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Abstract. In analyzing the results of functional magnetic resonance imaging, the identification of
significant activation in voxels is a crucial task. In computing the activation level, a standard method
is to select an assumed to be known reference function and perform a multiple regression of the time
courses on it and a linear trend. Once the linear trend is found, the correlation between the assumed
to be known reference function and the detrended observed time-course in each voxel is computed
and voxels colored according to their correlation. But the most important question is: How do we
choose the reference function? This paper develops a Bayesian statistical approch to determining
the underlying source reference function based on Bayesian source separation, and uses it on both
sumulated and real fMRI data. This underlying reference function is the unobserved response due
the presentation of the experimental stimulus.

INTRODUCTION

Typically in an fMRI, the patient is given a sequence of two stimuli or tasks, A and
B. Imaging is taking place while the patient is responding either passively or actively to
these tasks. A linear model is used to describe the observed signal in each voxel. The
model views the observed signal as being made up of a linear trend, a response (possibly
zero valued) due to the tasks, and other cognitive activity that is typically termed random
and grouped into the error term. The association between the observed time course in
each voxel and the sequence of tasks is determined. Different levels of activation are
assigned coloration and the voxels colored according to their activation.

In computing the activation level in a given voxel, a standard method [1, 2] is to
compute the correlation between an assumed to be known reference function (typically a
square, triangle, or sine wave with the same period as the experimental sequence) and the
detrended observed time-course in each voxel. But the most important question is: How
do we choose the reference function? The reference function is viewed as the underlying
response due to the presentation of the experimental tasks. What if the response does not
fit into the standard on/off or rise/fall format? What if it changes (possibly nonlinearly)
over the course of the experiment? The choice of the reference function in computing the
activation in fMRI is somewhat arbitrary and subjective. This paper develops a coherent
Bayesian statistical approch to determine the underlying response or reference function.
In this approach, all the voxels contribute to "telling us" the underlying response due to
the experimental stimulus.
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To motivate the source separation model, consider the context of the classic "cock-
tail party" problem [3, 4]. At a cocktail party, there are microphones scattered about
that record partygoers or speakers at a given number of time increments. The observed
conversations consist of mixtures of true unobservable conversations. In other words, at
each time increment mixed signal vectors are observed and the goal is to separate these
observed signal vectors into true unobservable underlying source signal vectors. This is
exactly the problem we are addressing in fMRI. The source separation model decom-
poses the observed time course in a voxel into a linear trend and a linear combination of
unobserved component sequences. If there was only one response function or compo-
nent time sequence and it is assumed to be known, then the Bayesian approach reduces
to the standard model and the correlation technique may be implemented. In practice we
do not know the true underlying time response function.

The Bayesian source separation model assesses a prior mean for the response func-
tion, combines it with the data, and computes a posterior mean response. The correlation
technique may now be implemented between the posterior mean response and the de-
trended time sequence in each voxel. The Bayesian source separation model [5] also
allows for several different and possibly correlated component time sequences. There
are always incidental cognitive processes and blood flow that may be considered as
components. These time sequences could correspond to activity such as that due to an
EKG and respiration. Modeling them instead of grouping them into the error term could
prove useful.

MODEL

Consider the observed value in voxel j at time /, the model is

xij = aj + bji + kjlSn + . . . + hjmSim + £*;• (1)

That is, the observed signal in voxel j at time / contains a linear part with a slope and
intercept in addition to a linear combination of the m unobserved source components
sn , • - - , stm with amplitudes or mixing coefficients ?t/i , . . . , X/m. This model can be writ-
ten in terms of vectors as

Xij = $jUi + Mjsi + tij. (2)

where m = ( I , /)', f i / = (0/, */)'» ^j = (^ji > • • • » ^jm)f and st = (SH , . . . , sim)' . If any or all
of the sources were assumed to be known, they could be grouped into the w's and their
coefficients computed.

Each voxel has its own slope and intercept in addition to a set of mixing coefficients
that do not change over time. In contrast, the unobserved underlying source reference
functions are the same for all voxels (with possibly zero valued coefficients) at a given
time but do change over time.

