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Due to phase imperfections, voxel time course measurements are

complex valued. However, most fMRI studies measure activation using

magnitude-only time courses. We show that magnitude-only analyses

are equivalent to a complex fMRI activation model in which the phase

is unrestricted, or allowed to dynamically change over time. This

suggests that improvements to the magnitude-only model are possible

by modeling the phase in each voxel over time.
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Introduction

It is well known that due to phase imperfections, fMRI voxel

time course measurements appear in both the real and imaginary

channels (Bernstein et al., 1989; Haacke et al., 1999; Macovski,

1996). However, nearly all fMRI studies obtain a statistical

measure of activation based on magnitude-only image time

courses (Bandettini et al., 1993; Cox et al., 1995) by discarding

phase information. We show that these magnitude-only analyses

are equivalent to a complex fMRI activation model in which the

phase for each voxel is completely unrestricted, that is, allowed to

vary dynamically over time. Specifically, we will show that

inference on task-related activation is equivalent between the

dynamic phase complex fMRI model and the magnitude-only

model in terms of having identical regression coefficients and

likelihood ratio F statistics although they are derived with the

phase included. In addition, a detailed examination shows that the

maximum likelihood estimate of the variance in the unrestricted

phase model is inconsistent, because the number of parameters

increases with sample size. An unbiased estimate can be obtained

that is identical to the unbiased variance estimate from the

magnitude-only model. Therefore, the magnitude-only model

results can be directly derived from a complex data model that

allows for an unrestricted phase.

This unrestricted phase complex fMRI model is a general-

ization of the model introduced by Rowe and Logan (2004) in

which the phase in each voxel was assumed to be constant over

time following traditional beliefs (Nan and Nowak, 1999). This

result indicates that the improved performance of the Rowe and

Logan (2004) model may be due to better use of phase

information by pooling across time points within each voxel. It

also suggests that further improvements over the magnitude-only

model, which places no restrictions on the phase, are possible

by modeling the phase changes over time, for example, looking

for task-related phase changes. One example of this approach is

that of Menon (2002), in which the phase was used as a

covariate in the magnitude-only model. This tends to minimize

activation for voxels containing large blood vessels that are

thought to experience task-related changes in both magnitude

and phase and focus on voxels containing small vessels such as

those in the capillary bed of parenchymal tissue.

Model

The complex fMRI activation model of Rowe and Logan

(2004) can be written more generally as

y
2n � 1

¼ A1 0

0 A2

� �
2n � 2n

X 0

0 X

� �
2n � 2 q þ 1ð Þ

b
b

� �
2 q þ 1ð Þ � 1

þ g
2n � 1

ð2:1Þ

where the observed vector of data y = ( y VR, y VI ) is the vector of

observed real values stacked on the vector of observed imaginary
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values and the vector of errors g ¼ gVR; gVIÞVfN 0;R�%ð Þð is

similarly defined. Here we specify that R = r2I2 and % = In. In this

expression, X is the design matrix, and b is the parameter

vector. Further, A1 and A2 are square diagonal matrices with

tth diagonal element cos ht and sin ht, respectively. Note that

if ht = h for all t, then A1 = cos hIn, A2 = sin hIn, and this

becomes the constant phase complex model proposed by

Rowe and Logan (2004). If there is a single constant column

in X, then it can be shown that this reduces to a constant

magnitude and different phase temporal fMRI model that is

analogous to a previously presented constant magnitude

different phase spatial MRI model (Sijbers and van Dekker,

2004).

This model generalization allows for unrestricted temporal

changes in the phase. This implies that one can test hypotheses

regarding task-related changes in the magnitude of the complex

voxel time courses while accounting for unrestricted temporal

changes in the phase, expressed as H0:Cb = 0. For example,

with a model with b0 representing an intercept, b1 representing a

linear drift over time, and b2 representing a contrast effect of a

stimulus. Then to test whether the coefficient for the reference

function or stimulus is 0, set C = (0, 0, 1), so that the

hypothesis is H0:b2 = 0.

Parameter estimates

As with the usual magnitude-only normal regression model and

the constant phase complex nonlinear multiple regression model,

we can obtain unrestricted maximum likelihood estimates of the

parameters as derived in the Appendix to be

ĥht ¼ tan�1 yIt

yRt

�
; t ¼ 1; N ; n

�

b̂b ¼ X VXð Þ�1
X V ÂA1yR þ ÂA2yI
� �

;

r̂r2 ¼ 1

2n
y� ÂA1X b̂b

ÂA2X b̂b

�� �� V

y� ÂA1X b̂b
ÂA2X b̂b

�� �
;

�
ð2:2Þ

where Â1 and Â2 are diagonal matrices with cos ĥt and sin ĥt as the
tth diagonal element. Note that the estimate of the regression

coefficients is a temporally bweightedQ linear combination of

estimates from the real and imaginary parts.

