimates along with
he variances of the parameter estimates for regression coeffi-
ients γ with each model. The two cases include a “control” case
here there is no phase-wrap present and a “test” case where

he issue of phase-wrap is present.

.1. Case I: no phase-wrap present in the data

We used the first time series which is our “control” case to
ompare the two models when OLS could be used with little
oncern and verify the Fisher and Lee model is working properly.

The first time series had an SNR = 10 with the true values

eing (β0, β1, β2) = (0.5, 0.00001, 0.25), (γ0, γ1, γ2) = (π/6,
/255, π/36), and σ = 0.05. These three values are have been
sed before (Rowe, 2005). We obtained coefficients, coefficient
tandard errors, and model variance estimates for the OLS model

t
p
t
m

multiplied by 2 and variances by 4, respectively.

ithout unwrapping (OLS), the OLS model with unwrapping
UNW) and the FL model to be as in Table 1. In Table 1, the
L model variance estimate is 1/κ̂ and all coefficient variances
ere multiplied by 103.
As mentioned in Section 3.3, the effect of the link function is

o scale the FL estimates of the non-baseline phase coefficients,
heγ ′s by a factor of two smaller than those of the OLS model and
corresponding factor of four difference in coefficient variances
lthough the model fits are identical. The decisions based on test
tatistics for H0: γ2 = 0 versus H1: γ2 �= 0 also agreed when using
he large sample asymptotic 5% two sided critical value of 1.96.
epeating these simulations 10,000 times confirmed the results.

In Fig. 1a, the true phase signal is shown with the black line,
he observed time series (with noise) is plotted with cyan and the
isher and Lee fitted model is plotted as red. Since that the OLS
nd FL models give us identical curves when no phase-wrap is
resent we omitted the overlapping plot of the OLS curve.

.2. Case II: phase-wrap present in the data

The latter phase time series which is our “test” case will
emonstrate to the reader that the OLS model poorly fits
he data when the stringent conditions are not met. We will
enote estimates of the phase regression coefficients under the
nconstrained alternative hypothesis for the OLS model to be

ˆOLS and those from the FL model with γ̂FL. The second time
eries has an SNR = 2.5 with identical β and σ2 values (except
or β0 = σSNR) as the previous simulation but now with true
alues of (γ0, γ1, γ2) = (−π + π/18, π/255, π/180). We obtain
oefficient, coefficient standard errors, and model variance
stimates for the OLS model without unwrapping (OLS), the
LS model with unwrapping (UNW) and the FL model to be

s in Table 2. In Table 2, the FL model variance estimate is 1/κ̂

nd all coefficient variances were multiplied by 102.
Note that the estimated mean angle γ̂0 is different for the

hree methods and that only the FL angular model was consistent
ith the true value of −2.9671. Further, note that the decisions
ased on the test statistic z(γ̂2) for H0: γ2 = 0 versus H1: γ2 �= 0
o not agree for the three methods when using a large sample
symptotic two sided 5% critical value of 1.96.

By looking at Fig. 1b we can see that the red fitted FL angular
egression model has a strong association with the phase time
eries values and we would agree with the FL decision in Table 1

hat it is statistically significant. In Fig. 1b, the true noiseless
hase signal is shown with the black line, the simulated observed
ime series (with noise) is plotted with cyan, the OLS fitted

odel is signified with blue, the unwrapped data in magenta,
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ig. 1. (Part a) true signal (black), observed signal (cyan), and FL fitted line
nwrapped signal (magenta), unwrapped OLS fitted (green), and FL fitted line

he unwrapped OLS fitted values in green, and the FL fitted
odel is plotted as red. We see that the OLS and FL models

o longer give us similar results. The OLS model does not fit
he data well and is situated between most of the observations.
e also see that the unwrapped OLS model does not fit the data
ell either. Also note that the OLS and UNW fitted time series

re out of phase with the true time series unlike the fitted FL
ime series. The estimated values for the γ ′s were much closer

m
m
T

able 2
est case estimated values

γ̂0 γ̂1 γ̂2 var(γ̂0)

LS −0.9467 0.0762 −0.5495 2.5239
NW 3.4466 0.4662 −0.0740 0.4053
L −2.9858 0.0104 0.0678 0.0880

oefficient variances were multiplied by 102. FL non-baseline coefficients were also
. (Part b) true signal (black), observed signal (cyan), OLS fitted line (blue),

o the true values for the FL model compared with the OLS or
LS unwrapped model. Also, the variances for the FL estimates

re much smaller especially for γ̂2FL which is the coefficient of
rimary interest.
Repeating these simulations 10,000 times confirmed that the
ean baseline angle is very close to the true value for the FL
odel but far from the true value for the two other methods.
he mean sample variance for the non-baseline coefficients and

var(γ̂1) var(γ̂2) σ̂2 z(γ̂2)