Now, considering all p voxels at time /, the model can be written as

Ei (3)
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where B = (Pi , . . . , (3^)', is an p x 2 matrix of slopes and intercepts, and A = (Xi , . . . , A^)'
is an p x m dimensional matrix of mixing coefficients.

The model which considers all the voxels at all time points can be written in terms of
matrices as

X = UBf + SA' + E (4)

where X' — (*i,...,jtw), U = (en,cn), ep is a p x 1 vector of ones, cn = ( I , . . . ,H) ' ,
Sf = (s\,..., sn), E' — (ei, . . . , £n) while B ans A are as before.

Motivated by the central limit theorem, the errors of observation are taken to be
normally distributed, as (£/|*F) ~ A^O,^), then the observations are also normally
distributed as

p(X\B,S, A,¥) - ̂ -^

PRIORS

Recall that the source components, the s/'s are unobserved. As previously noted, the
typical method for determining activations in each voxel is to subjectively assign one
source reference function. This reference function is commonly chosen to be either a
square, triangle, or sine wave and sometimes shifted. Once the reference function is
chosen, a regression is performed to fit the model

Xij = aj + bj i + hjSi + 6,7 (1)

and obtain the regression coefficient estimates (#/,£/, A/). Significant activation is de-
termined by correlation of the reference function with the voxels detrended time course
and voxels are assigned coloration according to their activation level.

The above method of subjectively asigning a source reference function and perform-
ing regression is equivalent to assigning a degenerate distribution for it. That is, equiv-
alent to assuming that the probability distribution for the source reference function is
equal unity at this assigned value and zero otherwise.

Instead of subjectively choosing a source reference function, prior information as
to its value in the form of a prior distribution is assessed (as are priors for any other
contributing source reference functions to the observed signal). This prior distribution
is combined with the data and a source reference function is determined statistically
using the information contributed from every voxel. In addition, prior distributions are
assessed for the the covariance matrix for the sources, the slopes and intercepts, the
mixing coefficients, and the covariance matrix for the observation error.

When quantifing available prior information regarding the parameters of interest, nat-
ural conjugate prior distributions [? ? ] are specified. The prior distribution for the source
reference functions is taken to be a normal distribution where the source components are
uncorrelated over time but correlated at a given time. The mixing coefficients are also
taken to be normally distributed, while the observation and source covariance matrices
are taken to be Inverse Wishart distributed. A vague or noninformative distribution is
taken for the regression coefficients.
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The prior distributions for the parameters of interest are

p(S\R) - \Rr^'rK-l(S~S0)'(S-S0) (2)

p(R) oc \R\-%e-*'r*~lv (3)

p(B) °c constant (6)

where the prior mean for the source component reference functions is S'0 = (SQI , • • • , son) •
The prior distributions for the slopes and intercepts could easily be taken to be normal.

POSTERIOR AND ESTIMATION

Note that the data consists of 98304 time courses each of length 128. This data will be
combined with the prior distributions to produce a joint posterior distribution. With this
sample size, the prior distributions will have little influence in the final results. The pos-
terior distribution is robust with respect to prior specifications. Using Bayes' theorem,
the posterior distribution can be written asbeing proportional to the aformentioned pri-
ors and likelihood, but it can not be integrated analytically to obtain marginal densities
and thus marginal estimates. However, maximum a posteriori estimates can be obtained
via the iterated conditional modes (ICM) algorithm [6, 7, 8]. This algorithm uses the
posterior conditional distributions and cycles through their modes.

Maximization of the full posterior distribution with respect to each of the parameters
is equivalent to maximization of each of the posterior distributions. The ICM algorithm
consists of starting with an initial S and B values, say S(0) and B^ then iterate through

- (X - UBf
(l))fS(l)](A-1 + S'(/)S(/))-1 (1)

& ~ UB'(D ~ S(/)A(/+i))'(* - UBd) ~ 5A/(/+i))
- Ao)A~1 (A(/+1) - Ao)' + Q} (2)

(3)

(4)
l (5)

until convergence is reached which may be defined to be until each changes by less than
any desired precision from the previous iteration.

