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In functional magnetic resonance imaging, voxel time courses after

Fourier or non-Fourier bimage reconstructionQ are complex valued as a

result of phase imperfections due to magnetic field inhomogeneities.

Nearly all fMRI studies derive functional bactivationQ based on

magnitude voxel time courses [Bandettini, P., Jesmanowicz, A., Wong,

E., Hyde, J.S., 1993. Processing strategies for time-course data sets in

functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173

and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional

magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-236]. Here,

we propose to directly model the entire complex or bivariate data rather

than just the magnitude-only data. A nonlinear multiple regression

model is used to model activation of the complex signal, and a likelihood

ratio test is derived to determine activation in each voxel. We investigate

the performance of the model on a real dataset, then compare the

magnitude-only and complex models under varying signal-to-noise

ratios in a simulation study with varying activation contrast effects.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

In magnetic resonance imaging, we aim to image the effective

density of bspinningQ protons in a real valued physical object. The

equations of physics work out that the Fourier transform (FT) of the

effective proton spin density (PSD) is a spatial frequency spectrum.

We will obtain the spatial frequency spectrum and perform an

inverse Fourier transform (IFT) to obtain the effective proton spin

density. This is done by taking successive measurements in time of a

real valued signal, a voltage in a wire. The time axis is transformed to

the spatial frequency or k-space axis. This physical signal or voltage

is real valued, but it is bcomplex demodulated.Q In measuring the

signal, there can be either one or two analog to digital (A to D)

converters. If there is a single A to D converter, successive signal

measurements are alternately multiplied by either a cosine or a sine

to obtain real (inphase) and imaginary (quadrature) parts. These two

measurements are then shifted either half a step forward or backward

to temporally align them. If there are two A to D converters, two

measurements are then taken at the same timewith onemultiplied by

a cosine and the other by a sine. This discretely measured complex

valued signal is the discrete FTof the PSD. A discrete IFT is applied

to the discretely measured signal. The original object or PSD is real

valued, but due to phase imperfections, a complex image of PSDs is

produced (Haacke et al., 1999).

After Fourier or non-Fourier image reconstruction, each voxel

contains a time course of real and imaginary components of the

measured PSD. Magnitude images are produced by taking the

square root of the sum of squares of the real and imaginary parts of

the measured PSD in each voxel at each time point. Nearly all fMRI

studies obtain a statistical measure of functional activation based on

magnitude-only image time courses. When this is done, phase

information in the data is discarded. This is illustrated in Fig. 1,

where the real, imaginary, magnitude, and phase images are shown

at a single point in time, for the example dataset discussed later.

Magnitude models typically assume normally distributed errors;

alternatively, one can assume that the original real and imaginary

components of the PSD have normally distributed errors.

Independent normally distributed errors on the measured complex

signal or equivalently complex PSD translate to a Ricean

distributed magnitude-only image that is approximately normal

for large signal-to-noise ratios (SNR).

When computing magnitude-only image time courses and

activations, the signal-to-noise ratio (SNR) may not be large

enough for this approximate normality to hold. This is

increasingly true with higher voxel resolutions and in voxels

with a large degree of signal dropout. In addition, phase

information or half of the numbers are discarded. A more

accurate model should properly model the noise and use all the

information contained in the real and imaginary components of

the data. However, SNR exhibits an approximate linear increase

and contrast-to-noise ratio (CNR) an approximate super linear

increase with main magnetic field strength, but these gains may

be mediated by such things as increased physiologic noise,
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more complicated signal features in the proximity of strong

susceptibility gradients, and changes in intrinsic relaxation times

(Kruger et al., 2001).

Previous analyses of complex fMRI data have been proposed,

including nonmodel-based exploratory Independent Component

Analysis (ICA) (Calhoun et al., 2002) as well as directly modeling

the complex activation data (Lai and Glover, 1997; Scharf and

Friedlander, 1994; Nan and Nowak, 1999). Previous simple linear

regression models by Scharf and Friedlander (1994) and Lai and

Glover (1997) did not accurately model the phase, while we

correctly account for it through a nonlinear multiple regression

model. A subsequent model by Nan and Nowak (1999) correctly

assumed that the phase imperfections for the baseline and signal

were the same but were limited to a single baseline and signal

model because of their model parameterization. In addition, their

model did not directly estimate the regression coefficients or phase

angle. We reparameterize and extend the model proposed by Nan

and Nowak (1999) to a multiparameter baseline and signal model.

Additionally, we formulate the hypothesis test in terms of contrasts,

which allows for more elaborate hypothesis testing such as

deconvolution and comparisons between multiple task conditions.

Finally, our parameterization allows us to estimate the phase angle

directly instead of the sine and cosine of the phase angle. We

compare the results of the proposed model to a strict magnitude-

only model in terms of thresholded activation maps on a real

dataset. Finally, simulations are performed comparing our model to

a magnitude-only model for various signal-to-noise ratios and task-

related contrast effects.

