Wisconsin

Rowe, MCW

The Distribution of Magnitude and Complex Voxel Values in MRI

Daniel B. Rowe, Ph.D.

Associate Professor Department of Biophysics Division of Biostatistics Graduate School of Biomedical Sciences

Now at Marquette University Department of Math, Stats, and CS

March 24, 2008

Waisman Laboratory for Brain Imaging and Behavior

Rowe, MCW

OUTLINE

- **1. Image Reconstruction**
- 2. Statistics-Ricean & Normal
- 3. Estimation-Ricean & Normal
- **4. Estimation-Bivariate Normal**
- 5. Discussion

Rowe, MCW

Reconstruction:

Ideally measure complex-valued FT of the object.

$$S(k_x, k_y) = S_R(k_x, k_y) + i \qquad S_I(k_x, k_y)$$

Complex: 96×96

Real: 96×96

Imaginary: 96×96

p = 9216 # of voxels

Actual data!

Reconstruction: By complex-valued inverse FT of the object.

Reconstruction:

Due to imperfect reconstruction (noise, T_2^* , ΔB , ...), image is complex-valued, $Y_C(x, y) = Y_R(x, y) + iY_I(x, y)$.

Real Image

 $\mathcal{Y}_{R}^{'}$

Imaginary Image

given voxel

 y_I

Reconstruction: Toy Example 8×8, image is complex-valued, $Y_C(x, y) = Y_R(x, y) + iY_I(x, y).$

Reconstruction: By complex-valued forward FT of the object. $\Omega \overline{\Omega} = I$

Rowe, MCW

8

Rowe, Nencka, Hoffmann: JNeuroSciMeth, 159:361-369, 2007.

Reconstruction: Inverse FT reconstruction can be equivalently described as:

Rowe, Nencka, Hoffmann: JNeuroSciMeth, 159:361-369, 2007.

Real-valued isomorphism

Reconstruction:

Rowe, Nencka, Hoffmann: JNeuroSciMeth, 159:361-369, 2007.

Reconstruction: Inverse FT reconstruction can be performed as:

Rowe, Nencka, Hoffmann: JNeuroSciMeth, 159:361-369, 2007.

Real-valued isomorphism

Rowe, MCW

Statistics: Expectation and Covariance.

If $E(s) = s_0$, then for $y = \Omega s$, $E(y) = E(\Omega s) = \Omega s_0$.

If $cov(s) = \Gamma$, then for $y = \Omega s$, $cov(y) = cov(\Omega s) = \Omega \Gamma \Omega'$.

This means that with $\Gamma = \sigma_k^2 I$, and because $\Omega \Omega' = \sigma^2 I$ where $\sigma^2 = (\sigma_k^2 / p^2)$

 $\operatorname{cov}(y) = \sigma^2 I.$

Rowe, MCW

Statistics: Expectation and Covariance. When we use normal distribution from thermal noise $s = s_0 + \varepsilon$, $\varepsilon \sim N(0, \sigma_k^2 I)$

 $s \sim N(s_0, \sigma_k^2 I)$, then $y \sim N(\Omega s_0, \sigma_2^2 I)$. $2p^{x_1}$ $2p^{x_2}$, $y^2 \sim N(\Omega s_0, \sigma^2 I)$.

This means that if we choose a voxel, say j

 j^{th} row of Ω

Statistics: Expectation and Covariance.

from $y \sim N(\Omega s_0, \sigma^2 I)$, the distribution of y_{Ri} and y_{Ii} is

 $\begin{pmatrix} y_{Rj} \\ y_{Ij} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_{Rj} \\ \mu_{Ij} \end{pmatrix}, \begin{pmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{pmatrix} \end{pmatrix} \text{ where } \begin{array}{c} \mu_{Rj} = \omega_j s_0 \\ \mu_{Ij} = \omega_{p+j} s_0 \\ \ddots \\ y_{Cj} = y_{Rj} + i y_{Ij} \end{pmatrix}$