As noted before, a typical number of voxels is p = 64x64x24 = 98304. With this
many voxels, *P has ^^ — - = 4.8xl09 distinct covariance elements. This is too big for
practical purposes due to the fact that in the ICM algorithm, *F must be inverted. For
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this reason, it is currrently assumed cor computational purposes only that the voxels
are spatially uncorrelated. This is an assumption for computational purposes and not
a model assumption. Relaxation of the assumption of uncorrelated voxels for practical
purposes is being pursued. Local correlation is being investigated as are sparce matrix
inversion techniques.

After determining the Bayesian reference function associated with the experimental
task, the correlation coefficient is calculated with each voxels detrended observed time
course. A threshold is set and if the correlation is below the threshold, then its value is
set to zero. If it is above the threshold, then its value is retained. For values above the
threshold, a one to one color mapping is performed. The image of the colored voxels is
superimposed onto an anatomical image.

SIMULATED FMRI EXAMPLE

For an example, data was generated to mimic a scaled down fMRI experiment. The
simulated experiment is chosen to have two tasks each of length 32 seconds with eight
rounds totaling 512 seconds as illustrated in Figure 1.

FIGURE 1. Experimental Design: White Task A and Black Task B in seconds.

Ill

FIGURE 2. Anatomical Image.

An anatomical 4x4 image is determined as in Figure 2. As in a typical fMRI experi-
ment, observations will be taken every four seconds so that there are 128 in each voxel.
The functional data is created with a known source reference function. This reference
function is a unit amplitude sinusoid with a frequency of 1/64 Hz.

In addition, a second source with unit amplitude and frequency 80/60 Hz was added
to corrupt the signal as was random noise for each. The voxels are numbered from one to

379

Downloaded 30 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp

DanRowe
Stamp

DanRowe
Stamp



sixteen starting from the top left and proceeding across then down. The functional data
for these 16 voxels was created according to the source separation model

8,7
(1x1) (1x2) (2x1) + (1x2) (2x1) (1x1)

where j denotes the voxel, i denotes the time increment, and e// denotes the random error
term. The random errors were generated according to 8,7 ~ Af(0, 10). Noise was added to
the sources reference functions and the mixing coefficients according to si ~ N(sjii ^

The true slopes and intercepts for the voxels along with the true amplitudes are
displayed in their voxels location as

.2, .5 .7,.! .4, -9 -3, .2\ / 15,1 2,2 1,1
, .9, .6 .4, -8 -5,.3 .2, .7 . 1,1 15,2 -5,1

BT'\ .9,.! .1,.3 .5, .5 .1,.6 h a n d A r - i,! _5,2 15,1
.6, .4 .4,.2 .4, .5 .8,.9/ \ 1,2 2,2 1,1

It is assumed that there is only one source reference function. In generating the data,
the second one was added only as noise. All hyperparameters were assessed according
to the empirical Bayes regression approach in Appendix A except for the prior mean and
variance for the reference function. For the prior mean, a square wave is assessed with
unit amplitude and frequency 1/64 Hz which mimics the experiment.

For presentation purposes, all values have been rounded to two digits. The assessed
prior intercepts and slopes were

1
-1.68,0.50 1.09,0.08 -0.92,0.93 -0.48,0.23

1.87,0.58 1.03,0.80 0.32,0.30 0.98,0.68
1.96,0.09 0.88,0.30 1.36,0.47 1.89,0.57
1.71,0.40 -1.14,0.22 -0.41,0.51 1.70,0.89

The assessed prior mixing coefficients from were

10.35 2.09 0.51
, 0.08 9.02 -3.88

AO • I _0.28 -2.73 10.32
0.62 0.61 2.28

The assessed prior values for the mean and variance of the error are £(\|/2) = 106.61
and vSr(\|/2) = 490.64 so that v = 6. 1 1 and qo = 224.79. The prior mean and variance for
the reference function was subjectively assessed to be £"(r^) — (|)2 and vSr(r^) = 100
which defined r| — 6.01 and VQ = 10.13.