The estimated regression coefficients for the dynamic phase

complex activation model can be shown to be equivalent to the

usual magnitude-only ones as follows

b̂b ¼ X VXð Þ�1
X V ÂA1yR þ ÂA2yI
� �

¼ X VXð Þ�1
X Vvec

yRtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 2Rt þ y 2I t

p yRt þ yItffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 2Rt þ y 2I t

p yIt

! 

¼ X VXð Þ�1
X VyM ð2:3Þ

where here vec(d ) is used to denote an n dimensional vector

whose t th element is given by its scalar argument and

yM ¼ vec
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 2Rt þ y 2I t

p� 	
.

The maximum likelihood estimates under the constrained null

hypothesis H0:Cb = 0 are similarly derived in the Appendix and

given by

h̃ht ¼ tan�1 yIt

yRt

�
; t ¼ 1; N ; n

�

b̃b ¼ Wb̂b;

r̃r2 ¼ 1

2n
y� ÃA1X b̃b

ÃA2X b̃b

�� �V
y� ÃA1X b̃b

ÃA2X b̃b

�� ���

W ¼ Iq þ 1 � X VXð Þ�1
CV C X VXð Þ�1

CV
h i�1

C; ð2:4Þ

where Ã1 and Ã2 are diagonal matrices with cos h̃t and sin h̃t as the
tth diagonal element. The restricted regression coefficients can also

be shown to be equivalent to the magnitude-only model because

the multiplicative factor W is identical in both cases.

Note that the estimate of the phase in a particular voxel at

time t depends only on the complex pair ( yRt, yIt) and is

therefore unstable and not very informative. This is in contrast to

the constant phase model of Rowe and Logan (2004), in which

the phase information is pooled across time in voxels to estimate

the constant phase. This pooling of phase information produces

more stable estimates and may help explain the improved

performance of the constant phase model over the magnitude-only

model (or unrestricted phase complex model). It also suggests that

further improvements are possible by modeling the phase changes

over time, for example, by incorporating task-related phase

changes.

Activation statistics

The likelihood ratio statistic in Eq. (A.3) with some algebra can

be written as

F ¼ n� q� 1ð Þ
r

k�1=n � 1
� 	

¼ n� q� 1ð Þ
r

b̂b VC V C X VXð Þ�1
CV

h i�1

Cb̂b

2nr̂r2
: ð2:5Þ

Note that since

2nr̂r2 ¼ y� ÂA1X b̂b
ÂA2X b̂b

�� �V
y� ÂA1X b̂b

ÂA2X b̂b

�� ���

¼
Xn
t ¼ 1

�
y 2Rt � 2yRt xVtb̂b

� 	
cosĥht þ b̂bxt xVt b̂bcos2ĥht þ y2I t

� 2yIt xVt b̂b
� 	

sinĥht þ b̂bxtxVt b̂bsin2ĥht
�

¼
Xn
t ¼ 1

yMt � xVtb̂b
h i2

ð2:6Þ

equals the error sum of squares from the magnitude-only model,

the F statistic and equivalent likelihood ratio statistic are identical

to the one from the magnitude-only model. In either case the F

statistic follows the same distribution. If the signal-to-noise ratio is

D.B. Rowe, B.R. Logan / NeuroImage 24 (2005) 603–606604



large so that yMt is approximately normal, then F follows an

Fr,n�q�1 distribution under the null hypothesis, where r is the full

row rank of C. Otherwise, one might use the Ricean distribution

(Gudbjartsson and Patz, 1995; Rice, 1944) to derive the proper

distribution of the statistic denoted with the letter F. In either case,

the estimates of b and the likelihood ratio test depend only on the

magnitude data. A statistical map of activation statistics is

produced and thesholded as in Logan and Rowe (2004).

Note from Eq. (2.6) that the maximum likelihood estimate of r2

from the unrestricted phase complex model is inconsistent, since it

can be shown as follows that its expected value does not converge

in probability or tend to its population value as the sample size

tends to infinity

E r̂r2
� � ¼ 1

2n
E

Xn
t ¼ 1

yMt � xVt b̂b
h i2)(

¼ 1

2n
n� q� 1ð Þr2
 �

Y
p r2

2
:

An unbiased estimate of the variance can be obtained by

simply using the unbiased estimate of the variance from the

magnitude-only model.

Conclusions

A generalization of the constant phase complex activation fMRI

model of Rowe and Logan (2004) was developed, where the phase

angle is allowed to vary at each time point. It is shown that the

estimated regression coefficients and the likelihood ratio F statistic

for this unrestricted phase complex fMRI model are equivalent to

those in the usual magnitude-only model. It is also seen that the

maximum likelihood estimate of the variance in this model is not

consistent, but that a consistent variance estimate is obtained by

simply using the magnitude-only unbiased variance estimate.