Model

In MRI/fMRI, we aim to image a real valued physical object

q(x,y) and obtain a measured object qm(x,y) by measuring a 2D

complex valued signal sm(kx,ky) at spatial frequencies (kx,ky). This

signal consists of a true complex valued signal s(kx,ky) plus a

random complex noise term d(kx,ky) with real and imaginary

components that are assumed to be independent and identically

normally distributed. Even if there were no phase imperfections, it

is necessary to observe the imaginary parts of this signal because

we phase-encode for proper image formation. After image

reconstruction, we obtain a complex valued measured object plus

complex valued noise.

Neglecting the voxel location and focusing on a particular

voxel, the complex valued image measured over time in a given

voxel is

qmt ¼ qRt þ gRt½ � þ i qI t þ gI t½ �

where (gRt ,gIt)V~ N (0,R) and R = r2I2. The distributional

specification is on the real and imaginary parts of the image and

not on the magnitude.

Fig. 1. Real, imaginary, magnitude, and phase images at a fixed point in time.
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A nonlinear multiple regression model is introduced individu-

ally for each voxel that includes a phase imperfection h in which,

at time t, the measured effective proton spin density is given by

qmt ¼ x Vtbcoshþ gRt½ � þ i x Vtbsinhþ gI t½ � ð2:1Þ

where qt = xtVb = b0 + b1x1t + : : : + hqxqt. The phase imperfection

in Eq. (2.1) is a fixed and unknown quantity, which may be

estimated voxel by voxel. Just as in Nan and Nowak (1999), we

have also found this phase specification to be reasonable.

In fMRI, we take repeated measurements over time while a

subject is performing a task. In each voxel, we compute a measure

of association between the observed time course and a preassigned

reference function that characterizes the experimental paradigm.

Magnitude activation

The typical method to compute activations (Bandettini et al.,

1993; Cox et al., 1995) is to use only the nonunique magnitude

jqmtj which is denoted by yt and written as

yt ¼ x Vtbcoshþ gRtð Þ2 þ x Vt bsinhþ gI tð Þ2
i1
2

:

�
ð2:2Þ

The magnitude-only model in Eq. (2.2) discards any information

contained in the phase, given by

/t ¼ tan�1 qI t þ gI t
qRt þ gRt

�
:

�

The magnitude is not normally distributed but is Ricean-

distributed. Both the magnitude and the phase are approximately

normal for large SNRs (Gudbjartsson and Patz, 1995; Rice, 1944)

as outlined in Appendix A. The special case of the Ricean

distribution where there is no signal is known as the Rayleigh

distribution. It is known (Haacke et al., 1999) that a histogram of

noise outside the brain without any signal is Rayleigh-distributed.

The Ricean distribution is approximately normal for large

signal-to-noise ratios (small relative error variance). This can be

shown by completing the square in Eq. (2.2) and proceeding as

follows

yt ¼ x Vtb½ �2 þ g2Rt þ g2I t
� �þ 2 x Vtb½ � gRtcoshþ gI tsinh½ �

o1
2

�

¼ x Vtb½ � 1þ 2 gRtcoshþ gI tsinh½ �
x Vtb½ � þ g2Rt þ g2I t

� �
x Vt b½ �2

)1
2

8<
:

c x Vtbþ e t ð2:3Þ

where et = gRtcosh + gItsinh ~ N(0,r2). Again, the cosh and sinh
arise from phase imperfections. If there were no phase imperfec-

tions, then h = 0. In this derivation, the approximation
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
c

1þ u=2 was used for jujb1. This model can also be written as

y ¼ X b þ e
n� 1 n� qþ 1ð Þ qþ 1ð Þ � 1 n� 1

ð2:4Þ

where e ~ N (0,r2U) and U is the temporal correlation matrix,

often taken to be U = In after suitable preprocessing of the data.

The unconstrained maximum likelihood estimates of the

vector of regression coefficients b̂ and the error variance r̂2 are

given by

b̂b ¼ X VXð Þ�1
X Vy;

r̂r2 ¼ y� X b̂b
� �

V y� X b̂b
� �

=n: ð2:5Þ

To construct a generalized likelihood ratio test of the hypothesis

H0:Cb = 0 vs. H1:Cb p 0, we maximize the likelihood under

the constrained null hypothesis. This leads to constrained MLEs

b̃b ¼ Wb̂b;

r̃r2 ¼ y� X b̃b
	 


V y� X b̃b
	 


=n; ð2:6Þ
where

W ¼ Iq þ 1 � X VXð Þ�1
CVC X VXð Þ�1

CV
h i�1

C: ð2:7Þ

Then the likelihood ratio statistic magnitude model is given by

� 2log kM ¼ n log
r̃r2

r̂r2

�
:

�
ð2:8Þ

This has an asymptotic v2r distribution, where r is the fill row

rank of C, and is asymptotically equivalent to the usual t or F

tests associated with statistical parametric maps. For example,

with a model with b0 representing an intercept, b1 representing

a linear drift over time, and b2 representing a contrast effect of

a stimulus. Then to test whether the coefficient for the reference

function or stimulus is 0, set C = (0,0,1), so that the hypothesis

is H0:b2 = 0. The LR test has an asymptotic v1
2 distribution and

is asymptotically equivalent to the usual t tests for activation

given by

t2 ¼ b̂b2

SE b̂b2

� � :
We use the v2 representation for ease of comparability with the

complex activation model. However, note that the v2 distribution is
valid only asymptotically and as a result may be inaccurate in the

extreme tails such as might be needed for a Bonferroni adjustment.