 $(p+j)^{\text{th}} \text{ row of } \Omega$

the pdf is

$$p(y_{Rj}, y_{Ij}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rj} - \mu_{Rj})^2 + (y_{Ij} - \mu_{Ij})^2\right]\right\}$$

product of two normal pdfs

with phase coupled means $\mu_{Rj} =
ho_j \cos heta_j$

 $\mu_{Ij} = \rho_j \sin \theta_j$

Rowe, MCW

Statistics:

Real Image

 y_{Rj}

Imaginary Image

 y_{Ij}

Rowe, MCW

Statistics:

Magnitude Image

Phase Image

$$m_j = \sqrt{y_{Rj}^2 + y_{Ij}^2}$$

 $\varphi_j = \tan^{-1}(y_{Ij} / y_{Rj})$

Rowe, MCW

Statistics:

Magnitude Image

Phase Image

$$m_j = \sqrt{y_{Rj}^2 + y_{Ij}^2}$$

$$\varphi_{j} = \tan^{-1}(y_{Ij} / y_{Rj})$$

Rowe, MCW

Statistics:

Rowe, MCW

Statistics:

Get $p(m_j)$ from $p(y_{Rj}, y_{Ij})$. $\mu_{Rj} = \rho_j \sin \theta_j$ $\mu_{Ij} = \rho_j \cos \theta_j$ Convert from y_{Rj}, y_{Ij} to m_j, φ_j .

$$p(y_{Rj}, y_{Ij}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rj} - \rho_j \cos\theta_j)^2 + (y_{Ij} - \rho_j \sin\theta_j)^2\right]\right\}$$

$$p(m_j,\varphi_j) = \frac{m_j}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[m_j^2 + \rho_j^2 - 2m_j\rho_j\cos(\varphi_j - \theta_j)\right]\right\}$$

$$p(m_j) = \frac{m_j}{\sigma^2} \exp\left\{-\frac{m_j^2 + \rho_j^2}{2\sigma^2}\right\} I_0\left(\frac{\rho_j m_j}{\sigma^2}\right)$$

Rice,S.O., Bell Syst. Tech. 23:282, 1944. Gudbjartsson, Patz. MRM 34:910–914, 1995. Rowe and Logan: NIMG, 23:1078-1092, 2004.

zeroth order modified Bessel function of first kind
$$\frac{1}{2\pi} \int_{\varphi_j = -\pi}^{\pi} e^{\frac{\rho_j m_j}{\sigma^2} \cos(\varphi_j - \theta_j)} d\varphi_j$$

Statistics:

$$p(m_j) = \frac{m_j}{\sigma^2} \exp\left\{-\frac{m_j^2 + \rho_j^2}{2\sigma^2}\right\} I_0\left(\frac{\rho_j m_j}{\sigma^2}\right)$$

$$SNR = \frac{\rho_j}{\sigma^2}$$

The magnitude, does not have a normal distribution!

Ricean Distribution!

Statistics:

$$p(m_j) = \frac{m_j}{\sigma^2} \exp\left\{-\frac{m_j^2 + \rho_j^2}{2\sigma^2}\right\} I_0\left(\frac{\rho_j m_j}{\sigma^2}\right)$$

$$SNR = \frac{\rho_j}{\sigma^2}$$

The magnitude, does not have a normal distribution!

Ricean Distribution!

Ricean \rightarrow Normal as the SNR \uparrow

Rowe, MCW

Rowe, MCW

Statistics:

The high SNR normality of m_i can be seen as

$$m_{j} = \left[(y_{Rj})^{2} + (y_{Ij})^{2} \right]^{1/2}$$

$$= \left[(\rho_{j} \cos \theta_{j} + \eta_{Rj})^{2} + (\rho_{j} \sin \theta_{j} + \eta_{Rj})^{2} \right]^{1/2}$$

$$= \left[\rho_{j}^{2} + (\eta_{Rj}^{2} + \eta_{Ij}^{2}) + 2\rho_{j}(\eta_{Rj} \cos \theta_{j} + \eta_{Rj} \sin \theta_{j}) \right]^{1/2}$$

$$= \rho_{j} \left[1 + 2 \frac{(\eta_{Rj} \cos \theta_{j} + \eta_{Rj} \sin \theta_{j})}{\rho_{j}} + \frac{(\eta_{Rj}^{2} + \eta_{Ij}^{2})}{\rho_{j}^{2}} \right]$$

