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Introduction

Place volunteer/patient into MRI scanner.

:\..\.KW

MCW GE 3T Long Bore
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Introduction

In MRI we image a real-valued 3D object, R(x,y, 2).
Lattice of volume elements, voxels.

Consider a single slice R(x,y).
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One Dimensional FT

The Complex-Valued (Discrete) Fourier Transform (n=256, TR=2s)

10 % cos 0/512 Hz 3 *sin 8/512 Hz

iy

sin 32/512 Hz cos 4/512 Hz

Sum

No noise added!




STAT692, Wisconsin

Rowe, MCW

One Dimensional FT-Continuous

The FT of a continuous function f(x) is

F(k) = / - Flz)e 2™ qy

— OO
also denoted as F{ f(x)} and its inverse to be

f(:l?) _ /+OO F<k)€+z’27rkx Ak

— OO0

also denoted as F 1 {F(k)}.

Don't forget that .
e’ = cos(a) + isin(a) .
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One Dimensional FT-Continuous

F(k) = /O; f(x)|cos(2mkx) — i sin(2wkx)| dx

_ / O:O £(z) cos(2mka) dz — i / O:O f(z) sin(2rka) da

= Fo(k)

The cos() sin() and sin() cos() cross terms are zero.

— iFg(k)

J

Z Ajcos(2my;
J

Z Ajcos(2my ) + Z Bjsin(2nv;x)

CI?) + Z B] Siﬂ<27TVj£E)

cos(2mkx) dx

sin(2rkx) dx

Nonzero values at constituent frequencies where A; and B nonzero.
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One Dimensional FT-Continuous

Fourier Transform properties.

Property Function Transform
Linearity af(x)+ bg(x) aF(k)+ bG(k)
Similarity Flaz) = F()
Shifting flx—a) e ©2Thap(k)

Derivative & (i2rk)lF(k)
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One Dimensional FT-Continuous

Convolution of functions f(x) and g(x) is defined as

+00

F(2) * g(z) = / 7(a) gz — o) da .

— OO0

Further

Ff(@)-glx)} = F(k)« G(k) ,

and

F{f(@)xg(x)} = F(k) - G(k) .
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One Dimensional FT-Continuous

Convolution properties.

f@)*g(x) = glx)* f(z) commutative
fla@)*[g(z) * h(x)] = [f(x)* g(x)] * h(z) associative
f(@)x[gi(z) + g2(2)] = f(2)* gi(z) + f(2) * go() distributive
dfekgle) _ dI0) o) = f(g) x LI0 derivative

hiz —xg) = flx —x0) *g(x) = f(x) * gz — x() shift
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One Dimensional FT-Discrete

The (finite) Discrete FT can be derived from the continuous FT
(with assumptions).

227qu
pA/f Z f qAz) e 2n
C’omple:v q=—"n C’omple:v

for p=—n,...,.n—1
Fada) — = S Pk
r) = — e 2n
Hq,_/ mn Hp,_/
Complex p=—"n Complex
for g = —mn,...,n—1.

There are some assumptions here.
The constituent frequencies do not change in time.
The constituent frequencies are < 1/(2Ax).
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One Dimensional FT-Discrete

The DFT can be represented as

f1 . Y1
: = () :
fn Un
n X 1 nxn n X 1

Complex Complex Complex (Real)

(fr+ifr) = (Qr+1 Q) (yg + iyr)
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One Dimensional FT-Discrete

The Complex-Valued (Discrete) Fourier Transform (n=256, TR=2s)

10 % cos 0/512 Hz 3 *sin 8/512 Hz

iy

sin 32/512 Hz cos 4/512 Hz

Sum

No noise added!
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One Dimensional FT-Discrete

The Complex-Valued (Discrete) Fourier Transform (n=256, TR=2s)

(Qr +i Q) *yr +i yr) = (fr 1)

-
32 [
—
64
-
g6 [
—
12
-
160 (-
-
192
-
004 [
—
256

+ 1

Represent complex-valued time series as an image.
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One Dimensional FT-Discrete

The Complex-Valued (Discrete) Fourier Transform (n=256, TR=2s)

Qg +i Q) *(yrp +1 yr) = (fr +¢ [f1)

+ 1

Pre-multiply by complex-valued forward Fourier Matrix as an image.
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One Dimensional FT-Discrete

The Complex-Valued (Discrete) Fourier Transform (n=256, TR=2s)

= (fgr +i f1)

+ 1

There are lines at the frequency locations.

