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Abstract 
In functional magnetic resonance imaging, images of the brain are acquired as rapidly 

as physically possible to cover the necessary brain, but also to capture cognitive temporal 
dynamics. Techniques for in-plane acceleration such as SENSE and GRAPPA have 
greatly contributed to decreasing image scan time. Newer simultaneous multi-slice 
(SMS) methods have taken a different approach by accelerating through-plane to 
decrease scan time. Two multi-slice aliasing techniques are examined for through-plane 
SMS acceleration. 
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1. Introduction 

 
In functional magnetic resonance imaging (fMRI), an image volume is generally 

formed from slices of images. The measured data by the MRI machine for a slice are 
spatial frequencies (k-space). It generally takes up to two seconds to measure full arrays 
of data for all of the slices that form the volume image. A tremendous amount of work 
has been and is currently being devoted to accelerating the number images acquired per 
unit of time since its initial postulation (1). Significant advances in accelerating image 
acquisition have been made by subsampling k-space and skipping lines in-plane (IP). 
When lines of k-space are skipped, the reconstructed images are aliased. Two major 
approaches have been developed to unalias IP aliased images. The first SENSitivity 
Encoding (SENSE) operates on aliased images (2), while the second GeneRalized 
Autocalibrating Partial Parallel Acquisition (GRAPPA) operates on subsampled k-space 
(3). More recently, efforts have been aimed at applying IP techniques through-plane (TP). 
In TP also known as simultaneous multi-slice (SMS), several slices are simultaneously 
magnetized and the k-space data that is measured is the sum of the k-space data that 
would arise from each of the multiple slices (4-6). Most SMS techniques, rely upon 
multiple coils in order to separate multiply aliased slices. Recently the Separation of 
Parallel Encoded Complex-valued Slices (SPECS) model was introduces to separate two 
or more slices from a single channel coil (7,8). When the SPECS model was introduced, 
it utilized Controlled Aliasing in Parallel Imaging Results in Higher Acceleration 
(CAIPIRINHA) shifts to decrease the similarity between the overlapping slices. An 
alternative to decrease the similarity between overlapping slices is to use Hadamard sign 
encoding of the slices to be aliased. After CAIPIRINHA shift and Hadamard sign 
encoded images are separates, complex-valued images result, and hence complex-valued 
activation is computed (9-10). Here, CAIPIRINHA shift and Hadamard sign encodings 
along with their separations are examined within the SPECS SMS framework (11-12).  

 
2. Background 

 
In SMS MR imaging, a single slice image is measured that consists of the sum of the 
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true individual slice images plus additive measurement error. The goal of SMS image 
encoding and reconstruction is to measure one image, and from this one image separate 
two or more images. If the images that are aliased are too similar, then it is more 
challenging to separate them. Therefore, it is desirable to maximize the difference 
between the aliased images. The CAIPIRINHA approach that has been utilized with 
some success is to add magnetization to each slice so that they individually appear shifted 
in the field-of-view (FOV). Another approach that is gaining interest is to Hadamard 
encode the individual images, that is, add magnetization to or subtract it from each image 
before they are aliased. When these individual images are aliased, then the similar voxels 
are in different locations due to the shifting or have different signs due to Hadamard 
encoding. 

 
2.1 CAIPI Shift Encoding 

 

To illustrate and explain the CAIPIRINHA FOV shifting, consider an example where 
NS=4 slices are aliased and a single slice image measured. With the four slices, each can 
be shifted within the FOV by either A: (0/4)FOV, B: (1/4)FOV, C: (2/4)FOV, or D: 
(3/4)FOV. With each of these NS=4 possible shifts, there are NS=4 basic patterns of 
shifting as illustrated in Figure 1 (neglecting measurement error). We can think of each of 
the patterns as blocks in a Latin square block design signifies by the capital letter in the 
lower right area in the individual images. At any given time point, one of these patterns 
of aliasing can be selected and measured. 

 

 
Figure 1. CAIPIRINHA shifted images in aliasing process. 
 
The goal of SMS is to get more than one image per unit time. We can obtain NS=4 

slices in one time measurement (pattern 1 in Figure 1a) then separate them for an 
acceleration factor of A=4, or obtain NS=4 slices in Nacq=2 time measurements (patterns 1 
and 2 in Figures 1a and 1b) then separate them for an acceleration factor of A=2, or 
obtain NS=4 slices in Nacq=3 time measurements then separate them for an acceleration 
factor of A=4/3. Obtaining NS=4 slices in Nacq=4 time measurements then separating 
yields an acceleration factor of A=1, which is no increase in image acquisition. 