 $\approx \rho_{j} + \varepsilon_{j}$ where $\varepsilon_{j} = \eta_{Rj} \cos \theta_{j} + \eta_{Rj} \sin \theta_{j}$ $\varepsilon_{j} \sim N(0, \sigma^{2})$ $\sqrt{1 + u^{2}} \approx 1 + u/2, |u| \ll 1$

Statistics:

We take *n k*-space arrays under different signal conditions

Statistics: We get *n* images under different signal conditions

Statistics: We get *n* images under different signal conditions

Statistics: We get *n* images under different signal conditions

Statistics: We get *n* images under different signal conditions

Rowe, MCW

Statistics:

We take *n* images under different signal conditions

Toy Example

image

Rowe, MCW

Statistics: $y_t = \Omega s_t$ We take *n* images under different signal conditions 12 2 Real \mathcal{Y}_{Rjt} Magnitude $\overline{m}_{jt} = \sqrt{y_{Rjt}^2 + y_{Ijt}^2}$ $p \\ p+1$ m_{jt} . p+j y_{Ijt} Imaginary p 2p 2 3 *t*=1 . . . n 3 2 *t*=1 . . . n image

Statistics: Bivariate Normal to Ricean The distribution of measurement *t* in voxel *j* is:

$$p(y_{Rjt}, y_{Ijt}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rjt} - \rho_{jt}\cos\theta_{jt})^2 + (y_{Ijt} - \rho_{jt}\sin\theta_{jt})^2\right]\right\}$$

$$p(m_{jt}) = \frac{m_{jt}}{\sigma^2} \exp\left\{-\frac{m_{jt}^2 + \rho_{jt}^2}{2\sigma^2}\right\} I_0\left(\frac{\rho_{jt}m_{jt}}{\sigma^2}\right) \qquad t = 1, \dots, n$$

The goal is to estimate a functional form $\rho_{jt} = f(x_t/\beta_j)$ for the magnitude and possibly $\theta_{jt} = g(u_t/\gamma_j)$ for the phase from the data $y_{Cjl}, ..., y_{Cjn}$ or $m_{jl}, ..., m_{jn}$ in each voxel.

x is a vector of known "dial" settings β is a vector of unknown parameters.

 $\frac{\mu_{Rjt} = \omega_j s_{0t} = \rho_{jt} \cos \theta_{jt}}{\mu_{Ijt} = \omega_{p+j} s_{0t}} = \rho_{jt} \sin \theta_{jt}$ $\omega_j \text{ is } j^{\text{th}} \text{ row of } \Omega$ $\omega_{p+j} \text{ is } (p+j)^{\text{th}} \text{ row of } \Omega$

Estimation: Types of functions to estimate:

Data y_{Cl}, \dots, y_{Cn} or m_l, \dots, m_n in each voxel. No j subscript.

	$f(x \mid \beta)$	${\mathcal X}$	β
1.	ho	1	ho
2.	$\rho \exp(-TE/T_2)$	TE	$ ho,T_2$
3.	$S_0 \exp(-br'Dr)$	b,r	S_0, D
4.	$\rho(1-2\exp(t/T_1))$	t	ρ, T_1
5.	$x'\beta$	<i>x</i> ′	β

Estimation: Ricean Estimate parameters of function from magnitude data:

$$p(m_t) = \frac{m_t}{\sigma^2} \exp\left\{-\frac{m_t^2 + (f(x_t \mid \beta))^2}{2\sigma^2}\right\} I_0\left(\frac{f(x_t \mid \beta)m_t}{\sigma^2}\right)$$
$$t = 1, ..., n$$

$$L = \frac{\prod_{t=1}^{n} m_t}{\sigma^{2n}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{t=1}^{n} \left[m_t^2 + (f(x_t \mid \beta))^2\right]\right\} \prod_{t=1}^{n} I_0\left(\frac{f(x_t \mid \beta)m_t}{\sigma^2}\right)$$

$$LL = -n\log(\sigma^{2}) + \sum_{t=1}^{n}\log(m_{t})$$
$$-\frac{1}{2\sigma^{2}}\sum_{t=1}^{n}\left[m_{t}^{2} + (f(x_{t} \mid \beta))^{2}\right] + \sum_{t=1}^{n}\log\left[I_{0}\left(\frac{f(x_{t} \mid \beta)m_{t}}{\sigma^{2}}\right)\right]$$