Alternatively, permutation resampling techniques may be used,

which the authors found to give similar results in the example used

later.

Complex activation

Alternatively, we can represent the observed data at time point t

as a 2�1 vector instead of as a complex number

yRt
yIt

�
¼ x Vt bcosh

x Vt bsinh

�
þ gRt

gI t

�
; t ¼ 1; N ; n:

���

This model can also be written as

y ¼ X 0

0 X

� �
bcosh
bsinh

� �
þ g

2n� 1 2n� 2 qþ 1ð Þ 2 qþ 1ð Þ � 1 2n� 1

ð2:9Þ

where it is specified that the observed vector of data y = ( yRV,yIV)Vis
the vector of observed real values stacked on the vector of

observed complex values and the vector of errors g = (gRV,gIV)V~
N (0,R � U) is similarly defined. Here, we assume that R = r2I2
and U = In.
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Due to the multiparameter baseline and signal model in Eq. (2.9),

this is a generalization of the simple linear regression model by

Nan and Nowak (1999) where there is only a mean and signal

reference function. Previous simple linear regression models by

Scharf and Friedlander (1994) and Lai and Glover (1997) did not

accurately model the phase, while we correctly account for it

through a nonlinear multiple regression model. Our generalization

allows for more elaborate hypothesis testing frameworks, such as

deconvolution and comparisons between task conditions.

As with the magnitude-only model, we can obtain unrestricted

maximum likelihood estimates of the parameters as derived in

Appendix B to be

ĥh ¼ 1

2
tan�1 2b̂bVR X VXð Þb̂bI

b̂bVR X VXð Þb̂bR � b̂bVI X VXð Þb̂bI

#"

b̂b ¼ b̂bR cosĥh þ b̂bI sinĥh;

r̂r2 ¼ 1

2n
y� X 0

0 X

� ��
b̂bcosĥh
b̂bsinĥh

�� �V

� y� X 0

0 X

�
b̂bcosĥh
b̂bsinĥh

�� �
; ð2:10Þ

��

where

b̂bR ¼ X VXð Þ�1
X VyR;

b̂bI ¼ X VXð Þ�1
X VyI :

Note that the estimate of the regression coefficients is a linear

combination or bweightedQ average of estimates from the real and

imaginary parts. The regression coefficients of this model may also

be estimated using principal components. Also, note that, although

the ML estimate of r2 is biased, the degree of bias is generally small

(E( r̂2) = (2n � q � 2)/(2n) � r2) because n is large relative to q.

The maximum likelihood estimates under the constrained null

hypothesis H0:Cb = 0 are derived in Appendix B and given by

h̃h ¼ 1

2
tan�1 2b̂bVRW X VXð Þb̂bI

b̂bVRW X VXð Þb̂bR � b̂bVIW X VXð Þb̂bI

#"

b̃b ¼ W b̂bRcosh̃h þ b̂bI sinh̃h
h i

;

r̃r2 ¼ 1

2n

"
y�

 
X 0

0 X

! 
b̃bcosh̃h
b̃bsinh̃h

!#V

� y� X 0

0 X

�
b̃bcosh̃h
b̃bsinh̃h

�� �
; ð2:11Þ

��

where 8 is as defined in Eq. (2.7) for the magnitude model.

This formulation of the model requires us to correctly deal with

the phase angle. An alternative formulation is to let a1 = cosh and

a2 = sinh. Then the model is

y ¼ X 0

0 X

�
a1b
a2b

�
þ g; a21 þ a22 ¼ 1:

��
ð2:12Þ

With the model formulation in Eq. (2.12), we can identify it as a

reduced rank regression model (Reinsel and Velu, 1998) with a

sum of squares equal to 1 constraint on the a coefficients. In the

same way as before, the parameters can be estimated under the

unconstrained model as derived in Appendix B to be

âa1 ¼ b̂bVX VXð Þb̂bR= b̂bVX VXð Þb̂bR

� �2
þ b̂bVX VXð Þb̂bI

� �2� �1=2

âa2 ¼ b̂bVX VXð Þb̂bI= b̂bVX VXð Þb̂bR

� �2
þ b̂bVX VXð Þb̂bI

� �2� �1=2

b̂b ¼ âa1b̂bR þ âa2b̂bI ;

r̂2 ¼ 1

2n
y� X 0

0 X

�
âa1b̂b
âa2b̂b

�� �V
y� X 0

0 X

�
âa1b̂b
âa2b̂b

�� �
:

����
ð2:13Þ

Again, note that the estimate of the regression coefficients is a

linear combination or bweightedQ average of estimates from the

real and imaginary parts.

Similarly, the maximum likelihood estimates under the con-

strained null hypothesis H0:Cb = 0 are derived in Appendix B and

given by

ãa1 ¼ b̃bVX VXð Þb̂bR


b̃bVX VXð Þb̂bR

� �2
þ b̃bVX VXð Þb̂bI

� �2� �1=2

ãa2 ¼ b̃bVX VXð Þb̂bI


b̃bVX VXð Þb̂bR

� �2
þ b̃bVX VXð Þb̂bI

� �2� �1=2

b̃b ¼ W ãa1b̂bR þ ãa2b̂bI

� �
;

r̃r ¼ 1

2n
y� X 0

0 X

� ��
ãa1b̃b
ãa2b̃b

�� �V
y� X 0

0 X

�
ãa1b̃b
ãa2b̃b

�� ���
ð2:14Þ

In computing maximum likelihood estimates, an iterative

maximization known as the Iterative Conditional Modes (ICM)

algorithm (Lindley and Smith, 1972; Rowe, 2001, 2003) is

used.