Real part (image) represents constituent cosine frequencies.
Imaginary part (image) represents constituent sine frequencies.
The intensity of the lines represents amplitude of that frequency.
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One Dimensional FT-Discrete

The Complex-Valued (Discrete) Fourier Transform (TR=2s)

10 * cos 0/512 Hz 3 *sin 8/512 Hz sin 32/512 Hz cos 4/512 Hz
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Two Dimensional FT-Discrete

> = cos + cos + sin + cos

Sin Cos
FOV=192 mm, mat=96x96, vox=2 mm>
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Two Dimensional FT-Discrete

The Complex-Valued 2D (Discrete) Fourier Transform
(Qur+iQ) * (Yrp+iY) * Qur+iQ)! = (Fr+iFy)

FOV=192 mm, mat=96x96, vox=2 mm?>
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Two Dimensional FT-Discrete

The Complex-Valued 2D (Discrete) Fourier Transform
(Qr+iQy) * (Yp+iY) * (Lr+iQu)! = (Fp+iFy)

FOV=192 mm, mat=96x96, vox=2 mm?>
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Two Dimensional FT-Discrete

The Complex-Valued 2D (Discrete) Fourier Transform
(Qr+iQ) * (Yr+iYy) * (Qur+iQn! = (Fp+iFy)

FOV=192 mm, mat=96x96, vox=2 mm?>
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Two Dimensional MR Image Formation

So why do we need Fourier Transforms?
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Two Dimensional MR Image Formation

So why do we need Fourier Transforms?

In MRI/fMRI our measurements are not voxel values!
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Two Dimensional MR Image Formation

How do we get spatial frequencies?
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Two Dimensional MR Image Formation

How do we get spatial frequencies?

We apply G & Gy magnetic field gradients to encode
then we measure the complex-valued DFT of the object.
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Two Dimensional MR Image Formation

How do we get spatial frequencies?

We apply G & Gy magnetic field gradients to encode
then we measure the complex-valued DFT of the object.

Images are formed (Reconstructed) by a 2D IFT
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Two Dimensional MR Image Formation

(a) Gradient Echo-EPI Pulse Sequence (b) k-Space Trajectory

Kumar, Welti and Ernst: NMR Fourier Zeugmatography, J. Magn. Reson. 1975

Haacke et al.: Magnetic Resonance Imaging: Physical Principles and Sequence Design, 1999.
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Two Dimensional MR Image Formation

F(ky, ky) = Fr(ks, ky) +iF7(ks, ky), the complex-valued DFT of object

(a) real: 96 x 96 (b) imaginary: 96 x 96

FOV=192 mm, mat=96x96, vox=2 mm>
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Two Dimensional MR Image Formation

complex-valued 2D |IFT
(Qyr+1iQy) * (Fgr+iFy)

FOV=192 mm, mat=96x96, vox=2 mm?>
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Two Dimensional MR Image Formation

Due to the imperfect Fourier encoding, the IFT reconstructed
object is complex-valued, Y (z,y) = Yp(x,y) + iY7(x, y).

(a) Real image, yr (b) Imaginary image, y;

FOV=192 mm, mat=96x96, vox=2 mm?>
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Two Dimensional MR Image Formation

Most fMRI studies transform from real-imaginary rectangular coordinates
to magnitude-phase polar coordinates, p(z,y) = m(x, y)e“b(x’y).

(a) Magnitude, m = /y% + y? (b) Phase, ¢ = atans(yr/yr)

FOV=192 mm, mat=96x96, vox=2 mm>
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Two Dimensional MR Image Formation

Most fMRI studies transform from real-imaginary rectangular coordinates
to magnitude-phase polar coordinates, p(z,y) = m(x, y)e“b(x’y).

(a) Magnitude, m = /y% + y? (b) Phase, ¢ = atans(yr/yr)
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Two Dimensional MR Image Processing

There are two basic image (filtering) processing categories.
1) Image smoothing
2) Image sharpening

Both can be performed with the DFT.
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Two Dimensional MR Image Processing

For image processing, we first define a kernel (AKA mask).
A 3 x 3 kernel with weights denoted by w's.

w1 | w2 | W3
w4 | W5 | We
w7 | wg | Wy

We take this kernel and move it around the image.

A new image is made by summing the product of the kernel weights
with the pixel intensity values under the kernel.

The kernel weights typically sum to unity.
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Two Dimensional MR Image Processing

Y(z,y)

u(z,y)

1/16

1/8

1/16

1/8

1/4

1/8

-1 202

198

1/16

1/8

1/16

195

186

201

-1 211

189

dx

Make new image Z with value at (g, gy) that is

Z(qe,qy) = 1/16 x 202 +1/8 x 198 + ... +-1/8 * 189 4 1/16 * 208
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Two Dimensional MR Image Processing

The previous procedure of moving the kernel around and
making new voxel values is the definition of convolution!

Z(qu, ay) = Y YY — s)u(r, s)

S=—Mr=—n

where n and m are the x and y dimensions of Y.
u is zero padded to be of the same dimension as Y.

Image filtering (Smoothing) is computationally faster in freq space.