Maximize *LL*:
$$\frac{\partial LL}{\partial \beta} = 0$$
 and $\frac{\partial LL}{\partial \sigma^2} = 0$ Under H_1 and H_0

Estimation: Large SNR Normal

Ricean

$$p(m_t) = \frac{m_t}{\sigma^2} \exp\left\{-\frac{m_t^2 + (f(x_t \mid \beta))^2}{2\sigma^2}\right\} I_0\left(\frac{f(x_t \mid \beta)m_t}{\sigma^2}\right)$$
Normal as SNR \uparrow

$$p(m_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}[m_t - f(x_t \mid \beta)]^2\right\}$$

Then use usual least squares estimation.

Maximize *LL*:
$$\frac{\partial LL}{\partial \beta} = 0$$
 and $\frac{\partial LL}{\partial \sigma^2} = 0$ Under H_1 and H_0
 $LL = -2n \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^n [m_t - f(x_t \mid \beta)]^2$

Estimation: Large SNR Normal

$$LL = -2n\log(\sigma^{2}) + -\frac{1}{2\sigma^{2}}\sum_{t=1}^{n} [m_{t} - f(x_{t} | \beta)]^{2}$$

Under H_1 :

$$\frac{\partial LL}{\partial \beta} = -\frac{2}{\sigma^2} \sum_{t=1}^{n} [m_t - f(x_t \mid \beta)] \frac{\partial f(x_t \mid \beta)}{\partial \beta}$$

Under H_0 : add Lagrange constraint $h(\beta, \sigma^2)$ to LL

$$\frac{\partial LL}{\partial \beta} = -\frac{2}{\sigma^2} \sum_{t=1}^{n} [m_t - f(x_t \mid \beta)] \frac{\partial f(x_t \mid \beta)}{\partial \beta} + \frac{\partial h(\beta, \sigma^2)}{\partial \beta}$$

Under H_0 and H_1 :

$$\frac{\partial LL}{\partial \sigma^2} = -\frac{2n}{\sigma^2} - \frac{1}{\sigma^4} \sum_{t=1}^n [m_t - f(x_t \mid \beta)]^2 \left(+\frac{\partial h(\beta, \sigma^2)}{\partial \sigma^2} \right)$$

May require numerical maximization depending on $f(x_t/\beta)$.

Estimation: Large SNR Normal

GLM: Does not require numerical maximization. X known

Under H_{i} : $\hat{\beta} = (X'X)^{-1}X'm$ $\hat{\sigma}^{2} = (y - X\hat{\beta})'(y_{j} - X\hat{\beta})/n$

Under H_0 : $h(\beta, \sigma^2) = 2\psi' C\beta / \sigma^2$

 $\tilde{\beta} = \Psi(X'X)^{-1}X'm$ $\tilde{\sigma}^2 = (y - X\tilde{\beta})'(y - X\tilde{\beta})/n$

 $\Psi = \overline{I - (X'X)^{-1}C'[C(X'X)^{-1}C']^{-1}C}$

Insert back into likelihoods and take ratio.

 $\lambda = L(\tilde{\beta}, \tilde{\sigma}^2) / L(\hat{\beta}, \hat{\sigma}^2)$

This is how we get our usual *t* and *F* statistics.