Then, for either formulation [Eq. (2.9) or (2.12)], the

generalized likelihood ratio statistic for the complex fMRI

activation model is

� 2log kC ¼ 2nlog
r̃r2

r̂r2

�
:

�
ð2:15Þ

This statistic has an asymptotic v2r distribution similar to the

magnitude-only model statistic in Eq. (2.8) with the same caveats

as mentioned previously for the magnitude-only model. Note that,

when r = 1, one-sided testing can be done using the signed

likelihood ratio test (Severini, 2001) given by

ZC ¼ Sign Cb̂b
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2log kC
p

;
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which has an approximate standard normal distribution under the

null hypothesis.

Application to fMRI dataset

A bilateral sequential finger-tapping experiment was per-

formed in a block design with 16-s off followed by eight epochs

of 16-s on and 16-s off. Scanning was performed using a 1.5 T

GE Signa in which five axial slices of size 96 � 96 were

acquired. In image reconstruction, the acquired data was zero

filled to 128 � 128. After Fourier reconstruction, each voxel has

dimensions in mm of 1.5625 � 1.5625 � 5, with TE = 47 ms.

Observations were taken every TR = 1000 ms, so that there are

272 in each voxel. Data from a single axial slice through the

motor cortex were selected for analysis. Preprocessing using an

ideal 0/1 frequency filter (Gonzales and Woods, 1992; Press et

al., 1992) was performed to remove respiration and low

frequency physiological noise in addition to the removal of the

first three points to omit machine warm-up effects.

First, we checked the validity of the complex model

assumptions by examining observations outside the brain where

there is no task-related activation. Proper modeling of the noise is

essential before modeling the signal. The phase angle was plotted

against time to investigate stability of the phase over time; this

was relatively constant over time, confirming the observation of

Nan and Nowak (1999), and is omitted for brevity. Next

histograms of the real (blue) and imaginary (red) components

are constructed separately and superimposed on one another in

Fig. 2a. These appear to both be approximately normally

distributed with similar variances. Fig. 2b contains histograms

of the correlations between the real and imaginary components,

again computed from the time courses outside the brain. These

are distributed closely around 0, indicating that the assumption of

independence of the real and imaginary components is reason-

able. Finally, an autoregressive order 1 [AR(1)] model was fit to

Fig. 3. Estimates of the reference function coefficients, b2’s.

Fig. 2. No signal assessment of complex model.
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the outside the brain time series, and the autocorrelation

parameter q for the complex (red) and magnitude (blue) data

was estimated from the data and histograms superimposed on one

another. These are presented in Fig. 2c where a 5% Bonferroni-

adjusted threshold is qDW = 0.26 for the magnitude-only model

and qDW = 0.19 for the complex model. These thresholds were

determined via Monte Carlo simulation by generating datasets of

the same length and model. Most of the correlations are between

�0.2 and 0.2, indicating little temporal autocorrelation of the data

without signal. The autocorrelations may need to be accounted

for in practice using the techniques described in Appendix C;

however, the procedures appear to be robust to mild departures

from the assumptions as seen here.

After verifying the model assumptions, we next model the

signal and compare the results of fitting the complex and

magnitude-only models. The linear magnitude-only and nonlinear

complex multiple regression models were fit to the data with an

intercept, a zero mean time trend and a F1 square wave reference

function. Parameter estimates of the task-related activation b2 are

given in Fig. 3 for (a) the magnitude-only model and (b) the

complex model. These coefficient estimates are visually similar

between the two models but are numerically different.

As previously noted, the estimated b2 coefficients for the

complex model in Fig. 3b under the alternative hypothesis are a

linear combination or bweightedQ average between the estimated

value from the real and imaginary parts. This bweightingQ is

displayed in Fig. 4 where the a1 weights are in Fig. 4a, the

estimated coefficient values from the real part bR2 are in Fig. 4b,

the a2 weights are in Fig. 4c, and the estimated coefficient values

from the real part bI2 are in Fig. 4d.

After fitting the model, residuals were used to reevaluate the

assumptions for the complex model. Histograms of the real (blue)

and imaginary (red) components are constructed from the residual

time courses for all voxels separately and superimposed on one

another in Fig. 5a. These appear to both be approximately normally

distributed with similar variances. Fig. 5b contains histograms of

the correlations between the real and imaginary components,

computed from the residual time courses for all voxels. These are

distributed closely around 0, indicating that the assumption of

independence of the real and imaginary components is reasonable.