Therefore, inference on task-related magnitude activation that is

equivalent to that of the magnitude-only model can be derived

directly from the unrestricted phase complex model.

Appendix A. Estimation and generalized likelihood ratio test

In applications using multiple regression including fMRI, we

often wish to test linear contrast hypothesis (for each voxel) such

as

H0 : Cb ¼ g vs H1 : Cb p g
ht p ht V ht p ht V
r2 N 0 r2 N 0;

where C is an r � ( q + 1) matrix of full row rank and g is an r � 1

vector.

The likelihood ratio statistic is computed by maximizing the

likelihood p( y|b, h, r2, X) with respect to b, h, and r2 under the

null and alternative hypotheses where hV= (h1,. . .,hn). Denote the

maximized values under the null hypothesis by (b̃, h̃, r̃2) and those

under the alternative hypothesis as (b̂, ĥ, r̂2). These maximized

values are then substituted into the likelihoods and the ratio taken.

With the aforementioned distributional specifications, the like-

lihood of the model is

p yjX ; b; h; r2
� � ¼ 2pr2

� ��2n
2 e

� h

2r2 ðA:1Þ

where

h ¼ y� A1Xb
A2Xb

�#V"
y� A1Xb

A2Xb

�#  "

¼ bV X VXð Þb� 2bVX V AV1yR þ AV2yI½ � þ y Vy:

The logarithm of this likelihood can be written as

LL ¼ � nlog 2pð Þ � nlog r2 � 1

2r2
bV XVXð Þb� 1

2r2
y Vy

þ 1

r2
Xn
t ¼ 1

yRtcoshtx Vtb þ 1

r2
Xn
t ¼ 1

yItsinhtx Vtb ðA:2Þ

that we will use for maximization. Under the null hypothesis, the

term wV(Cb � c)/2 needs to be added to the logarithm of the

likelihood for the Lagrange multiplier constraint.

A.1. Unrestricted MLEs

Maximizing this likelihood with respect to the parameters is the

same as maximizing the logarithm of the likelihood with respect to

the parameters and yields

BLL

Bb

���
b ¼ b̂b;h ¼ ĥh ;r2 ¼ r̂r2

¼ � 1

2r̂2
2 XVXð Þb̂b � 2XV ÂA1yR þ ÂA2yI

� �h i

BLL

Bht

���
b ¼ b̂b;h ¼ ĥh ;r2 ¼ r̂r2

¼� 1

r̂r2
yRtxVt b̂b �1ð Þsin ĥtht þ yItxVt b̂b cos ĥtht
h i

t ¼ 1; N ; n

BLL

Br2

���
b ¼ b̂b;h ¼ ĥh;r2 ¼ r̂r2

� 2n

2

1

r̂r2
þ ĥh

2

1

r̂r2ð Þ2

where ĥ is h with MLEs substituted in. By setting these derivatives

equal to zero and solving, we get the MLEs under the unrestricted

model given in Eq. (2.2).

A.2. Restricted MLEs

Maximizing this likelihood with respect to the parameters is

the same as maximizing the logarithm of the likelihood in Eq.

(A.2) with respect to the parameters with the Lagrange multiplier

term wV(Cb � c)/2 added for the null hypothesis restriction and

yields

BLL

Bb

���
b ¼ b̃b;h ¼ h̃h;w ¼ w̃w;r2 ¼ r̃r2

¼ � 1

2r̃r2
2 X VXð Þb̃b � 2X V ÃA1yR þ ÃA2yI

� � �þ 1

2
CVw̃w
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BLL

Bht

���
b ¼ b̃b;h ¼ h̃h;w ¼ w̃w;r2 ¼ r̃r2

¼ � 1

r̃r2
yRtxVtb̃b �1ð Þsin h̃ht þ yItxVtb̃bcos h̃ht
 �

t ¼ 1; N ; n

BLL

Bw

���
b ¼ b̃b;h ¼ h̃h;w ¼ w̃w;r2 ¼ r̃r2

¼ 1

2
Cb̃b � c
� �

BLL

Br2

���
b ¼ b̃b;h ¼ h̃h;w ¼ w̃w;r2 ¼ r̃r2

¼ � 2n

2

1

r̃r2
þ h̃h

2

1

r̃r2ð Þ2

where h̃ is h with MLEs substituted in. By setting these derivatives

equal to zero and solving, we get the MLEs under the restricted

model given in Eq. (2.4).

Note that r̃ 2 = ĥ/(2n) and r̂ 2 = h̃/(2n). Then the generalized

likelihood ratio is

k ¼ p yjb̃b; r̃r2; h̃h;X
� �

p yjb̂b; r̂r2; ĥh;X
� 	 ¼ r̃r2ð Þ�2n=2

e�2h̃hn= 2h̃hð Þ
r̂r2ð Þ�2n=2

e�2ĥhn= 2ĥhð Þ ; ðA:3Þ

and Eq. (2.5) follows.
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