Estimation: Large SNR Normal

DTI: Requires numerical maximization. b and r_t known

$$LL = -2n\log(\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{t=1}^{n} [m_{t} - S_{0} \exp(-br_{t}'Dr_{t})]^{2}$$

Under H_1 :

$$\frac{\partial LL}{\partial S_0} = -\frac{2}{\sigma^2} \sum_{t=1}^n [m_t - S_0 \exp(-br_t' Dr_t)] \frac{\partial S_0 \exp(-br_t' Dr_t)}{\partial S_0}$$
$$\hat{S}_0 | \hat{D} = \left[\sum_{t=1}^n m_t \exp(-br_t' \hat{D}r_t) \right] / \left[\sum_{t=1}^n \exp(-2br_t' \hat{D}r_t) \right]$$

 $\frac{\partial LL}{\partial D} = 0$ Does not yield a closed form solution.

Need numerical maximization with say Newton-Raphson or Levenberg-Marquardt.

Estimation: Large SNR Normal

Numerical maximization.

$$LL = -\frac{n}{2}\log(\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{t=1}^{n} \left[m_{t} - \sqrt{f(x_{t} \mid \beta)^{2} + \sigma^{2}}\right]^{2}$$

 $\beta^{(0)}: \sum_{t=1}^{n} [m_t - f(x_t | \beta)]^2$ Minimized by Levenberg-Marquardt

$$(\sigma^2)^{(0)} = \sum_{t=1}^n \left[m_t - f(x_t \mid \beta^{(0)}) \right]^2 / n$$

 $\beta^{(r+1)}: \sum_{t=1}^{n} \left[m_t - \sqrt{f(x_t \mid \beta)^2 + (\sigma^2)^{(r)}} \right]^2$ Minimize by Levenberg-Marquardt

$$(\sigma^{2})^{(0)}: \quad LL = -\frac{n}{2}\log(\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{t=1}^{n} \left[m_{t} - \sqrt{f(x_{t} \mid \beta)^{2} + \sigma^{2}}\right]^{2}$$

Minimized by Newton-Raphson

 $eta^{(0)}, (\sigma^2)^{(0)}, eta^{(1)}, (\sigma^2)^{(1)}, ..., eta^{(r+1)}, (\sigma^2)^{(r+1)}$ sequence

sequence converges to MLE!

Estimation: Small SNR Ricean

$$LL = -n\log(\sigma^{2}) + \sum_{t=1}^{n}\log(m_{t}) - \frac{1}{2\sigma^{2}}\sum_{t=1}^{n}\left[m_{t}^{2} + (f(x_{t} \mid \beta))^{2}\right] + \sum_{t=1}^{n}\log\left[I_{0}\left(f(x_{t} \mid \beta)m_{t} / \sigma^{2}\right)\right]$$

$$Holder H_{I}: A_{t} = f(x_{t} \mid \beta)m_{t} / \sigma^{2} + \sum_{t=1}^{n}\log\left[I_{0}\left(f(x_{t} \mid \beta)m_{t} / \sigma^{2}\right)\right]$$

$$\frac{\partial LL}{\partial \beta} = \frac{1}{\sigma^{2}}\sum_{t=1}^{n}\left[m_{t} I_{1}(A_{t}) / I_{0}(A_{t}) - f(x_{t} \mid \beta)\right]\frac{\partial f(x_{t} \mid \beta)}{\partial \beta}$$

Under H_0 :

$$\frac{\partial LL}{\partial \beta} = \frac{1}{\sigma^2} \sum_{t=1}^n \left[m_t I_1(A_t) / I_0(A_t) - f(x_t \mid \beta) \right] \frac{\partial f(x_t \mid \beta)}{\partial \beta} + \frac{\partial h(\beta, \sigma^2)}{\partial \beta}$$

Under H_1 and H_0

$$\frac{\partial LL}{\partial \sigma^2} = \frac{1}{2\sigma^4} [m_t^2 + (f(x_t \mid \beta))^2 - 2m_t A_t f(x_t \mid \beta) - 2n\sigma^2]$$

 $\left(+rac{\partial h(eta,\sigma^2)}{\partial\sigma^2}
ight)$

No closed form solution. Requires numerical maximization!