An autoregressive order 1 [AR(1)] model was fit to the residual

time courses in every voxel, and the autocorrelation parameter q
for the complex (red) and magnitude-only (blue) data was

estimated from the data and histograms superimposed on one

another. These are presented in Fig. 5c where again 5%

Bonferroni-adjusted magnitude and complex thresholds can be

applied as previously described. The temporal autocorrelation

present in the residuals is similar for the magnitude-only and

Fig. 4. Complex real and imaginary estimated b2Vs and weights aVs.
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complex models. Most of the correlations are between �0.20 and

0.20, indicating that most of the voxels have little temporal

autocorrelation.

Next, we looked for statistically significant task-related

activation using a 5% false discovery rate (FDR) threshold. This

was done by applying the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995; Genovese et al., 2002; Logan

and Rowe, 2004) to the voxel P values obtained from the v1
2

approximation from the likelihood ratio statistic. Images of

statistically significant activation are given in Fig. 6 for the

magnitude-only and complex models. As previously mentioned,

resampling techniques that permuted the complex-valued resid-

uals to determine false discovery rate and Bonferroni-thresholded

statistical parametric maps were applied and found to be virtually

identical to assuming the approximate v2 distribution.

While the activation images are similar, note that the complex

model appears to have sharper or more well-defined activation

Fig. 6. Activation images using the LR test, thresholded at a 5% false

discovery rate.

Fig. 5. Residual histogram assessment of complex model.

Fig. 7. Anatomical with ROIs.
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regions which align better with the gray matter at which the

activation is supposed to occur.

fMRI simulation

Data are generated to simulate the same bilateral finger-tapping

fMRI block design experiment with n = 269 points where the true

activation structure is known so that the two activation methods

can be evaluated. A 128 � 128 slice is selected for analysis within

which four 7 � 7 ROIs as lightened in Fig. 7 are designated to have

activation.

For this slice, simulated fMRI data are constructed according to

a multiple regression model which consists of an intercept, a time

trend for all voxels and also a reference function x2t for voxels in

each ROI which is related to a block experimental design. This

model dictates that for voxel i at time t,

yit ¼ b0 þ b1t þ b2ix2tð Þa1i þ gRit½ �
þ i b0 þ b1t þ b2ix2tð Þa2i þ gI it½ �;

where gRit,gIit are i.i.d. N(0,r
2). In this simulation study, a1 and a2

are voxel-dependent and taken from the estimated values for the

example dataset shown in Figs. 4a and c, while b1 = 0.00001 and

r = 0.04909 are assumed constant across voxels with values taken

from a bhighly activeQ voxel in the activation region of the sample

Fig. 8. Differences in power between the models varying SNR, 5% PCE threshold.
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dataset. The coefficient for the reference function b2 is zero outside

the ROI. Inside each ROI, b2 has constant value determined by a

contrast-to-noise ratio (CNR = b2/r) of 1, 0.5, 0.25, 0.125, going
from left to right and top to bottom. To investigate the contrast

effect of the signal-to-noise ratio (SNR) typically defined to be the

mean divided by the standard deviation of a voxel time course.

Note that the magnitude of b0 observed in the real dataset is

generally much larger than b1 or b2, indicating that it is the

dominant feature in the SNR in addition to being the time course

mean. Therefore, since the variance is held fixed, we parameterize

the SNR by varying b0, so that the ratio SNR = b0/r takes on

values between 1 and 30, where 30 is approximately the value of

SNR found in bhighly activeQ voxels for the example dataset, and

other values represent decreasing SNR.

In each voxel for a given model and SNR, 1000 simulated

images were generated and thresholded using an unadjusted

threshold with a 5% type I or per comparison error (PCE) rate,

the Benjamini-Hochberg procedure with a 5% false discovery rate

(FDR), and the Bonferroni procedure with a 5% familywise error

(FWE) rate. For each thresholding method, the power or relative

frequency over the 1000 simulated images with which each voxel

was detected as active was recorded. Differences in power between

the complex and magnitude-only models were calculated for each

voxel, mapped to a color scale, and shown in Figs. 8–10 for the

three thresholding procedures. Voxels with zero difference in

power were assigned the voxel anatomical gray scale.

Note that there are little differences between the complex

and magnitude-only models for the CNR = 0.5 to 1 range;

Fig. 9. Differences in power between the models varying SNR, 5% FDR threshold.
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however, this is because the power is approximately 1. For less

strong related contrast effects, the differences are sensitive to

the SNR, and the complex model is generally useful for low

SNR.

To further illustrate the power improvement of the complex

model over the magnitude-only model for low SNRs, we plotted

the power curves (that average within each ROI) as a function of

the contrast-to-noise ratios. This was done for the three thresh-

olding procedures (5% PCE, 5% FDR, 5% FWE) and the complex

(blue) and magnitude-only (red) models. These power curves are

given in Fig. 11 where for all CNRs, the curves are from top to

bottom for the 5% PCE (dotted), 5% FDR (solid), and 5% FWE

(dashed) thresholds. These power curves illustrate similar results as

before, that the complex model power curve is higher than the

magnitude-only model power curve for low SNR, but the lines are

quite close for higher SNR.