In Figure 1, denote the observed aliased voxel value at time image t in voxel location l 
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as yt,l and the true voxel value in slice j in voxel location l as βjl. If we examine shift 
pattern 1 in Figure 1a, we can see that we have measurements at time t=1 in location l=1 
that is y1,1 = β1,1+β2,4+β3,3+β4,2, in location 2 that is y1,2 = β1,2+β2,1+β3,4+β4,3, that is y1,3 = 
β1,3+β2,2+β3,1+β4,4, that is y1,4 = β1,4+β2,3+β3,2+β4,1. Similarly, upon examining shift pattern 
2 we have y2,1 = β1,4+β2,3+β3,2+β4,1, in location 2 that is y2,2 = β1,1+β2,4+β3,3+β4,2, that is y2,3 

= β1,2+β2,1+β3,4+β4,3, that is y2,4 = β1,3+β2,2+β3,1+β4,4. We can gather the measured values at 
the NSNacq=8 locations in the Nacq=2 images in vector form in terms of the true values as 
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In Equation 1, we can see that we have a system of NSNacq=8 equations with sixteen 

unknowns. If we includes all NS=4 patterns or blocks in Equation 1 then we would have 
2
SN =16 equations and 2

SN =16 unknowns, but no image acceleration. An acceleration of 
A=2 will be utilized to compare CAIPIRINHA shift to Hadamard sign encoding, thus 
making this a fractional block design. Equation 1 for CAIPIRINHA shift encodings can 
be written as yC=XCβ+εC, where measurement error has been included. The SPECS model 
will be described in Section 3 to remedy the underdetermined system so that the aliased 
images can be properly separated. 

 
2.2 Hadamard Sign Encoding 

 
Similar to the aliased images via CAIPIRINHA shifts, images can be aliased with 

Hadamard sign encoding. To illustrate and explain the Hadamard encoding, consider an 
example where NS=4 slices are aliased and a single slice image measured. With the NS=4 
slices, each can be assigned a sign of “+” or “-” before aliasing. With the sign 
assignment, there are NS=4 spossible ways that we can produce orthogonal linear 
combinations as illustrated in Figure 2 (neglecting measurement error). We can think of 
each of the patterns as orthogonal contrasts or blocks in an experimental design. At any 
given time point, one of these patterns of aliasing can be selected and measured. 
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Figure 2. Hadamard sign encoded images in aliasing process. 
 
As with the CAIPIRINHA shifting, the goal with Hadamard encoding is to get more 

than one image per unit time. We can obtain NS=4 slices in Nacq=1 time measurement 
(pattern 1 in Figure 2a) then separate them for an acceleration factor of A=4, or obtain 
NS=4 slices in Nacq=2 time measurements (patterns 1 and 2 in Figures 2a and 2b) then 
separate them for an acceleration factor of A=2, or obtain NS=4 slices in Nacq=3 time 
measurements then separate them for an acceleration factor of A=4/3. Obtaining NS=4 
slices in Nacq=4 time measurements then separating yields an acceleration factor of A=1, 
which is again no increase in image acquisition. 

In Figure 2, denote the observed aliased voxel value at time image t in voxel location l 
as yt,l and the true voxel value in slice j in voxel location l as βjl. If we examine shift 
pattern 1 in Figure 2a, we can see that we have measurements at time t=1 in location l=1 
that is y1,1 = β1,1+β2,1+β3,1+β4,1, in location 2 that is y1,2 = β1,2+β2,2+β3,2+β4,2, that is y1,3 = 
β1,3+β2,3+β3,3+β4,3, that is y1,4 = β1,4+β2,4+β3,4+β4,4. Similarly, upon examining shift pattern 
2 we have y2,1 = β1,1‒β2,1+β3,1‒β4,1, in location 2 that is y2,2 = β1,1‒β2,1+β3,1‒β4,1, that is y2,3 = 
β1,3‒β2,3+β3,3‒β4,3, that is y2,4 = β1,4‒β2,4+β3,4‒β4,4. We can gather the measured values at the 
NSNacq=8 locations in the Nacq=2 images in vector form in terms of the true values as 
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Similar to Equation 1, in Equation 2 we can see that we have a system of NSNacq=8 

equations with 2
SN =16 unknowns. If we includes all NS=4 patterns or blocks in Equation 

2 then we would have 2
SN =16 equations and 2

SN =16 unknowns, but no image 
acceleration. An acceleration of A=2 will be utilized to compare CAIPIRINHA shift to 
Hadamard sign encoding, thus making this a fractional block design. Equation 2 for 
Hadamard sign encodings can be written as yH=XHβ+εH, where measurement error has 
been included. As previously noted, the SPECS model will be described in Section 3 to 
remedy the underdetermined system so that the aliased images can be properly separated. 
 

3. Methods 

 
Since we can’t separate the images solely based upon the data that we have from the 

experiment as in Equations 1 and 2, we need additional information. One way to obtain 
additional image information is to acquire complete nonaliased calibration images of the 
slices within each aliased image and utilize these for image separation. The process to 
separate the aliased images is similar for both CAIPIRINHA shift and Hadamard sign 
aliased images. 