Estimation: Small SNR Ricean EM Algorithm. Easier and convenient. Does not need phase. Take magnitude variates $m_1, ..., m_n$ that are Ricean distributed

$$p(m_t) = \frac{m_t}{\sigma^2} \exp\left\{-\frac{m_t^2 + f(x_t \mid \beta)^2}{2\sigma^2}\right\} I_0\left(\frac{f(x_t \mid \beta)m_t}{\sigma^2}\right)$$

Introduce latent phase variables $\phi_1, ..., \phi_n$ such that

$$p(m_t, \phi_t) = \frac{m_t}{2\pi\sigma^2} \exp[-(m_t^2 + f(x_t \mid \beta)^2 - 2m_t f(x_t \mid \beta)\cos\phi_t)/2\sigma^2]$$

and

$$LL = -n\log(2\pi\sigma^{2}) + \sum_{t=1}^{n}\log(m_{t})$$
$$-\frac{1}{2\sigma^{2}}\sum_{t=1}^{n}\left[m_{t}^{2} + f(x_{t} \mid \beta)^{2} - 2m_{t}f(x_{t} \mid \beta)\cos(\phi_{t})\right]$$

Zhu, H. et al., JASA, in press, 2009. Dempster, Laird, Rubin. JRSS, 1977.

Estimation: Small SNR EM Algorithm. Iterative.

$$LL = -n\log(2\pi\sigma^{2}) + \sum_{t=1}^{n}\log m_{t} - \frac{1}{2\sigma^{2}}\sum_{t=1}^{n} \left[m_{t}^{2} + f(x_{t} \mid \beta)^{2} - 2m_{t}f(x_{t} \mid \beta)\cos\phi_{t}\right]$$

E Step: Let $Y_m = (m_1, ..., m_n), Y_{\phi} = (\phi_1, ..., \phi_n), Y_x = (x_1, ..., x_n)$

given $\beta^{(r)}, (\sigma^2)^{(r)}$: Initial values from normal GLM

$$E[L_{c}(\beta,\sigma^{2} | Y_{m}, Y_{\phi}, Y_{x}) | Y_{m}, Y_{x}, \beta^{(r)}, (\sigma^{2})^{(r)}] = -n\log(\sigma^{2})^{(r)} - \frac{1}{2(\sigma^{2})^{(r)}} \sum_{t=1}^{n} \left[m_{t}^{2} + f(x_{t} | \beta^{(r)})^{2} - 2m_{t}f(x_{t} | \beta^{(r)})A_{t}^{(r)}\right]$$
$$A^{(r)}_{t} = f(x_{t} | \beta^{(r)})m_{t} / (\sigma^{2})^{(r)}$$

with respect to $p(Y_{\phi} | Y_m, Y_x, \beta^{(r)}, (\sigma^2)^{(r)}) = \prod_{t=1}^n p(\phi_t | m_t, \beta^{(r)}, (\sigma^2)^{(r)})$

Zhu, H. et al., JASA, in press, 2009. Dempster, Laird, Rubin. JRSS, 1977.

Estimation: Small SNR EM Algorithm. Iterative.

M Step:

given $eta^{(r)}$, $(\sigma^2)^{(r)}$:

$$(\sigma^2)^{(r+1)} = \frac{1}{2n} \sum_{t=1}^n \left[m_t^2 + f(x_t \mid \beta^{(r)})^2 - 2m_t f(x_t \mid \beta^{(r)}) A_t^{(r)} \right]$$

$$A_{t}^{(r)} = f(x_{t} | \beta^{(r)}) m_{t} / (\sigma^{2})^{(r)}$$

$$\beta^{(r+1)}$$
: minimize $\sum_{t=1}^{n} \left[f(x_t \mid \beta)^2 - m_t A_t^{(r)} \right]^2$ given $(\sigma^2)^{(r+1)}$

 $\beta^{(0)}, (\sigma^2)^{(0)}, \beta^{(1)}, (\sigma^2)^{(1)}, \dots, \beta^{(r+1)}, (\sigma^2)^{(r+1)}$ sequence converges to MLE!