To reiterate the advantage of the complex model over the

magnitude-only model for low SNRs, in Fig. 12, we plotted power

versus SNR (0.5, 1, 2.5, 5, 7.5, 10) for the four CNRs. The dotted

curves represent the 5% PCE threshold, the solid curves the 5%

FDR threshold, and the dashed curves the 5% FWE threshold. The

curve marker + denotes a CNR of 1, the o marker a CNR of 0.5,

the * a CNR of 0.25, and the � marker a CNR of 0.125. For

example, in Fig. 12c, the solid blue line with an asterisk [ ] is the

complex model FDR power curve for a CNR of 0.25, while the

solid red line with an asterisk [ ] is the corresponding magnitude-

only model FDR power curve for a CNR of 0.25. It is evident for a

given CNR that the complex model power curve is constant

Fig. 10. Differences in power between the models varying SNR, 5% FWE threshold.
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irrespective of SNR, while the magnitude-only model power curve

falls rapidly as the SNR decreases.

Conclusions

A complex data fMRI activation model was presented as an

alternative to the typical magnitude-only data model. Activation

statistics were derived from generalized likelihood ratio tests for

both models. Activation from both models were presented for real

fMRI data, then simulations were performed to compare the power

to detect activation regions between the two models for several

signal-to-noise ratios with varying task-related contrast effects.

It was found that, for large signal-to-noise ratios, both models

were comparable. However, for smaller signal-to-noise ratios, the

complex activation model demonstrated superior power of

detection over the magnitude-only activation model. This

strongly indicates that modeling the complex data may become

more useful as voxel sizes get smaller, since this decreases the

SNR.

Appendix A. Magnitude and phase distributions

The distribution of the magnitude and phase can be derived as

follows. Let yR = qcosh + gR and yI = qcosh + gI where gR and

Fig. 12. Power versus SNR for complex (blue) and magnitude-only (red) models. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Fig. 11. Power versus CNR for complex (blue) and magnitude-only (red) models. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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gI are normally distributed with mean zero and variance r2.

Then, make a change of variable from ( yR ,yI) to polar

coordinates r2 = yR
2 + yI

2 and / = tan�1( yI/yR) or yR = rcos/
and yI = rsin/. The Jacobian of this transformation is

J( yR,yI Y r,/) = r. The joint distribution of r and / using

trigonometric identities becomes

p r;/jq; h; r2	 
 ¼ r

2pr2
e
� 1

2r2
r2 þ q2�2qrcos / � hð Þ�:½

Magnitude distribution

The marginal distribution of the magnitude r is found by

integrating out the phase /

p rjq; h; r2	 
 ¼ r

r2
e
� 1

2r2
r2þq2½ �

Z p

/ ¼ �p

1

2p
e

1

r2
qrcos / � hð Þ

d/

where the integral factor often denoted Io(rq/r
2) is the zeroth

order modified Bessel function of the first kind. The normal

limiting distribution for large SNR or q Yl, is found by using

the asymptotic form Io(rq/r
2) c exp(rq/r2)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prq=r2ð Þp

of the

Bessel function (Anderson and Kirsch, 1996). Additionally, in

this limit, it is assumed that the exponential form of the normal

distribution drops off more rapidly compared to the variation in

the ratio
ffiffiffiffiffiffiffi
r=q

p
left as a factor. The distribution of the magnitude

becomes the normal distribution with mean q and variance r2.

The Rayleigh limiting distribution for zero SNR or q = 0 is found

by noting that Io(0) = 1. The distribution of the magnitude

becomes

p rjq; r2	 
 ¼ r

r2
e
� r2

2r2 :

Phase distribution

The marginal distribution of the phase / is found by integrating

out the magnitude r

p /jq; h; r2	 
 ¼ e
� q2

2r2

2p
1þ q

r

ffiffiffiffiffiffi
2p

p
cos /� hð Þeq2cos2 / � hð Þ

2r2

�

�
Z qcos / � hð Þ

r

r ¼ �l

e�z2=2ffiffiffiffiffiffi
2p

p dz:

#

The normal limiting distribution for large SNR or q Yl is found

by multiplying through, noting that the first term is approximately

zero, that the difference between / and h is small so that the cosine

of their difference is approximately one, and the sine of their

difference is approximately their difference. The distribution of the

phase becomes the normal distribution with mean h and variance

(r/q)2.
The uniform limiting distribution for zero SNR or q = 0 is

found by noting that the integral factor goes to unity. The

distribution of the phase becomes uniform on [�p,p]. The

distribution of the magnitude and phase for intermediate values

of SNR can be found by numerical integration or Monte Carlo

simulation. The complex model presented in this paper does not

make these large SNR approximations.

Appendix B. Generalized likelihood ratio test

Complex model with h

In applications using multiple regression including fMRI, we

often wish to test linear contrast hypothesis (for each voxel) such

as

H0 : Cb ¼ c vs H1 : Cb p c
r2 N 0 r2 N 0;

where C is an r � ( q + 1) matrix of full row rank and c is an r � 1

vector.

