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Abstract – Recent source separation work has described a model which assumes a nonzero
overall mean and incorporates prior knowledge regarding it. This is significant because source
separation models that have previously been presented, have assumed that the overall mean is zero.
However, this work specified that the prior distribution which quantifies available prior knowledge
regarding the overall mean be independent of the mixing coefficient matrix. The current paper,
generalizes this work by quantifying available prior information regarding the overall mean and
mixing matrix with the use of joint prior distributions. This prior knowledge in the prior distri-
butions is incorporated into the inferences along with the current data. Conjugate normal, and
generalized conjugate normal distributions are used. Algorithms for estimating the parameters of
the model from the joint posterior distribution are derived and they are determined statistically from
the posterior distribution using both Gibbs sampling a Markov chain Monte Carlo method and the
iterated conditional modes algorithm a deterministic optimization technique for marginal mean and
maximum a posterior estimates respectively.

1 Introduction and Model

The source separation problem is that of separating unobservable or latent source signals
when mixed signals are observed. To take a set of observed mixed signal vectors and
unmix or separate them into a set of true unobservable source signal vectors. This paper
adopts a multivariate Bayesian [7,8] statistical approach and the linear synthesis model
[3,5,9,10] with an overall mean.

For motivation and illustation of the source separation model, the context of the “cock-
tail party problem” is adopted [3]. At a cocktail party, there arep microphones that record
or observem partygoers or speakers atn time increments. The observed conversations
consist of mixtures of true conversations. In other words,p-dimensional mixed signal vec-
tors xi = (xi1, . . . , xip)′ are observed and the goal is to separate these observed signal
vectors intom-dimensional true underlying source signal vectors,si = (si1, . . . , sim)′

wherei = 1, . . . , n.
The Bayesian source separation model for the observed vectorxi at timei is

(xi|µ, Λ, si) = µ + Λ si + εi ,

(p× 1) (p× 1) (p× m) (m × 1) (p× 1)
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where it has been assumed that the observed signals have a nonzero mean. The variables
in the model are denoted as follows,
µ = thep-dimensional overall mean,µ = (µ1, . . . , µp)′;
Λ = ap× m matrix of unobserved mixing constants,Λ = (λ′

1, . . . , λ
′
p)

′;
si = theith m-dimensional unobservable source vector,si = (si1, . . . , s1m)′; and
εi = thep-dimensional vector of errors or noise terms of theith observed signal vector
εi = (εi1, . . . , εip)′.

In order to incorporate jointly distributed prior knowledge regarding the mean vector
and mixing matrix, the model is rewritten as

(xi|C, si) = C zi + εi,

(p × 1) p× (m + 1) (m + 1)× 1 p × 1

whereC = (µ, Λ) andz′i = (1, s′i).
Analogous to regression, the source separation model can be written in terms of matrices

as
(X|C,S) = Z C ′ + E ,

(n× p) n× (m + 1) (m + 1)× p n× p

whereX ′ = (x1, . . . , xn) contains the observations as rows ofX, Z ′ = (z1, . . . , zn) con-
tains the unobserved true source vectors in the rows ofZ, andE′ = (ε1, . . . , εn) contains
the error vectors as rows ofE. The time series of observations for thejth microphone
is thejth column ofX and the time series of unobservables for thekth source is thekth

column ofS.

2 Likelihood

It is specified that the errors of the observation vectors are independent over time but
free to be dependent or correlated within each vector. As in the multivariate regression
model, the observation vectorsxi are taken to be normally distributed with mean zero and
covariance matrixΨ. Thus, the likelihood of a given observation vectorxi can be written
as

p(xi|C, si, Ψ) = (2π)−
p
2 |Ψ|−

1
2 e−

1
2 (xi−Czi)′Ψ−1(xi−Czi).