Zhu, H. et al., JASA, in press, 2009. Dempster, Laird, Rubin. JRSS, <u>1977.</u>

Rowe, MCW

Estimation: Small SNR EM Algorithm. $f(S_0, D | r, b) = S_0 \exp(-br'Dr)$

Fractional Anisotropy, FA

Signal-to-Noise Ratio, S_0/σ^2

Zhu, H. et al., JASA, in press, 2009.

Rowe, MCW

Estimation: Bivariate Normal

Magnitude Image

Phase Image

$$m_j = \sqrt{y_{Rj}^2 + y_{Ij}^2}$$

 $\varphi_{j} = \tan^{-1}(y_{Ij} / y_{Rj})$

Statistics: We get *n* images under different signal conditions

Estimation: All SNRs Bivariate Normal

$$\begin{pmatrix} y_{Rt} \\ y_{It} \end{pmatrix} = \begin{pmatrix} \rho_t \cos \theta_t \\ \rho_t \sin \theta_t \end{pmatrix} + \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix}, \quad \begin{pmatrix} \eta_{Rt} \\ \eta_{It} \end{pmatrix} \sim N(0, \Sigma)$$

$$p(y_{Rt}, y_{It}) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[(y_{Rt} - \rho_t \cos\theta_t)^2 + (y_{It} - \rho_t \sin\theta_t)^2\right]\right\}$$

$$p(m_t, \varphi_t) = \frac{m_t}{2\pi\sigma^2} \exp\left\{-\frac{1}{2\sigma^2} \left[m_t^2 + \rho_t^2 - 2m_t\rho_t\cos(\varphi_t - \theta_t)\right]\right\}$$

$$\rho_t = f(x_t \mid \beta) \text{ and } \theta_t = g(u_t \mid \gamma)$$

$$LL = -n\log(2\pi\sigma^{2}) + \sum_{t=1}^{n}\log(m_{t})$$
$$-\frac{1}{2\sigma^{2}}\sum_{t=1}^{n} \left[m_{t}^{2} + f(x_{t} \mid \beta)^{2} - 2m_{t}f(x_{t} \mid \beta)\cos(\varphi_{t} - g(u_{t} \mid \gamma))\right]$$

Rowe, MCW

Estimation: All SNR Bivariate Normal

$$LL = -n\log(2\pi\sigma^{2}) + \sum_{t=1}^{n}\log(m_{t})$$

$$-\frac{1}{2\sigma^{2}}\sum_{t=1}^{n} \left[m_{t}^{2} + f(x_{t} \mid \beta)^{2} - 2m_{t}f(x_{t} \mid \beta)\cos(\varphi_{t} - g(u_{t} \mid \gamma))\right]$$

 σ^2 can be uniquely solved for given eta,γ

Estimation: Time series are complex, bivariate with phase coupled means.

The y_R and y_I time courses have related info! From actual human data!

Rowe, MCW

Estimation: Time series are complex, bivariate with phase coupled means.

Hoogenrad et al. 1998, Menon 2002, Nencka et al. 2007, Bodurka et al. 1999, Chow et al. 2006.

Rowe, MCW

Estimation:

Magnitude and or phase change.

 $\rho_t = x_t'\beta$ and $\theta_t = u_t'\gamma$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, to appear, 2009.

²Rowe: NIMG 25:1124-1132, 2005a.
⁴Bandettini et al.: MRM, 30:161-173, 1993.
⁶Rowe, et al.: JNeuroSciMeth, 161:331-341, 2007.

Rowe, MCW

Estimation:

Magnitude and or phase change.

 $\rho_t = x_t'\beta$ and $\theta_t = u_t'\gamma$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, to appear, 2009.

²Rowe: NIMG 25:1124-1132, 2005a.
⁴Bandettini et al.: MRM, 30:161-173, 1993.
⁶Rowe, et al.: JNeuroSciMeth, 161:331-341, 2007.

Estimation:

Magnitude and or phase change.

