
APPLICATION TO SIMULATED DATASET:

Data is generated to simulate a bilateral finger-tapping fMRI block design experiment with n=256 points where 
the true motor activation structure is known so that the proposed complex model can be compared with the 
usual magnitude model.  A 128 x 128 slice is selected for analysis within which two 7 x 7 ROI’s as lightened in 
Figure 1 are designated to have activation.  For this slice, simulated fMRI data is constructed according to a 
regression model which consists of an intercept, a time trend for all voxels but also a reference function for 
voxels in each ROI which is related to a 8 x (16on + 16off) TR block experimental design.
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SYNOPSIS:
In functional magnetic resonance imaging, voxel time courses after “image reconstruction" are complex valued 
as a result of phase errors due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional 
“activation" based on magnitude time courses [1,2]. Here we propose to directly model the entire complex or 
bivariate data rather than just the magnitude data.  A nonlinear model is used to model activation on the complex 
signal, and a likelihood ratio test is derived to test for activation at each voxel.  We investigate the performance 
of the model on a simulated dataset.

INTRODUCTION: 
After Fourier or non-Fourier image reconstruction, each voxel contains a time course of real and imaginary 
components of the measured Proton Spin Density (PSD). Magnitude images are produced by taking the square 
root of the sum of squares of the real and imaginary parts of the measured PSD in each voxel at each time point. 
Nearly all fMRI studies obtain a statistical measure of functional activation based on magnitude image time 
courses. When this is done, phase information in the data is discarded. Previous models for complex activation 
have been proposed [3,4]. We reparameterize and extend the model proposed by Nan and Nowak (1999) to a 
multiparameter baseline and signal model, including formulating the hypothesis test in terms of contrasts and 
estimating the phase angle directly.

MODEL:

Neglecting the voxel location and focusing on a particular voxel, the complex valued image measured over time 
in a given voxel is denoted (yRt,yIt).  A nonlinear multiple regression model is introduced individually for each 
voxel that includes a phase error  in which at time t, the measured proton spin density is given by 

where (ηRt,ηIt)’ ~ N(0, Σ), Σ=σ2I2. The complex model can be written in matrix notation as 
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where it is specified that the 2nx 1 vector y=(yR',yI')'  is the n×1 vector of observed real components stacked on 
the n×1 vector of observed complex components, X is the n×(q+1) design matrix, β is the (q+1) ×1 vector of 
regression coefficients,  θ is the 1×1 phase angle, and the 2n× 1 vector η=(ηR',ηI')' is the n×1 vector of real 
component errors stacked on the n×1 vector of complex component errors. This model is a generalization of 
previous models [5,6] that restricted q=1, did not estimate θ,  or use contrasts. The maximum likelihood 
estimates of the model parameters are given by:

Where and                                                .

Note that the maximum likelihood estimates of β can be shown to be a linear combination of the estimates using 
only the real data yR or only the imaginary data yI, with α “weights” dependent on the phase angle. 

Functional activation can be assessed by testing a null hypothesis in terms of contrasts such as H0: C β=0. For 
example, a question of interest may be, “Is the coefficient for the reference function zero?” This can be evaluated 
with the choice C=(0,...,0,1),  β'=( β0, β1,…, βq), and γ =0 where the βq coefficient corresponds to the reference 
function. Then the generalized likelihood ratio statistic for the complex activation model is given by

where      is the unconstrained ML estimate of σ2 and σ̃2 is the ML estimate under the constrained null hypothesis 
(see [5] for details).  This statistic has an asymptotic χ2 distribution with degrees of freedom equal to the rank of 
C. 

Figure 2B. Real “weight”  (cos θ) .
Figure 2A. Combined estimated 
coefficient for the reference function 
β2. 

Simulated Dataset: Estimated reference function coefficients
Figure 2 illustrates how the estimated reference function coefficients are a weighted function of the 
coefficients estimated from just the real or imaginary data. Figure 2A shows the combined estimate of β2.  
Figure 2B shows the real “weight” (α1=cos θ), Figure 2C shows the real data estimate of β2, Figure 2D 
shows the imaginary “weight” (α2=sin θ), and Figure 2E shows the imaginary data estimate of β2.
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Simulated Dataset: Likelihood Ratio Test Results
A LR statistic for the magnitude model can be obtained in a similar fashion to the complex model (see [5] 
for more details), and the resulting statistic has the same asymptotic distribution as the complex LR test.  
The images of LR statistics for the magnitude and complex models are given in Figure 3, thresholded
using the Benjamini-Hochberg procedure at a 5% false discovery rate [6, 7].  The complex model 
captures a larger portion of the true activation region.  This is illustrated more clearly in Figure 3C, which 
displays the activation statistic differences.

Figure 3A. Activation image using the 
LR test for the magnitude model.

Figure 3B. Activation image using the 
LR test for the complex model.
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Figure 2E. Imaginary data estimate 
of β2.

Figure 2C. Real data estimate of β2.
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RESULTS OF ANALYSIS:

• A complex data fMRI activation model that uses phase information was presented as an alternative to 
the typical magnitude data model.  

•Activation statistics were derived from generalized likelihood ratio tests for both models allowing for 
contrasts.  

•Activation from both models were presented for a simulated dataset.  It was found that for large signal to 
noise ratios, both models were comparable.  However, for smaller signal to noise ratios, the complex 
activation model demonstrated superior power of detection over the magnitude activation model.

Estimated complex model voxel coefficient values of (1.639005, 
0.00001, 0.05870)’ and variance 0.00241 were extracted from a 
significantly active voxel in a real fMRI bilateral finger-tapping 
experiment.  The estimated phase was extracted for the entire image 
of interest.  The value of β0 was adjusted to compare the models 
under a lower signal to noise ratio of SNR= β0/σ=1.  Outside the ROI 
the regression coefficients associated with the reference function 
were set to 0, while inside the ROI they were set to 0.75*0.05870 
times a normal hill with a variance of 2 and unit height plus 
.25*0.05870.  This type of ROI has been successfully used before [6] 
and has the largest effect in the center with smaller effects toward 
the edge.

Figure 1. Anatomical with ROI.

16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128
16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128

16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

Figure 2D. Imaginary “weight”  (sin θ) .
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Figure 3C. Differences in 
activation statistics (Complex –
Magnitude)
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