If proportionality is denoted by “∝” then the likelihood for(C,S, Ψ) with all the observa-
tion vectors collected into a matrix is

p(X|C,S, Ψ) ∝ |Ψ|−
n
2 e−

1
2trΨ−1(X−ZC′)′(X−ZC′)

where then p-variate observation vectors areX ′ = (x1, . . . , xn), the source vectors are
contained inZ ′ = (z1, . . . , zn), and the errors of observation areE′ = (ε1, . . . , εn). The
notationp(·) will generically denote a probability distribution which is distinguished by
its argument whose proportionality constant does not depend on its argument.

Available knowledge regarding how probable values of the parameters are in the form
of prior distributions is now quantified and incorporated into the inferences.

3 Priors And Posteriors

The source vectorssi are specified to be normally distributed with meansi0 and covari-
ance matrixR. Regarding the other parameters, information is incorporated as an
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inverted Wishart distribution for the covariance of the source vectors withη degrees of
freedom and scale matrixV , an inverted Wishart distribution for the covariance of the ob-
served vectors withν degrees of freedom and scale matrixQ. The matrixC which contains
the overall mean and the mixing matrix rewritten as a vectorc = vec(C ′) is specified to
be either conjugate normally distributed with meanc0 = vec(C ′

0) and covarianceΨ ⊗M
or generalized conjugate normally distributed with meanc0 = vec(C ′

0) and covariance∆.
The inverted Wishart distribution is the multivariate generalization of the inverted gamma
distribution which is used as a prior distribution for variances.

More formally, prior information regarding the overall mean and the mixing matrix is
quantified using the conjugate and generalized conjugate prior distributions

p(C|Ψ) ∝ |M |−
p
2 |Ψ|−

m+1
2 e−

1
2 trΨ−1(C−C0)M−1(C−C0)′

p(c) ∝ |∆|−
1
2 e−

1
2(c−c0)′∆−1(c−c0).

Note that the overall mean and mixing matrix are jointly distributed thus allowing them to
be dependent or correlated.

Prior distributions are assessed for the remaining model parameters. It is specified
that the prior distributions for the sourcesS, the source covariance matrixR, the error
covariance matrixΨ, follow normal, inverted Wishart, and inverted Wishart distributions
respectively

p(S|R) ∝ |R|−
n
2 e−

1
2 tr(S−S0)R−1(S−S0)′ ,

p(R) ∝ |R|−
η
2 e−

1
2 trR−1V ,

p(Ψ) ∝ |Ψ|−
ν
2 e−

1
2trΨ−1Q,

whereν > 2p, η > 2m. The hyperparametersC0, M , ∆, S0, η, V , ν, andQ are to be
assessed.

Note that bothΨ andR are full covariance matrices allowing the elements of the ob-
served mixed signal and the unobserved source component vectors to be correlated or
dependent.

Upon using Bayes’ rule, the posterior distributions for the unknown parameters, taking
either the conjugate normal or generalized conjugate normal priors for the jointly dis-
tributed overall mean and mixing matrix are either

p(C,S,R, Ψ|X) ∝ |Ψ|−
(n+ν+m+1)

2 e−
1
2trΨ−1G

×|R|−
(n+η)

2 e−
1
2 trR−1[(S−S0)′(S−S0)+V ]

or

p(c, S,R, Ψ|X) ∝ |Ψ|−
(n+ν)

2 e−
1
2 trΨ−1[(X−ZC′)′(X−ZC′)+Q]

×|R|−
(n+η)

2 e−
1
2trR−1[(S−S0)′(S−S0)+V ]

×|∆|−
1
2e−

1
2(c−c0)∆−1(c−c0)′ ,

where
G = (X − ZC ′)′(X − ZC ′) + (C − C0)M−1(C −C0)′ + Q.

These posterior distributions are now evaluated in order to obtain parameter estimates of
the sources, the source covariance matrix, the overall population mean, the mixing matrix,
and the errors covariance matrix.
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4 Conjugate Estimation

With the posterior distribution, it is not possible to obtain marginal distributions and
thus marginal estimates for any of the parameters in an analytic closed form. It is also
not possible to find analytic closed form solutions for maximum a posteriori estimates.
It is however possible to use both Gibbs sampling, a Markov chain Monte Carlo inte-
gration technique to obtain marginal parameter estimates [1,2,11] and the deterministic
optimization technique iterated conditional modes (ICM) for maximum a posteriori esti-
mates [4,6,10]. For both estimation procedures, the posterior conditional distributions are
required.