7.5252 2.5281 6.4612 −3.4560
1.2083 0.4059 1.0375 −1.1613
0.2609 0.0877 0.2001 2.2910

multiplied by 2 and variances by 4, respectively.
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odel variance from these 10,000 estimates was also much
maller for the FL model.
. Experimental data

We now will compare the two models using actual exper-
mental data. A bilateral sequential finger tapping experiment

w
p
r
A

Fig. 2. Estimated parameters
ience Methods 161 (2007) 331–341 337

as performed in a block design with 16 s off followed by eight
pochs of 16 s on and 16 s off. Scanning was performed using
1.5 T GE Signa in which five axial slices of size 96 × 96

ere acquired with a full k-space single shot gradient echo
ulse sequence having a FA = 90◦ and a TE = 47 ms. In image
econstruction, the acquired data was zero filled to 128 × 128.
fter Fourier image reconstruction, each voxel has dimensions

for the three models.
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Fig. 3. Magnitude-only and phase-only da

n mm of 1.5625 × 1.5625 × 5. Observations were taken every
R = 1000 ms so that there are 272 in each voxel. Data from a
ingle axial slice through the sensorimotor cortex was selected
or analysis. Pre-processing included the removal of the first
hree points to omit magnetic field equalization effects followed
y the use of an ideal 0/1 frequency filter (Gonzales and Woods,
992; Press et al., 1992) for frequencies 0.1992–0.3398 Hz and
.0078–0.0273 Hz to remove respiration, scanner drift, and low
requency physiological noise.

If the phase-only data contains no information regarding pos-
ible biological phenomena in the brain we would anticipate
eemingly random activations above the threshold. If the phase-
nly data is to contain information regarding possible biological
henomena in the brain we would anticipate seeing phase acti-
ations with some sort of pattern. One possible pattern is to
e in similar locations as the magnitude-only activations. The
ssociation between magnitude-only and phase-only time series
bserved by Menon for areas with large blood vessels would
uggest phase activations can be found in similar places as mag-

itude activations, given that such blood vessels are present
Menon, 2002; Nencka and Rowe, 2005, 2006). Any similarities
etween the statistics for the magnitude-only and phase-only
odels would strengthen the idea that valuable temporal

p
t
d
β

t statistics with 5% Bonferroni threshold.

hase information is discarded when magnitude-only data is
nalyzed.

Even though the three phase-only models produce similar
ctivation maps (as seen in Fig. 3b–d), the parameter estimates
re radically different. As seen in Fig. 2a–c, the estimated base-
ine phase angles, the γ0

′s are similar within the brain for the
LS model in Fig. 2a, the unwrapped OLS model in Fig. 2b,

nd the FL model in Fig. 2c, except for about a dozen voxels
ith the OLS model along two vertical wavy lines bordering
baseline ±π transition, but are all very different outside the

rain. The same trends may be observed for γ1 in Fig. 2d–f,
2 in Fig. 2g–i, and σ in Fig. 2j–l. Further note that the vari-
nce estimate for many voxels is lower with the FL model as
ompared to the other two models.

.1. Comparison of phase-only and magnitude model

Finally after examining the phase-only data, we looked at the
agnitude-only data to compare the information added by the
hase only model. An OLS model is fit to the magnitude-only
ime series in each voxel with design matrix X = U as previously
escribed and magnitude-only regression coefficients β = (β0,
1, β2)′. We computed activation t-statistics in each voxel testing
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he hypothesis of the coefficient corresponding to the reference
unction in the last column of X being zero.

The bilateral activation in the motor cortex regions for the
agnitude-only OLS model can be seen in Fig. 3a along with

he activation along the midline in the supplemental motor area.
n Fig. 3a are t-statistics with a threshold that was Bonferroni
orrected for multiple comparisons, as described in Logan and
owe (2004), at a 5% family wise error (FWE) rate.

If the phase-only data contains no information regarding pos-
ible biological phenomena in the brain we would anticipate
eemingly random activations above the threshold. If the phase-
nly data is to contain information regarding possible biological
henomena in the brain we would anticipate seeing phase acti-
ations with some sort of pattern. One possible pattern is to
e in similar locations as the magnitude-only activations. The
ssociation between magnitude-only and phase-only time series
bserved by Menon for areas with large blood vessels would
uggest phase activations can be found in similar places as mag-
itude activations, given that such blood vessels are present
Menon, 2002; Nencka and Rowe, 2005, 2006). Any similarities
etween the statistics for the magnitude-only and phase-only
odels would strengthen the idea that valuable temporal

hase information is discarded when magnitude-only data is
nalyzed.