STAT692 Wisconsin Rowe, MCW

Two Dimensional MR Image Processing-Smoothing

Smothing Caveats:
1) Increases/Induces local voxel correlation

|

1536 2048 2560 3072 3584 4096 B 1024 1536 2048 2560 3072 3584 4096

Original Image Corr Smoothed Image Corr
2) t-statistics need to be renormalized

K =,/ w; under independence
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One Dimensional fMRI Time Series

In fMRI we get complex-valued images over time
and voxel time course observations, y; = yp; + 1y ;-
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One Dimensional fMRI Time Series

Collect a sequence of these reconstructed images over time.
Form voxel time courses, y; = re'®t.
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One Dimensional fMRI Time Series

Collect a sequence of these reconstructed images over time.
Form voxel time courses, y; = re'®t.
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One Dimensional fMRI Time Series
Time series are complex-valued or bivariate with phase coupled means.

Magnitude

Real: Task related changes!
Y

Imaginary

Imaginary: Task related changes!

The yp and yj time courses have related vector length info!
This is a time series from a actual human experimental data!
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One Dimensional fMRI Time Series
Time series are complex-valued or bivariate with phase coupled means.

Magnitude

Magnitude
Magnitude: Task related magnitude changes!

Y|

Imaginary

Phase: Often relatively constant temporally.

MO time courses only have vector length info!

PO time courses only has vector angle info!
Real-Imaginary or Magnitude-Phase time courses have all info!
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One Dimensional fMRI Time Series
Time series are complex-valued or bivariate with phase coupled means.

Magnitude

Magnitude
Magnitude: Task related magnitude changes!

Y|

Imaginary

Phase: Task related phase changes!
Real-Imaginary or Magnitude-Phase time courses have all info!
Recent work indicates that phase time courses may exhibit TRPCs
Menon, 2002; Hoogenrad et al., 1998; Borduka et al., 1999; Chow et al., 2006;
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One Dimensional fMRI Time Series

Block-designed experiment: Off-On-Off-...-On-Off task

Imaginary Imaginary Imaginary

\ - Real \ - Real - Real
> Complex Magnitude w/ Constant Phase (CP) Activation®?

> Complex Magnitude & /or Phase (CM) Activation?

> Real Magnitude-Only (MO/UP) Activation*

> Real Phase-Only (PO) Activation®

'Rowe and Logan: Neurolmage, 23:1078-1092, 2004. “Rowe: Neurolmage 25:1124-1132, 2005a.
3Rowe: Neurolmage, 25:1310-1324, 2005b. 4Bandettini et al.: Magn Reson Med, 30:161-173, 1993.
SFriston et al.: Hum Brain Mapp, 2:189-210, 1995. Rowe, Meller, & Hoffmann: J Neuro Meth, in press, 2006.
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One Dimensional fMRI Time Series

Let's consider the magnitude of the time series and its FT.

IR | [T

8
6
4
2

1oL I I I I I I I I ol 1 I 1 !
-0.4963  -0.3773  -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554 0.4963  -0.3773 -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554

-3k -
1 1 I I I I I I 1oL I I I I I I I I L I ! I I I I I
3. 4 96 128 160 192 224 256 -0.4963  -0.3773  -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554 0.4963  -0.3773 -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554

Phase TS FT Imag TS FT Phase

TS
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One Dimensional fMRI Time Series
Let's filter some FT frequencies of the time series.

My AN YAR WA WAWMMA N M

0
-0.4963  -0.3773  -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554

-0.4963  -0.3773  -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554

0.4963  -0.3773  -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554

TS FT Phase TS FT Phase

101,102,110,118,152,160,168,169
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One Dimensional fMRI Time Series

Let's filter some FT frequencies of the time series.

IR | F—

1oL I I I I I I I I
-0.4963  -0.3773  -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554

s \ | \ \ \ \ 1 L \ \ \ \ \ \ \ \ \ \ \ ) \ \ \ \
-10
0.4963  -0.3773 -0.2584  -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554 -0.4963  -0.3773  -0.2584 -0.1394  -0.0204 0.0985 0.2175 0.3364 0.4554 32 96 128 160 192 224 256

TS FT Phase TS FT Imag TS Phase

101,102,110,118,152,160,168,169
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One Dimensional fMRI Time Series

Original Time Series Filtered Time Series

This filtering will reduce your residual variance!
A smaller variance means larger activation statistics!
But you have changed the temporal autocorrelation!



STAT692 Wisconsin Rowe, MCW

FMRI time series statistics

Activation statistic (measure of association) is computed in every voxel.
Many ways to compute activation statistics. Magnitude vs. Complex
Activation is another topic all to itself! Happy to return.

Need to separate activation signal from noise!

Thresholding and the multiple comparisons problem.

Thresholding is another topic all to itself!

Unthresh Activation

gt Fh Fh
1* N -‘ ﬂ N ﬂ N
e o = L '..:L—'.'ii{
..l'l- *i "'. o E *i .-'J'. " *i .-'J- - " l::.
RN N L AL T
| i I i ! i
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Summary

> |ntroduction
> One Dimensional FT

e [ime series constituents and Fourier spectrum.
> Two Dimensional FT

e An image constituents and Fourier spectrum.
> Two Dimensional MR Image Formation

e k-space and MR Image Reconstruction.
> One Dimensional fMRI time series

e fMRI time series Fourier spectrum and filtering.

> FMRI time series statistics
Thank You.