Using these hyperparameter specifications, the Bayesian maximum a posteriori slopes
and intercepts were found to be

1
-2.09,0.50 1.06,0.08 -1.03,0.93 -0.48,0.23

1.76,0.58 0.46,0.81 0.52,0.30 0.86,0.68
1.96,0.09 0.93,0.30 0.83,0.48 1.78,0.58
1.71,0.40 -1.06,0.22 -0.43,0.51 1.23,0.90
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As a measure of comparison of the different methods, the MSB's were computed.
The MSB between the true linear coeficients and those from the standard regression was
mse(BT,Bo) — 0.59 while the MSB between the true and Bayesian maximum a posteriori
was mse(BT, 5) =0.57.

The maximum a posteriori variance for the source reference function was r2 = 0.30,
reduced from its prior mean of (3/4)2 toward its true value of (\)2. The maximum a
posteriori values of the observation error variances are

V2:

89.87 76.51 94.91 87.00
89.58 76.47 85.78 87.29
81.95 101.77 84.97 86.82

108.62 105.58 81.11 69.78

The detrended time course for voxel 16 along with the Bayesian and prior square
reference functions are given in Figure 3. Here detrended means both the linear trend was
subtracted off and division of the appropriate mixing coefficient was performed. Note the
similarity between the detrended observed time course and the Bayesian one. To quantify
this similarity, the MSB's were computed to be mse(so, ST) = 0.25 and mse(s, ST) = 0.15.
Note the smaller MSB for the Bayesian maximum a posteriori reference function.

FIGURE 3. Detrended time course for voxel 16 — — with Prior Square, — • and Bayesian, — Reference
Functions.

The Bayesian posterior mixing coefficients were found to be

A:

12.49 2.29 1.11 0.96
0.65 12.03 -4.94 1.47

-0.30 -2.99 13.13 1.87
0.66 0.20 2.39 12.20

The MSB between the true mixing coeficients and those from standard regression
was mse(AT,Ao) — 7.70 while the MSB between the true and Bayesian maximum a
posteriori estimate was mse(Ar^A) = 0.25. The Bayesian values are much closer to the
true values than those from multiple regression.

The correlation was computed between the square reference function and each of the
respective detrended observed time courses.

381

Downloaded 30 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp

DanRowe
Stamp



FIGURE 4. Activations for Prior Reference Function. Right thresholded at 0.5.

CC(X,SQ) =

0.66 0.01 -0.03 0.06
0.23 0.60 -0.26 0.06
0.05 -0.36 0.64 0.24
0.10 0.08 0.14 0.65

As by design, large positive correlations are along the diagonal from upper left to
lower right. A threshold was set at 0.5 and illustrated in Figure 4.

Upon computing the correlations between the Bayesian reference function and each
of the respective detrended observed time courses.

0.79 0.08 -0.03 0.06
0.25 0.81 -0.28 0.01
0.12 -0.47 0.82 0.25
0.10 0.16 0.20 0.82

FIGURE 5. Activations for Bayesian Reference Function. Right thresholded at 0.5.

Applying the same threshold, all diagonal activations are present and more pro-
nounced than those by correlation with the the standard regression method. The cor-
relation along the diagonal of the image increased by an average of 0.17.
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These functional activations are to be superimposed onto the previously shown
anatomical image. In this example, the Bayesian statistical source separation model out-
performed the common method of multiple regression.

It can be seen that the Bayesian method of determining the reference function for
computation of voxel activation performed well especially with only sixteen voxels. In
the next example with real fMRI data there are 98304 voxels.

REAL FMRI EXAMPLE

The current fMRI data provides the motivation for using Bayesian source separation
to determine the true underling unobserved source reference function. This reference
function is the underlying response due to the experimental stimulus. The data was
collected from an experiment in which a subject was given eight rounds of tasks A and
B. The timing was exactly the same as in the simulated example. The tasks were each
32 seconds in length and eight rounds were given. Task A was a complex task in which
the subject read text from a screen, determined a number, entered the number using
button response unit all in 22 seconds then received feedback displayed on a screen for
10 seconds. Task B was blank screen for 32 seconds.