Although as seen in Fig. 3b–d the three models produce simi-
ar thresholded phase-only activation maps with focal positivity
ssociated voxel time series within the primary motor cortex
hich is where the diffuse magnitude-only activations were

ound. Even though the three phase-only models produce similar
ctivation maps, the parameter estimates are radically different.
his difference is especially prominent in low SNR areas such
s outside the brain. Further note that the variance estimate for
any voxels is lower with the FL model as compared to the

ther two models.

. Conclusion

Modeling fMRI phase time series with OLS regression may
esult in some troublesome phenomena, which may include poor
t, incorrect parameter estimation, and potentially inaccurate

est statistics, even after being unwrappped. Most of these prob-
em arise from the issue of phase-wrap in the time series. We
iscussed using the linear-circular regression model proposed
y Fisher and Lee (1992) to solve these problems. It allowed
s to define a design matrix which could account for several
egressors including a linear trend and a reference function from
hich to make and test hypothesis using a large sample asymp-

otic z statistic. We were able to implement a numeric algorithm
iven by Fisher and Lee to obtain our coefficient estimates,
long with the variances of the coefficient estimates, and thus
est hypotheses.

Simulations were performed for both a control case with no
hase-wrap and a test case with phase-wrap present. In the case

f no phase-wrap we found that the fitted line for the Fisher–Lee
odel was nearly identical to that of the OLS model, either with

r without having been unwrapped. The test statistics also were
ery similar and the conclusion for each agreed. This would

J
a
k
i

ience Methods 161 (2007) 331–341 339

mply the models are equivalent under these conditions. In the
enerated time series where phase-wrap was present, we noted
hat the estimates for the Fisher–Lee model were much closer
o the true values compared with the OLS model.

Also, the test statistics for the Fisher–Lee model differed
rom those for the OLS model and led to different conclusions
ith respect to γ2, the coefficient of the reference function for

he task, for the case with wrap-around. We also showed during
ur second set of simulations that the γ2 estimates were more
ccurate and precise when we compared the Fisher–Lee model
o the OLS models for the 10,000 simulated phase-only data sets
reated with the same parameters.

The actual phase time series we presented support our find-
ngs that the Fisher–Lee model is an excellent choice for fitting
ith fMRI phase-only data. We showed a specific simulated
oxel example where OLS was unable to match the modeling
ccuracy of the Fisher–Lee model and actually contained fitted
alues not consistent with the simulated fMRI phase angular
roperty. Fisher and Lee’s model does not appear to be suscep-
ible to low SNR problems, and if applied to other real data
xamples with more noise, we would expect it to perform at
east as well as OLS. In real fMRI data that is of a higher res-
lution with smaller voxels and lower SNR, we expect there
o be a larger difference between the two models. This newly
mplemented angular model does detect temporal correlations
etween the phase time course and a reference function in many
f the same places as the OLS models. We suggest using the
isher–Lee angular model as both a comparative tool along with
n exploratory method for fMRI phase data. It may be more ben-
ficial for the investigator to implement this new angular method
n a voxel-wise basis where the fitted values can be compared to
oth the observed data and the OLS fits allowing the appropriate
odeling decision to be made.
Finally, as we have shown with simulated data, the

isher–Lee model has fewer assumptions that need to be met and
ften describes the data better compared with OLS regression.
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ppendix A

Linear-circular regression models currently in the statistical
iterature that deal with angular responses and linear predic-
ors were given by Gould (1969), Johnson and Wehrly (1978)
long with Fisher and Lee (1992). Gould (1969) introduced
model which estimated the overall mean direction of each

ata point which assumes the phase angle continuously wraps
round for every multiple of [−π, π]. Consequently, the MLEs
re non-unique in this model because the likelihood function
as infinitely many equally high peaks on successive intervals.

ohnson and Wehrly (1978) introduced an alternative model
ssuming that the predictor variable u1t was random with a
nown distribution, but this model has the drawback of requir-
ng the specification of the distribution of the predictor variable
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1t. We rarely think of our predictor variables as being from a
andom distribution and usually treat them as fixed.