4.1 Posterior Conditionals

From the joint posterior distribution we can obtain the posterior conditional distributions.
The conditional posterior distribution for the matrix containing the overall mean and

mixing matrix is
p(C|S,R, Ψ,X) ∝ p(C|Ψ)p(X|C,S, Ψ)

∝ |Ψ|−
m+1

2 e−
1
2trΨ−1(C−C0)M−1(C−C0)′

× |Ψ|−
n
2 e−

1
2 trΨ−1(X−ZC′)′(X−ZC′)

∝ e−
1
2 trΨ−1(C−C̃)(M−1+Z′Z)(C−C̃)′

where the posterior conditional mean and mode is given by
C̃ = [X ′Z + C0M

−1](M−1 + Z ′Z)−1.

The conditional distribution for the mixing matrix given the other parameters and the data
is normally distributed.

The conditional posterior distribution of the observation error matrix is
p(Ψ|C,S,R,X) ∝ p(Ψ)p(C|Ψ)p(X|C,S, Ψ)

∝ |Ψ|−
ν
2 e−

1
2 trΨ−1Q|Ψ|−

m+1
2 e−

1
2trΨ−1(C−C0)M−1(C−C0)′

×|Ψ|−
n
2 e−

1
2 trΨ−1(X−ZC′)′(X−ZC′)

∝ |Ψ|−
(n+ν+m+1)

2 e−
1
2trΨ−1G

where
G = (X − ZC ′)′(X − ZC ′) + (C − C0)M−1(C −C0)′ + Q

with a mode given by
Ψ̃ =

G

n + ν + m + 1
.

The conditional distribution of the observation error covariance matrix given the other
parameters and the data is an inverted Wishart.

The conditional posterior distribution for the sources is
p(S|µ, Λ, R, Ψ,X) ∝ p(S|R)p(X|µ, Λ, S, Ψ)

∝ |R|−
n
2 e−

1
2tr(S−S0)R−1(S−S0)′

×|Ψ|−
n
2 e−

1
2trΨ−1(X−enµ′−SΛ′)′(X−enµ′−SΛ′)

∝ e−
1
2 tr(S−S̃)(R−1+Λ′Ψ−1Λ)(S−S̃)′
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where the posterior conditional mean and mode is given by
S̃ = [(X − enµ′)Ψ−1Λ + S0R

−1](R−1 + Λ′Ψ−1Λ)−1.

The conditional posterior distribution for the sources given the other parameters and the
data is normally distributed.

The conditional posterior distribution for the source covariance matrix is
p(R|C,S, Ψ,X) ∝ p(R)p(S|R)p(X|C,S, Ψ)

∝ |R|−
η
2 e−

1
2 trR−1V |R|−

n
2 e−

1
2tr(S−S0)R−1(S−S0)′

∝ |R|−
(n+η)

2 e−
1
2 trR−1[(S−S0)′(S−S0)+V ]

with the posterior conditional mode given by

R̃ =
(S − S0)′(S − S0) + V

n + η
.

The conditional posterior distribution for the source covariance matrix given the other
parameters and the data is inverted Wishart distributed.

4.2 Gibbs Sampling

For Gibbs sampling estimation of the posterior, start with initial values forS andΨ say
S̄(0) andΨ̄(0). Then cycle through

C̄(l+1) = a random variate fromp(C|S̄(l), R̄(l), Ψ̄(l) ,X)

Ψ̄(l+1) = a random variate fromp(Ψ|S̄(l), R̄(l), C̄(l+1),X)

R̄(l+1) = a random variate fromp(R|S̄(l), C̄(l+1), Ψ̄(l+1),X)

S̄(l+1) = a random variate fromp(S|C̄(l+1), Ψ̄(l+1), R̄(l+1),X)

and the first random variates called the “burn in” are discarded compute from the nextL
variates

S̄ =
1
L

L∑

l=1

S̄(l) R̄ =
1
L

L∑

l=1

R̄(l) C̄ =
1
L

L∑

l=1

C̄(l) Ψ̄ =
1
L

L∑

l=1

Ψ̄(l)

which are the sampling based marginal posterior mean estimates of the parameters.

