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ABSTRACT

In functional magnetic resonance imaging, voxel time
courses after Fourier “image reconstruction” are com-
plex valued as a result of phase errors due to mag-
netic field inhomogeneities. Nearly all fMRI studies
derive functional “activation” based on magnitude time
courses [1, 2]. Here we propose to directly model the
entire complex or bivariate data rather than just the
magnitude data. A nonlinear model is used to model
activation on the complex signal, and a likelihood ratio
test is derived to test for activation at each voxel. We
investigate the performance of the model on a simu-
lated dataset.

1. INTRODUCTION

In magnetic resonance imaging, we aim to image the
density of “spinning” protons in a real valued object.
The equations of Physics work out that the Fourier
transform (FT) of the proton spin density (PSD) is a
spatial frequency. We will obtain the spatial frequency
and perform an inverse Fourier transform (IFT) to ob-
tain the proton spin density. This is done by taking
successive measurements in time of a real valued sig-
nal, a voltage in a wire. The time axis is transformed
to the spatial frequency or k-space axis. This signal
is real valued, but it is “complex demodulated.” In
measuring the signal, there can be either one or two
A to D converters. If there is a single A to D con-
verter, successive signal measurements are alternately
multiplied by either a cosine or a sine to obtain real (in-
phase) and imaginary (quadrature) parts. These two
measurements are then shifted either half a step for-
ward or backward to align them. If there are two A
to D converters, two measurements are then taken at
the same time with one multiplied by a cosine and the
other by a sine. This discretely measured complex val-
ued signal is the discrete FT of the PSD. A discrete
IFT is applied to the discretely measured signal. The
original object or PSD is real valued but due to phase
errors, a complex image of PSD’s is produced.

After Fourier image reconstruction, each voxel con-
tains a time course of real and imaginary components
of the PSD. Magnitude images are produced by taking
the square root of the sum of the squares of the real
and imaginary parts of the PSD in each voxel at each
time point. Nearly all fMRI studies obtain a statistical
measure of functional activation based on magnitude
image time courses. When this is done, phase informa-
tion in the data is discarded. A more accurate model
should use all the information contained in the data.

Two previous models for complex activation have
been proposed [3, 4]; however the first assumes that
the phase errors for the baseline and signal are not the
same. We extend the second model proposed by Nan
and Nowak (1999) to a multiparameter baseline and
signal model, formulate the the hypothesis test in terms
of contrasts, and estimate the phase angle directly in-
stead of the sine and cosine of the phase angle. We
compare the results of this model to a strict magnitude
model in terms of thresholded activation maps.

2. MODEL

In MRI/fMRI, we aim to image a real valued object
ρ(x, y) and obtain a measured object ρm(x, y) by mea-
suring a 2D complex valued signal sm(kx, ky) at spa-
tial frequencies (kx, ky). This signal consists of a true
complex valued signal s(kx, ky) plus a random complex
noise term δ(kx, ky) with real and imaginary compo-
nents that are assumed to be independent and identi-
cally normally distributed. Even if there were no phase
errors, it is necessary to observe the imaginary parts of
this signal because we phase encode for proper image
formation. After image reconstruction, we obtain a
complex valued measured object plus complex valued
noise.

Neglecting the voxel location and focusing on a par-
ticular voxel, the complex valued image measured over
time in a given voxel is

ρmt = [ρRt + ηRt] + i[ρIt + ηIt]

where (ηRt, ηIt)′ ∼ N (0, Σ) and Σ = σ2I2. The dis-
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tributional specification is on the real and imaginary
parts of the image and not on the magnitude.

A nonlinear multiple regression model is introduced
individually for each voxel that includes a phase error
θ in which at time t, the measured proton spin density
is given by

ρmt = [ρt cos θ + ηRt] + i[ρt sin θ + ηIt]

where ρt = x′
tβ = β0 + β1x1t + · · · + βqxqt.

In fMRI, we take repeated measurements over time
while a subject is performing a task. In each voxel, we
compute a measure of association between the observed
time course and a preassigned reference function that
characterizes the experimental paradigm.

2.1. Magnitude Activation

The typical method to compute activations [1, 2] is
to use the magnitude |ρmt| which is denoted by yt and
written as

yt =
[
(x′

tβ cos θ + ηRt)2 + (x′
tβ sin θ + ηIt)2

] 1
2 .

The phase which may contain some information is dis-
carded. The magnitude data when the signal to noise
ratio is large can be approximately modeled [4] as

yt ≈ x′
tβ + εt

by performing some algebra under the square root and
using a Taylor series expansion where εt = ηRt cos θ +
ηIt sin θ ∼ N(0, σ2). This variance σ2 is the same as
that for the real and imaginary parts of the complex
image. Alternatively, this can be written as

y = X β + ε
n × 1 n × (q + 1) (q + 1) × 1 n × 1

where ε ∼ N (0, σ2Φ) and Φ is the temporal correlation
matrix, often taken to be Φ = In after suitable pre-
processing of the data.

The unconstrained maximum likelihood estimates
of the vector of regression coefficients β̂ and the error
variance σ̂2 are

β̂M = (X ′X)−1X ′y,

σ̂2
M = (y − Xβ̂M )′(y − Xβ̂M )/n.

To construct a generalized likelihood ratio test of the
hypothesis H0 : Cβ = 0 vs. Ha : Cβ 6= 0, we maximize
the likelihood under the constrained null hypothesis.
This leads to constrained MLE’s

β̃M = Ψβ̂M ,

σ̃2
M = (y − Xβ̃M)′(y − Xβ̃M)/n

where

Ψ = Iq+1 − (X ′X)−1C ′[C(X ′X)−1C ′]−1C.

Then the likelihood ratio statistic is given by

−2 logλM = n log
(

σ̃2
M

σ̂2
M

)
.