Subsequently, Fisher and Lee (1992) generalize the John-
on and Wehrly model to relax the need for distributional
ssumptions on the design matrix and allow for multiple pre-
ictor variables. Their model assumes the angular observations
1, . . ., φn are temporally independent von Mises distributed
ith constant concentration parameterκ. Eachφt originates from
von Mises distribution with mean θt and concentration κ. The
verall mean of the direction of each datapoint is

t = γ0 + g(w′
tγ) (A.1)

here the tth row w′
t = (w1t , . . . , w(q+1)t) of the design matrix

is comprised of all columns except the first in the design
atrix U. There is no need to include the baseline column in
, because the intercept is already estimated within the model.
he link function g(·) has the purpose of mapping its argument

o be in −π to π. The use of a link function eliminates the
on-identifiability problem of MLEs that is present in the Gould
odel. One of the possible link functions given by Fisher and
ee is

(·) = 2 tan−1
2 (sgn(·)| · |ν) (A.2)

here sgn(·) is the operator that returns the sign of its argument,
an−1

2 (·) is a two quadrant inverse tangent, and the transforma-
ion parameter ν can be estimated from the data similar to the
ox–Cox transformation (Box and Cox, 1964; Fisher and Lee,
992).

Fisher and Lee give equations to obtain parameter estimates
nd draw inferences using the model in Eq. (A.1) with the link
unction given in Eq. (A.2), where ν = 1. For this choice of the
ink function, first define the natural log likelihood, denoted log L
o be

og L = −n log 2π − n log I0(κ)

+ κ

n∑
t=1

cos(φt − γ0 − g(w′
tγ)). (A.3)

hen Fisher and Lee define the following:

t = sin(φt − γ0 − g(w′
tγ)), v = (v1, . . . , vn)′,

= (w1, . . . , wn)′, G = diag(g′(w′
1γ), . . . , g′(w′

nγ)),

= 1

n

n∑
t=1

sin(φt − g(w′
tγ)), C = 1

n

n∑
t=1

cos(φt − g(w′
tγ)),

= (S2 + C2)
1/2

n the above v is an n × 1 vector and G is a n × n matrix while
, C, and R are scalars. The function g′(·) is defined to be the
erivative of the link function which in our example is g′(w′

tγ) =
/[1 + (w′

tγ)2]. The MLEs are found by solving the following
quations:
′Gv = 0, tan4(γ̂0) = S/C, A(κ̂) = R

here A(κ̂) = I1(κ̂)/I0(κ̂). The second equation above involv-
ng the four quadrant tangent of γ̂0 is found by utilizing the

R

B

ce Methods  161 (2007) 331–341

rigonometric addition formula for γ0 − (φt − g(w′
tγ)) in the

og likelihood before differentiation. Fisher and Lee describe
n iterative procedure for finding a solution to these equations.
hey suggest centering the individual columns of W around their
eans will optimize the numeric calculations. Starting with an

nitial value for γ̂ and calculating values for S, C, and R from the
bove equations. An updated value of γ̂ , denoted by γ̂∗ is then
ound by solving the following equation for γ̂∗:

W ′G2W)(γ̂∗ − γ̂) = W ′G2y (A.4)

here y = (y1, . . ., yn)′ and yt = vt/[A(κ̂)g′(w′
t γ̂)]. We also find

n updated estimate for γ0 at each iteration by computing γ̂0
rom the four quadrant inverse tangent tan−1

4 (S/C) and κ from
(κ). The updated estimate of γ̂∗ is used recursively. When it is
priori known that κ is “large” then the approximation:

(κ) =
(

1 − 1

2κ
− 1

8κ
− · · ·

)

an be utilized while if it is a priori known that κ is “small” then
he approximation:

(κ) = κ

2

(
1 − κ2

8
+ κ4

48
− · · ·

)

an be utilized (Jammalamadaka and SenGupta, 2001). When
is above 1.25, the large κ approximation works well and one

an simply approximate κ̂ by

ˆ = 1 + √
3 − 2R

4(1 − R)
(A.5)

hile if κ is below .75, then one can simply approximate κ̂ by

ˆ = 2R (A.6)

or intermediate values, a simple average works well.
Fisher and Lee solved for the large sample asymptotic vari-

nce of the estimated coefficient vector:

ar(γ̂) = 1

κ̂A(κ̂)

{
(W ′G2W)

−1

+ (W ′G2W)
−1

W ′gg′W(W ′G2W)
−1

(n − g′W(W ′G2W)−1
W ′g)

}

hich allows us to draw inferences on our γ ′s where g is a
ector whose elements are the diagonal elements of G. They
lso describe the large sample asymptotic variance for γ̂0 and κ̂

o be equal to [(n − q)κ̂A(κ̂)]1/2 and 1/(nA′(k̂)), respectively,
here A′(κ) = 1 − A(κ)/κ − A2(κ) is the derivative of the ratio
f the Bessel functions with respect to κ. The variance of the
arge sample asymptotic normal limiting distribution of the von

ises is 1/κ (Jammalamadaka and SenGupta, 2001).
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