4.3 Maximum A Posteriori

The ICM estimaton procedure consists of starting with an initial value forS sayS̃(0),
forming Z̃(0) = (en, S̃(0)) then iterating through

C̃(l+1) = [X ′Z̃(l) + C0M
−1](M−1 + Z̃ ′

(l)Z̃(l))−1

Ψ̃(l+1) = [(X − Z̃(l)C̃
′
(l+1))

′(X − Z̃(l)C̃
′
(l+1)) +

(C̃(l+1) −C0)M−1(C̃(l+1) − C0)′ + Q]/(n + ν + m + 1)

R̃(l+1) =
(S̃(l) − S0)′(S̃(l) − S0) + V

n + η

S̃(l+1) = (X − enµ̃′
(l+1))Ψ̃

−1
(l+1)Λ̃(l+1)(R̃

−1
(l+1) + Λ̃′

(l+1)Ψ̃
−1
(l+1)Λ̃(l+1))

−1
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until convergence is reached. The converged values(C̃, S̃, R̃, Ψ̃) are joint posterior modal
(maximum a posteriori) estimators of the parameters.

5 Generalized Conjugate Estimation

With the joint generalized conjugate normal distribution for the overall mean and mix-
ing coefficients, it is not possible to obtain all or any of the marginal distributions and
thus marginal estimates in closed form. It is also not possible to find analytic closed form
solutions for maximum a posteriori estimates. It is possible to use both Gibbs sampling,
a Monte Carlo integration technique to obtain marginal parameter estimates [1,2,11] and
the deterministic optimization technique iterated conditional modes (ICM) for maximum
a posteriori estimates [4,6,10]. For this reason, marginal estimates are found using these
two algorithms.

5.1 Posterior Conditionals

Both Gibbs sampling and ICM require the posterior conditionals. Gibbs sampling re-
quires the conditionals for the generation of random variates while ICM requires them for
maximization by cycling through their modes.

The conditional posterior distribution of the sources is

p(S|µ, Λ, R, Ψ,X) ∝ p(S|R)p(X|µ, Λ, S, Ψ)

∝ e−
1
2tr(S−S0)′R−1(S−S0)e−

1
2 tr(X−enµ′−SΛ′)Ψ−1(X−enµ′−SΛ′)′

which after some algebra can be written as

p(S|µ, Λ, R, Ψ,X) ∝ e−
1
2 tr(S−S̃)(R−1+Λ′Ψ−1Λ)(S−S̃)′

whereS̃ = (X − enµ′)Ψ−1Λ(R−1 + Λ′Ψ−1Λ)−1.
That is, the sources given the other parameters and the data is normally distributed.
The conditional posterior distribution of the source covariance matrix is

p(R|µ, Λ, S, Ψ,X) ∝ p(R)p(S|R)

∝ |R|−
ν
2 e−

1
2trR−1V |R|−

n
2 e−

1
2 trR−1(S−S0)(S−S0)′

|R|−
(n+ν)

2 e−
1
2 trR−1[(S−S0)(S−S0)′+V ].

That is, the conditional distribution of the error covariance matrix given the other pa-
rameters and the data is inverted Wishart distributed.

