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Abstract – Recently the Gibbs sampler has become a very popular estimation tech-

nique especially in Bayesian Statistics. In order to implement the Gibbs sampler, matrix

factorizations must be computed which normally is not problematic. When the dimension

of the matrices to be factored is large, computation time increases to an amount to merit spe-

cial attention. I have found that when the matrices to be factored are separable or patterned,

results from matrix theory can assist in computation time reduction.
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1. Introduction

Recently the Gibbs sampler has become one of the favored techniques for
parameter estimation especially in Bayesian Statistics. The Gibbs sampler
is a sampling based approach to calculating marginal posterior distributions
especially useful when the densities are not integrable in closed form or are
too high a dimension for other methods. The Gibbs sampler is a stochastic
integration technique that draws samples from conditional densities and
uses them to approximate the marginal densities.

In order to generate a random samplex from say a multivariate normal
distribution with mean zero and covariance matrixΩ, denoted byN(0, Ω),
we must first compute the factorization of the matrixΩ. I will denote this
factorization byΩ = UU ′. We then generate a randomy from aN(0, I)
and transform it byUy. Thenx = Uy is a random sample fromN(0, Ω =
UU ′) (Press 1982, p. 67). We similarly require matrix factorizations for
random samples from Wishart or inverted Wishart distributions.

In most instances computing the factorization is not very time consum-
ing, and if it is we allow for longer computation times. Sometimes, we
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would like to perform the computations in minimal time. I will consider
the factorization of matrices that are separable or patterned.

2. Seperable Matrices

Quite often, the matrices to be factored are of the form

Ω = Φ ⊗ Ψ
np× np n × n p × p

where⊗ denotes the Kroneker product. Matrices of this form are called
separable. Separable matrices occur frequently in regression and time se-
ries. A single observation vector consistingof observation vectors of smaller
dimension, represented by

x =




x1

x2
...

xn




(2.1)

where the variance of observation vectori is given by thep× p matrix,

var(xi|Ω,m, f, λ) = Ωii = φiiΨ

and the covariance between observation vectorsi andj is given by thep×p
matrix

cov(xi, xj|Ω,m, f, λ) = Ωij = φijΨ

has a separable covariance matrix. If it is assumed that the observation vec-
tors have a common variance, then this is equilavent to weak stationarity.

The factorization of the covariance matrixΩ without taking advantage
of its separable nature can be very time consuming. We take advantage of
its separable form to reduce computation.

The factorization can be found by computing the latent roots and latent
vectors (Press 1982). The matrixΩ can be expressed as

Ω = ΓDλΓ′ = (ΓD
− 1

2
λ )(ΓD

− 1
2

λ )′ = UU ′ (2.2)

whereΓ is an orthogonal matrix of latent vectors as columns and
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Dλ = (λ1, . . . , λk, . . . , λNp)′ (2.3)

is a matrix of latent roots ofΩ. This factorization can be performed numer-
ically for a general covarince matrix.

Quite often, computing the factorization takes appreciable amounts of
time especially when we have to calculate them many thousands of times
for the Gibbs sampler. We can save computation time by using the follow-
ing theorem.
Theorem (Anderson 1994)
Let theith latent root ofΦ be αi and the vector beui = (u1i, . . . , uni)′,
i = 1, . . . , n and thejth latent root ofΨ be βj and the vector bevj =
(v1j, . . . , vpj)′, j = 1, . . . , p. Then, thekth or (ij)th latent root ofΩ =
Φ⊗ Ψ is

λk = αiβj (2.4)

and the vector is

γk = ui ⊗ vj = (u1iy
′
j , . . . , uniy

′
j) (2.5)

for k = 1, . . . , np. Now we can findΩ = (ΓD
− 1

2
λ )(ΓD

− 1
2

λ )′ = UU ′

The required computation is simplified by computing separate latent
roots and vectors forΦ andΨ and using the above theorem.

Sometimes, one or both of the matricesΦ andΨ have structure. When
they have structure we can use the following results for latent roots and
vectors of patterned matrices.

3. Patterned Matrices

We will consider the factorizations when we have structured or patterned
matrices. Let the patterned matrix eitherΦ or Ψ be A = WDδW

′ with
dimensionsq.

If A were theintraclassmatrix

A =




a b b · · · b

a b · · · b
. ..

...

b

a




, (3.1)

with a on the diagonal andb off the diagonal, then the latent roots are
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δ1 = a + (N − 1)b, δ2 = · · · = δq = a − b (3.2)

and vectors are anyq mutually orthogonal vectors of unit length, the first of
which has components that are identical. For example the columns of the
following Helmert matrix

W =




1√
q

1√
1·2

1√
2·3 · · · 1√

(q−1)·q
1√
q − 1√

1·2
1√
2·3 · · ·

... 0 − 2√
2·3 · · ·

...
...

. . .
1√
q 0 · · · 0 − (q−1)√

(q−1)·q




. (3.3)

If A were the followingtri-diagonalmatrix

A =




a b 0

b a b
. .. .. . . . .

a b

0 b a




, (3.4)

corresponding to a distributed lag model witha on the diagonal andb on
the super and sub diagonals, then the latent roots are

δl = a + 2b cos

(
lπ

q + 1

)
, l = 1, . . . , q (3.5)

and vectors are

wl =
(

sin

(
lπ

q + 1

)
, sin

(
2lπ

q + 1

)
, . . . , sin

(
qlπ

q + 1

))
, l = 1, . . . , q.

(3.6)

If A were thecircular matrix

A =




a1 a2 · · · aq

aq a1 · · · aq−1
...

...

a2 a3 · · · a1




, (3.7)

with symmetry imposed on it so that it were a covariance matrix with ap-
plications to cyclical time series, then the latent roots are
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δl =
q∑

s=1

as−1 cos

[
2π

q
(s− 1)(l − 1)

]
, l = 1, . . . , q (3.8)

and the elements ofW are

wlm =
1
√

q

{
cos

[
2π

q
(l − 1)(m− 1)

]
+sin

[
2π

q
(l − 1)(m− 1)

]}
. (3.9)

If A were the Toeplitz matrix corresponding to afirst order Markovcor-
relation scheme

A =




1 a a2 · · · aN−1

a 1 a · · · aN−2

...
...

...
...

aN−1 aN−2 · · · 1




(3.10)

with applications to time series, for example an AR(1), then the latent roots
are

δ1 = 1, δ2 = · · · = δq = 1− a2 (3.11)

but the a general form for the latent vectorswl is not known to the current
author.

It has been found by the current author that a matrix with the above
structure can be factorized by

T =




1 0 0 · · · 0

a
√

1− a2 0 · · · 0

a2 a
√

1− a2
√

1− a2 .. .
...

a3 a2
√

1− a2 .. . . . .
...

...
.. . . . .




, (3.12)

whereA = TT ′.
But if Φ = A whereA is the first order Markov correlation matrix in

Ω = Φ⊗ Ψ we still do not have an expression forΩ = UU ′.
An approximation to

Ω ≡




Ψ aΨ a2Ψ · · · aN−1Ψ
Ψ

. . .
...

Ψ




, (3.13)

can be made which is
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Ω =




Ψ . . . abΨ 0
...

. ..

abΨ . .. . ..

0




, (3.14)

where it is assumed thatab+1 is small enough to be neglected and a routine
for exact factorization of band symmetric matrices can be used.

4. Conclusion

Factorization of separable or patterned matrices can be performed by taking
advantage of the abovementioned theorem and results for latent roots and
latent vectors. Implementation of these factorization techniques will show
that they are much faster than direct factorization when the dimension of
the covariance matrix to be factorized becomes large.
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