The likelihood ratio statistic is computed by maximizing the

likelihood p( yjb,r2,X), with respect to b, and r2 under the null

and alternative hypotheses. Denote the maximized values under

the null hypothesis by (b̃, r̃2) and those under the alternative

hypothesis as (b̂, r̂2). These maximized values are then

substituted into the likelihoods and the ratio taken. With the

aforementioned distributional specifications, the likelihood of the

model is

p yjX ; b; h; r2	 
 ¼ 2pr2
	 
�2n

2 e
� h

2r2 ðB:1Þ

where

h ¼ 1

2n
y� X 0

0 X

�
bcosh
bsinh

�� �V
y� X 0

0 X

�
bcosh
bsinh

�� ��� "

¼ bV X VXð Þb� 2bVX VXð Þ b̂bRcoshþ b̂bI sinh
h i

þ b̂bVR X VXð Þb̂bR

þ b̂b VI X VXð Þb̂bI

þ y VR In � X X VXð Þ�1
X V

h i
yR þ y VI In � X X VXð Þ�1

X V
h i

yI

Unrestricted MLEs

Maximizing this likelihood with respect to the parameters is the

same as maximizing the logarithm of the likelihood with respect to

the parameters. In the case of b and h, it is the same as minimizing

the h term in the exponent.

B

Bb
h

���
b ¼ b̂b; h ¼ ĥh; r2 ¼ r̂r2

¼ 2 X VXð Þb̂b � 2 X VXð Þ b̂bRcosĥh þ b̂bI sinĥh
ih

B

Bh
h

���
b ¼ b̂b; h ¼ ĥh; r2 ¼ r̂r2

¼ � 2b̂bVX VXð Þ �sinĥh
� �

b̂bR þ cosĥh
� �

b̂bI

ih

B

Br2
log p yjX ; b; h; r2

	 
� ����
b ¼ b̂b; h ¼ ĥh; r2 ¼ r̂r2

� 2n

2

1

r̂r2
þ ĥh

2

1

r̂r2ð Þ2
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where is ĥ with h with MLEs substituted in. By setting these

derivatives equal to zero and solving, we get the MLEs under the

unrestricted model given in Eq. (2.10).

Restricted MLEs

Maximizing this likelihood with respect to the parameters is the

same as maximizing the logarithm of the likelihood with respect to

the parameters. In the case of b and h, it is the same as minimizing

the h term in the exponent with the restriction in the form of a

Lagrange multiplier as

h ¼ bVX VXð Þb� 2bVX VXð Þ b̂bRcoshþ b̂bI sinh
h i

þ b̂bVR X VXð Þb̂bR

þ b̂bVI X VXð Þb̂bI

þy V
R
In � X X VXð Þ�1

X V
h i

yR þ y VI In � X X VXð Þ�1
X V

h i
yI

þ 2wV Cb� cð Þ:

Note that the maximization is performed by Lagrange multipliers

and the appropriate term has been added to h

B

Bb
h

���
b ¼ b̃b; h ¼ h̃h; w ¼ w̃w; r2 ¼ r̃r2

¼ 2 X VXð Þb̃b

� 2 X VXð Þ
h
b̃bRcosh̃h þ b̃bI sinh̃h

i
þ 2C Ṽww

B

Bh
h

���
b ¼ b̃b; h ¼ h̃h; w ¼ w̃w ; r2 ¼ r̃r2

¼ � 2b̃bVX VXð Þ
h
sinh̃h
	 


b̃bR þ cosh̃h
	 


b̃bI

i

B

Bw
h

���
b ¼ b̃b; w ¼ w̃w ; w ¼ w̃w; r2 ¼ r̃r2

¼ 2 Cb̃b � c
	 


B

Br2
log p yjX ;b; h; r2	 
� ����

b ¼ b̃b; h ¼ h̃h; w ¼ w̃w ;r2 ¼ r̃r2
� 2n

2

1

r̃r2
þ h̃h

2

1

r̃r2ð Þ2

where h̃ is h with MLEs substituted in. By setting these derivatives

equal to zero and solving, we get the MLEs under the restricted

model given in Eq. (2.11).

Note that r̂2 = ĥ(2n) and r̃2 = h̃/(2n). Then the generalized

likelihood ratio is

k ¼ p yjb̃b; r̃r2; h̃h;X
	 


p yjb̂b; r̂r2; ĥh;X
� � ¼ r̃r2ð Þ�2n=2

e�2h̃hn= 2h̃hð Þ
r̂r2ð Þ�2n=2

e�2ĥhn= 2ĥhð Þ ; ðB:2Þ

and Eq. (2.15) for the GLRT follows.

Complex Model with a1 and a2

Alternatively, the model can be written with a1 = cosh and a2 =
sinh.

Unrestricted MLEs

The term in the exponent is

h ¼ bVX VXð Þb� 2b VX VXð Þ b̂bRa1 þ b̂bIa2
h i

þ b̂bVR X VXð Þb̂bR þ b̂b VI X VXð Þb̂bI

þ y VR In � X X VXð Þ�1
X V

h i
yR þ y VI In � X X VXð Þ�1

X V
h i

yI

� 2d a21 þ a22 � 1
	 


:

Note the Lagrange multiplier constraint that a1
2 + a2

2 = 1.

Maximizing this likelihood with respect to the parameters is the

same as maximizing the logarithm of the likelihood with respect to

the parameters. In the case of b, a1, and a2, it is the same as

minimizing the h term in the exponent.