The conditional posterior distribution of the mixing matrix is

p(c|S,R, Ψ,X) ∝ p(λ)p(X|c, S, Ψ)

∝ |∆|−
1
2 e−

1
2(c−c0)′∆−1(c−c0)

×|Ψ|−
n
2 e−

1
2 trΨ−1(X−ZC′)′(X−ZC′)

which after some algebra becomes

p(c|S,R, Ψ,X) ∝ e−
1
2 (c−c̃′)[∆−1+Ψ−1⊗Z′Z](c−c̃)
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where

c̃ = [∆−1 + Ψ−1 ⊗ Z ′Z]−1[∆−1c0 + (Ψ−1 ⊗ Z ′Z)ĉ]

and

ĉ = vec[(Z ′Z)−1Z ′X].

The conditional posterior distribution of the mixing matrix given the other parameters
and the data is normally distributed.

The conditional posterior distribution of the error covariance matrix is

p(Ψ|C,S,R,X) ∝ p(Ψ)p(X|C,S, Ψ)

∝ |Ψ|−
(n+ν)

2 e−
1
2 trΨ−1[(X−ZC′)′(X−ZC′)+Q].

That is, the conditional distribution of the error covariance matrix given the other pa-
rameters and the data is inverted Wishart distributed.

The modes of these conditional distributions areS̃, c̃ (as defined above),

R̃ =
(S − S0)(S − S0)′ + V

n + η
,

and

Ψ̃ =
(X − ZC ′)′(X − ZC ′) + Q

n + ν
,

respectively.

5.2 Gibbs Sampling

For Gibbs estimation of the posterior, start with initial values forS andΨ sayS̄(0) and
Ψ̄(0). Then cycle through

R̄(l+1) = a random variate fromp(R|S̄(l), Ψ̄(l) , C̄(l),X)

c̄(l+1) = a random variate fromp(c|S̄(l), Ψ̄(l) , R̄(l+1),X)

Ψ̄(l+1) = a random variate fromp(Ψ|S̄(l), R̄(l+1), C̄(l+1),X)

S̄(l+1) = a random variate fromp(S|R̄(l+1), C̄(l+1), Ψ̄(l+1),X)

and the first random variates called the “burn in” are discarded compute from the nextL
variates

S̄ =
1
L

L∑

l=1

S̄(l) R̄ =
1
L

L∑

l=1

R̄(l) c̄ =
1
L

L∑

l=1

λ̄(l) Ψ̄ =
1
L

L∑

l=1

Ψ̄(l)

which are the sampling based marginal posterior mean and modal estimates of the param-
eters.
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5.3 Maximum A Posteriori

For the ICM estimation of the parameters start with an initial values forS̃ andΨ, say
S̃(0) andΨ̃(0) then cycle through

ĉ(l+1) = vec[(Z̃ ′
(l)Z̃(l))

−1Z̃ ′
(l)X]

c̃(l+1) = [∆−1 + Ψ̃−1
(l) ⊗ Z̃ ′

(l)Z̃(l)]−1[∆−1c0 + (Ψ̃−1
(l) ⊗ Z̃ ′

(l)Z̃(l))ĉ(l+1)]

Ψ̃(l+1) =
(X − Z̃(l)C̃

′
(l+1))

′(X − Z̃(l)C̃
′
(l+1)) + Q

n + ν

R̃(l+1) =
(S̃(l) − S0)(S̃(l) − S0)′ + V

n + η

S̃(l+1) = (X − enµ̃′
(l+1))Ψ̃

−1
(l+1)Λ̃(l+1)(R̃

−1
(l+1) + Λ̃′

(l+1)Ψ̃
−1
(l+1)Λ̃(l+1))

−1.

until convergence is reached with the joint modal (maximum a posteriori) estimator for the
unknown parameters(S̃, C̃, Ψ̃).

6 Conclusion

It is seen that the overall mean and the mixing coefficients do not need to be constrained
to be independent. Taking the overall mean and the mixing coefficients to be independent
is analagous to taking the intercept and the dependent variable coefficients to be inde-
pendent in a regression model. Further, available information about the overall mean and
mixing coefficients can be quantified and incorporated into the inferences using conjugate
normal and generalized conjugate normal distributions. From the posterior distribution,
both marginal mean and maximum a posteriori estimates can be determined.
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