 $\rho_t = x_t'\beta$ and $\theta_t = u_t'\gamma$

¹Rowe and Logan: NIMG, 23:1078-1092, 2004.
³Rowe: NIMG, 25:1310-1324, 2005b.
⁵Rowe and Logan: NIMG 24:603-606, 2005.
⁷Rowe: MRM, to appear, 2009.

²Rowe: NIMG 25:1124-1132, 2005a.
⁴Bandettini et al.: MRM, 30:161-173, 1993.
⁶Rowe, et al.: JNeuroSciMeth, 161:331-341, 2007.

Estimation: All SNR

GLM:

$$\rho_{t} = x_{t}'\beta \text{ and } \theta_{t} = u_{t}'\gamma \qquad H_{0}: \mathcal{C}\beta = 0 \text{ vs. } H_{1}: \mathcal{C}\beta \neq 0$$
$$\mathcal{D}\gamma = 0 \qquad \mathcal{D}\gamma \neq 0$$
$$LL = -n\log(2\pi\sigma^{2}) + \sum_{t=1}^{n}\log(m_{t}) \qquad -\frac{1}{2\sigma^{2}}\sum_{t=1}^{n}\left[m_{t}^{2} + (x_{t}'\beta)^{2} - 2m_{t}x_{t}'\beta\cos(\varphi - u_{t}'\gamma)\right]$$

Maximize *LL*: under
$$H_1$$
 and H_0

 $\beta^{(0)}$: initial value

$$\hat{\gamma}^{(r)} = (\hat{Z}'_{(r)}\hat{Z}_{(r)})^{-1}\hat{Z}'_{(r)}\hat{\varphi}^{(r)}_{*}$$

$$\hat{\beta}^{(r+1)} = (X'X)^{-1}X'm_{*}^{(r)}$$

$$(\hat{\sigma}^2)^{(r+1)} = \frac{1}{2n} \sum_{t=1}^n \left[\frac{(m - X\hat{\beta}^{(r+1)})'(m - X\hat{\beta}^{(r+1)})}{+2(m - \hat{m}_*^{(r+1)})'X\hat{\beta}^{(r+1)}} \right]$$

Rowe: NIMG, 25:1310-1324, 2005. Rowe: MRM, to appear, 2009.

Rowe, MCW

Estimation: GLM:

20s off+16x(8 s on 8 s off), 276 TRs 12 axial slices, 96×96 , FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 34.6 ms FA = 45°, BW = 125 kHz, ES = .708 ms .167 Hz

.167 Hz

Breathing

Mouth 167 Hz

none

thresh= 5x10⁻⁴

Breathing tingei

20s off+16x(8 s on 8 s off), 276 TRs 10 axial slices, 96×96 , FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 42.8 ms FA = 45°, BW = 125 kHz, ES = .768 ms

20s off+16x(8 s on 8 s off), 276 TRs 10 axial slices, 96×96 , FOV = 24 cm, TH = 2.5 mm, TR = 1 s, TE = 42.8 ms FA = 45°, BW = 125 kHz, ES = . 768 ms

20s off+10x(8 s on 8 s off), 180 TRs 9 axial slices, 64×64 , FOV = 24 cm TH = 3.8 mm, TR = 1 s, TE = 26.0 ms FA = 45°, BW = 125 kHz, ES = .680 ms

Rowe: NIMG, 25:1310-1324, 2005. Rowe: MRM, to appear, 2009.

Hahn, Nencka, Rowe: NIMG, 742-752, 2009. Hahn, Nencka, Rowe: In progress.

 $\arg I_t \sum_{i=1}^n I_i$ $\Delta B_{\iota} =$

Discussion:

- Not clear how much improvement from Ricean distribution.
- Improvements will show below SNR=5. High *b*-values.
- Other factors hinder it.
 Dynamic field changes
 Image Warping
 Motion
 Image Processing
- Should also use phase for complete data model.
- More biological info extracted with use of phase.

WISC, Waisman

Discussion:

- 1. Image Reconstruction
- 2. Statistics-Ricean & Normal
- 3. Estimation-Ricean & Normal
- 4. Estimation-Bivariate Normal
- 5. Discussion

Further research is needed

WISC, Waisman

Thank You

Questions?