This has an asymptotic χ2
1 distribution. Note that

magnitude activation maps are usually based on an
equivalent representation using t-statistics, but we use
the χ2 representation for comparability with the com-
plex activation model.

2.2. Complex Activation

Alternatively, we can represent the observed data at
time point t as a 2 × 1 vector instead of as a complex
number

(
yRt

yIt

)
=

(
x′

tβ cos θ
x′

tβ sin θ

)
+

(
ηRt

ηIt

)

with the constraint that sin2 θ + cos2 θ = 1. Note that
this can also be written as

y =
(

X 0
0 X

) (
β cos θ
β sin θ

)
+ η ,

2n × 1 2n × 2(q + 1) 2(q + 1) × 1 2n × 1

where it is specified that the observed vector of data
y = (y′

R, y′
I)

′ is the vector of observed real values stacked
on the vector of observed complex values and the vec-
tor of errors η = (η′

Rt, η
′
It)

′ ∼ N (0, Σ ⊗ Φ) is similarly
defined where ⊗ is the Kronecker product.

Due to the multiparameter baseline and signal model
along with the direct modeling of the phase angle, this
is a generalization of the model by Nan and Nowak
where there is only a mean and signal reference func-
tion and the cosine and sine of the phase angle is esti-
mated. Note that our model can be reparametrized to
yield the Nan and Nowak model for the single parame-
ter baseline and signal setting. As with the magnitude
model, we can obtain unrestricted maximum likelihood
estimates of the parameters as

θ̂ =
1
2

tan−1

[
2β̂′

R(X ′X)β̂I

β̂′
R(X ′X)β̂R − β̂′

I(X ′X)β̂I

]

β̂C = β̂R cos θ̂ + β̂I sin θ̂,

σ̂2
C =

1
2n

[
y −

(
X 0
0 X

) (
β̂C cos θ̂

β̂C sin θ̂

)]′

[
y −

(
X 0
0 X

) (
β̂C cos θ̂

β̂C sin θ̂

)]
,



where

β̂R = (X ′X)−1X ′yR,

β̂I = (X ′X)−1X ′yI ,

The maximum likelihood estimates under the con-
strained null hypothesis H0 : Cβ = 0 are given by

θ̃ =
1
2

tan−1

[
2β̂′

RΨ(X ′X)β̂I

β̂′
RΨ(X ′X)β̂R − β̂′

IΨ(X ′X)β̂I

]

β̃C = Ψ[β̂R cos θ̃ + β̂I sin θ̃],

σ̃2
C =

1
2n

[
y −

(
X 0
0 X

) (
β̃C cos θ̃

β̃C sin θ̃

)]′

[
y −

(
X 0
0 X

) (
β̃C cos θ̃

β̃C sin θ̃

)]
.

where Ψ is as previously defined for the magnitude
model. Previous models were not formulated in terms
of contrasts.

Then the generalized likelihood ratio statistic for
the complex activation model is

−2 logλC = 2n log
(

σ̃2
C

σ̂2
C

)
,

which, like the magnitude model LRT, also has an as-
ymptotic χ2

1 distribution.

3. FMRI SIMULATION

Data is generated to simulate a bilateral finger tap-
ping fMRI block design experiment with n = 256 points
where the true motor activation structure is known so
that the two activation methods can be evaluated. A
128×128 slice is selected for analysis within which two
7 × 7 ROI’s as lightened in Figure 1 are designated to
have activation.

For this slice, simulated FMRI data is constructed
according to a regression model which consists of an
intercept, a time trend for all voxels but also a reference
function for voxels in each ROI which is related to a
8 × (16on + 16off) TR block experimental design.

Estimated complex model voxel coefficient values
of (1.63905, .00001, .05870)′ and variance .00241 were
extracted from a significantly active voxel in a real
fMRI bilateral finger tapping experiment. The esti-
mated phase was extracted for the entire image of inter-
est. Additional research (not shown) indicated that the
models perform similarly for high signal to noise ratios
(SNR). Here we illustrate the differences for low SNR.
Note that the magnitude of β0 observed in the real
dataset is generally much much larger than β1 or β2,
indicating that it is the dominant feature in the SNR.
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Fig. 1. Anatomical with ROI’s.

Therefore for fixed variance, we parametrize the SNR
by setting β0 so that the ratio SNR= β0/σ = 1. Out-
side the ROI the simulation true reference coefficient
value was set to zero. Inside each ROI, the regression
coefficients associated with the reference function are
chosen to have an activation region that was .75∗.05870
times a normal hill with a variance of 2 and unit height
plus .25∗ .05870. This type of simulated activation has
been successfully used before [5] and has the property
of the largest effect in the center and smaller effects
towards the edge.

The images of −2 lnλ for the magnitude data and
complex data are given in Figures 2 and 3, each thresh-
olded at a false discovery rate (FDR) of 5% [6, 5]. Since
both of these have approximately the same χ2

1 distribu-
tion, these images indicate that the complex model has
greater sensitivity to the activation present in the two
ROI’s, and is therefore preferred. To highlight this dif-
ference in activation, the image in Figure 4 was formed
from complex model activation minus magnitude model
activation.

4. CONCLUSION

A complex data fMRI activation model that uses phase
information was presented as an alternative to the typ-
ical magnitude data model. Activation statistics were
derived from generalized likelihood ratio tests for both
models allowing for contrasts. Activation from both
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Fig. 2. −2 lnλ statistics for magnitude data.
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Fig. 3. −2 lnλ statistics for complex data.

models were presented for a simulated dataset, illus-
trating that for smaller signal to noise ratios, the com-
plex activation model demonstrated superior power of
detection over the magnitude activation model.
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Fig. 4. Activation statistic differences.
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