For the functional data, 24 axial slices of size 64 x 64 were taken. Observations were
taken every four seconds so that there are 128 in each voxel. All hyperparameters were
assessed according to the empirical Bayes regression approach in Appendix A except for
the prior mean and variance for the reference function. For the prior mean, a square wave
was assessed with unit amplitude and frequency 1/64 Hz which mimics the experiment.
Due to space limitations, the prior and posterior parameter values for the 98304 voxels
have been omitted.

FIGURE 6. One voxels detrended time course ——, the prior square — -, and Bayesian —, reference
functions.

One voxels detrended time course along with the prior square and Bayesian refer-
ence functions are given in Figure 6. Here detrended means both the linear trend was
subtracted off and division of the appropriate mixing coefficient was performed. This
voxel is located in the center of the activations shown in Figures 7 and 8. Note the sim-
ilarity between the true time course and the Bayesian one. The correlation between this
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detrended time course and the prior square wave was 0.28 while it was 0.86 with the
Bayesian reference function.

FIGURE 7. Activations for prior reference function thresholded at 0.22.

The correlation was computed between the square reference function and each of the
respective detrended observed time courses. It is evident that the activation in Figure 7
is not very large and is buried in the noise. The threshold is set at 0.22 and if raised, the
activation begins to disappear while noise remains.

The correlation was computed between the Bayesian underlying reference function
and each of the respective detrended observed time courses. It is evident that the acti-
vation in Figure 8 is much larger and is no longer buried in the noise. The activations
stand out above the noise. The threshold is set at 0.79 and if raised, the activation slowly
begins to disappear.

The activations that were computed using the underlying reference function from
Bayesian source separation were much larger and more distinct than those using a square
reference function.

CONCLUSION

In computing the activations in fMRI, the choice of the reference function is sub-
jective. It has been shown that the reference function need not be assigned but may be
determined statistically using Bayesian methods. Further, this Bayesian reference func-
tion was more successful at identifing activations.

In certain fMRI applications, the experimental tasks are not simple, but consist of
complex tasks that do not fit into the simple periodic framework. Determining a Bayesian
reference function in this manner should prove to be useful for researchers. Work in
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FIGURE 8. Activations for Bayesian reference function thresholded at 0.79.

progress includes taking other sources into account such as an EKG or respiration which
will be columns of U. This statistical analysis will be able to more correctly identify
significant voxels associated with the experimental task.

A. HYPERPARAMETER ASSESSMENT

The reference function corresponding to the experimental task is chosen to mimic
the experiment with peaks during the experimental task and valleys during the control
task. Typically a sine, square, or triangle wave function with unit ampitude and the
same period as the experiment. Other source reference functions are assessed from a
substantive field expert or possibly from an EKG or respiration monitor.

Reparameterizing the prior source matrix in terms of columns instead of rows as
SQ = ( -SQI , - • '>•$<}„) , eacn °f these column vectors is the time course associated with
a source reference function. Without loss of generality, denote the first as the one
associated with the experimental tasks.

It is specified that a priori the covariance matrices are diagonal but free to be a
posteriori non-diagonal. The hyperparameters for the covariance matrices are A — a§lp,
v = vo/m, and <2 = qvlp. The hyperparameters VQ and r| are assessed as follows. From
the prior distribution for R, the mean and variance of any diagonal element k which are
a priori equal is
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The above is a system of two equations with two unknowns. Solving for r| and
yields

Similarly, the hyperparameters v and Z?o f°r the error of observation are

The problem of assessing hyperparameters for these distributions is now transformed
to assessing prior means and variances. This may be done subjectively by an expert,
from a previous data set, or in an empirical Bayes approach from the current data set.

The hyperparameter AQ can be assessed from an expert or in the following way from
previous or current data. Perform a regression of the observed data on the assessed prior
means of the source reference functions. That is, find the Ao/fc's as regression coefficients
in

(A.4)

For each voxel y, there will be an estimate of the error variance

1 n

^ ' "' "' ' (A.5)

and an estimate of each of the variances of the regression coefficients r;^. The prior
means and variances £(v|/2), var(\|/2), E(r^), and var(r^) may be estimated as the
sample means and variances from these regressions. In addition, the hyperparameter ho
may be estimated as CLQ — £(r/:/:)/£'(\|/2), the quotient of these estimated mean variances.
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