B

Bb
h

���
b ¼ b̂b; a1 ¼ âa1 ; a2 ¼ âa2; d ¼ d̂d ; r2 ¼ r̂r2

¼ 2 X VXð Þb̂b � 2 X VXð Þ b̂bRâa1 þ b̂bI âa2
h i

B

Ba1
h

���
b ¼ b̂b; a1 ¼ âa1 ; a2 ¼ âa2 ; d ¼ d̂d; r2 ¼ r̂r2

¼ � 2b̂bVX VXð Þb̂bR � 2d̂d 2âa1ð Þ

B

Ba2
h

���
b ¼ b̂b; a1 ¼ âa1 ; a2 ¼ âa2 ; d ¼ d̂d; r2 ¼ r̂r2

¼ � 2b̂bVX VXð Þb̂bI � 2d̂d 2âa2ð Þ

B

Bd
h

���
b ¼ b̂b; a1 ¼ âa1; a2 ¼ âa2 ;d ¼ d̂d; r2 ¼ r̂r2

¼ � 2 âa21 þ âa22 � 1
	 


B

Br2
log p yjX ; b; a1; a2; r

2
	 
� ����

b ¼ b̂b; a1 ¼ âa1; a2 ¼ âa2 ; d ¼ d̂d; r2 ¼ r̂r2

� 2n

2

1

r̂r2
þ ĥh

2

1

r̂r2ð Þ2

where is ĥ is h with MLEs substituted in. By setting these

derivatives equal to zero and solving, we get the MLEs under the

unrestricted model given in Eq. (2.13).

Restricted MLEs

The term in the exponent is

h ¼ bVX VXð Þb� 2bVX VXð Þ b̂bRa1 þ b̂bIa2
h i

þ b̂bVR X VXð Þb̂b R

þ b̂bVI X VXð Þb̂bI

þ y VR In � X X VXð Þ�1
X V

h i
yR þ y VI In � X X VXð Þ�1

X V
h i

yI

� 2d a21 þ a22 � 1
	 
þ 2w V Cb� cð Þ:

Maximizing this likelihood with respect to the parameters is the

same as maximizing the logarithm of the likelihood with respect to

the parameters. In the case of b, a1, and a2, it is the same as
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minimizing the h term in the exponent. Note that the maximization

is performed by Lagrange multipliers and the appropriate term has

been added to h

B

Bb
h

���
b ¼ b̃b; a1 ¼ ãa1 ; a2 ¼ ãa2; d ¼ d̃d ;w ¼ w̃w;r2 ¼ r̃r2

¼ 2 X VXð Þb̃b � 2 X VXð Þ b̃bRãa1 þ b̃bI ãa2
� �þ 2C Ṽww

B

Bw
h

���
b ¼ b̃b;a1 ¼ ãa1;a2 ¼ ãa2 ;d ¼ d̃d;w ¼ w̃w ;r2 ¼ r̃r2

¼ 2 Cb̃b � c
	 


B

Ba1
h

���
b ¼ b̃b;a1 ¼ ãa1;a2 ¼ ãa2;d ¼ d̃d ;w ¼ w̃w;r2 ¼ r̃r2

¼ � 2b̃bVX VXð Þb̃bR � 2d̃d 2ãa1ð Þ

B

Ba2
h

���
b ¼ b̃b;a1 ¼ ãa1;a2 ¼ ãa2;d ¼ d̃d ;w ¼ w̃w;r2 ¼ r̃r2

¼ � 2b̃b X VXð Þb̃bI � 2d̃d 2ãa2ð Þ

B

Bd
h

���
b ¼ b̃b;a1 ¼ ãa1 ;a2 ¼ ãa2;d ¼ d̃d;w ¼ w̃w;r2 ¼ r̃r2

¼ � 2 ãa21 þ ãa22 � 1
	 


B

Br2
log p yjX ; b; a1; a2; r2

	 
� ����
b ¼ b̃b;a1 ¼ ãa1 ;a2 ¼ ãa2;d ¼ d̃d;w ¼ w̃w;r2 ¼ r̃r2

¼ � 2n

2

1

r̃r2
þ h̃h

2

1

r̃r2ð Þ2

where ĥ is h with MLEs substituted in. By setting these derivatives

equal to zero and solving, we get the MLEs under the restricted

model given in Eq. (2.14).

Appendix C. Prewhitening

In many applications of regression, the errors may be

temporally autocorrelated resulting in correct estimation of the

regression coefficients but inflated estimation of the residual error

variance.

In the multiple regression complex model, the observation error

covariance matrix may not be the identity matrix. A common

practice is to estimate U with Û, prewhiten, then repeat the

analysis. For example, an AR(1) temporal autocorrelation (Mar-

kov) matrix with autocorrelation parameter qR for the real part and

qI for the imaginary part is estimated by q̂R and q̂R, their average
taken to obtain q̂ and Û formed. Estimation of temporal

autocorrelation parameters may be done using pseudogeneralized

least squares (Bullmore et al., 1996). Then, by obtaining the

factorization Û = PPV and premultiplying

PyR
PyI

�
¼ PX 0

0 PX

�
bcosh
bsinh

�
þ PgR

PgI

�����

yR4
yI4

�
¼ X4 0

0 X4

�
bcosh
bsinh

�
þ gR4

gI4

�����
ðC:1Þ

Now, D* = (gR*,gI*)V ~ N (0, A � In), and the data are analyzed

according to the complex multiple regression model.
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