In order to increase identifiability in Equations 1 and 2 that have eight equations and 
sixteen unknowns, additional rows are added as measured data, as design matrix rows, 
and as measurement error. Let yA = yC or yH be the measured aliased image data, XA = XC 
or XH be, the aliasing design matrix, and εA = εC or εH be the additive measurement error. 
The goal of the SPECS model (7,8) is to add additional image information to obtain 
identifiability. The previous illustrative description of the CAIPIRINHA shift and 
Hadamard sign encoding processes needs to be utilized for each of the real and imaginary 
parts of the complex-valued data. The additional information needed in order to obtain 
identifiability in Equations 1 and 2 is obtained from full nonaliased prior calibration 
images of the same slices to be aliased. 

Consider a time series of length m fully sampled calibration images for the NS=4 slices. 
At time point t, a single voxel in slice z , z =1,….,NS=4 of the calibration images is 
denoted by νzt=(μRz+iμIz)+(ηRz,t+iηIz,t), where μRz and μIz, are the true real and imaginary 
components. While ηRz,t and ηIz,t denote the real and imaginary components of the 
measurement error, with a mean of E(ηRt

T,ηIt
T)T=0 and a covariance of 
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cov(ηRt
T,ηIt

T)T=σ2INS. The mean of the m calibration images for a voxel values in the same 
location across NS slices is written into a single real-valued vector that is the 
concatenation of each of the real and imaginary vectors as 
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where 

 
v

R
 and 

 
v

I  denote NS×1 vectors with the mean real and imaginary component of 
the NS voxel values. The mean calibration vectors v are incorporated into the SPECS 
model with an artificial Hadamard aliasing scheme. 

The aliasing process outlined in Equations 1 and 2 represents an underdetermined 
system of NacqNS =8 equations and 2

SN =16 unknowns. To make the system of equations 
in Equations 1 and 2 solvable, at least (NS-Nacq)NS =8 rows need to be added to both XA 
and yA in order to increase the rank to 2

SN =16. The SPECS approach for NS=4 aliased 
slices first constructs an (NS-Nacq)×NS artificial aliasing matrix C, consisting of the 
remaining (NS-Nacq) orthogonal Hadamard ways (aliasing patterns) the true voxel values 
in the NS slices could be aliased. Then the coefficients C are incorporated into the model 
by denoting the block of NS columns in XA that correspond to slice j by XAj, the jth column 
of the matrix C by Cj, and forming the artificial aliasing matrix, 
CA=[X1C1,…,XNSCNS]. To complete the SPECS model, the vectors R  and I  are not 
the average of all m calibration images, but when separating each Nacq patterns, a random 
sample of NSNacq calibration images is selected to be retrospectively averaged and 
Hadamard sign encoded.  

Both observed aliased voxel values yAR and yAI along with the artificially aliased mean 
voxel values R  and I  are combined and represented by 
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In Equation 4, the added error vector consists of the measurement error of the observed 
aliased voxels εR and εI along with the measurement error of the artificially aliased mean 
of sampled calibration images CAηR and CAηI. It can be seen that the images can be 
separated with a least squares estimator for the true images in the usual way as  
 

1ˆ ( ' ) 'X X X y  ,                                                                                                               [5] 
 
where X=[XA;CA] and y is as defined in Equation 4. Taking a closer look at the separated 
images in Equation 5, the mean vector and covariance matrix can be determined. With a 
little algebra, the expected value and the covariance matrix for ̂  can be determined to 
be  
 

ˆ( )E                                                                                                                            [6] 
 
and 
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2
ˆcov( )

S acqN N


                                                                                                             [7] 

 
for both encoding schemes. The mean of the separated images is the true image values 
and the separated images and the separated images are uncorrelated with appropriately 
reduced variance. These are very desirable properties for the separated images. 
Correlated images, referred to as signal leakage, is a pervasive problem in SMS fMRI. 

 
4. Results 

 
To evaluate and compare the CAIPIRINHA shift and Hadamard sign image encoding 

schemes, simulated data is generated. A T2* weighted 96×96 digital phantom is generated 
with 720 TRs for NS=4 slices. For the optimal separation, a unique magnitude and phase 
is included in each slice, with an average signal-to-noise ratio (SNR), mean divided by 
standard deviation of SNR = 50, and with a contrast-to-noise ratio (CNR) of 1/2. One 
voxel region in each slice, with the locations rotating clockwise, has a block design task 
simulated consisting of 16 seconds of non-task followed by 22 replications of 16 seconds 
of task then 16 seconds of non-task. The block design task was added to its magnitude 
with a contrast to noise ratio (CNR), task amplitude of CNR = 1/2. In both models the 
initial m=16 non-task portion of the time-series is used for the calibration images in the 
slice separation and the remaining n=704 images separated. 
 
4.1 CAIPIRINHA Shift Encoding 

 
The image separation process in Equation 5 with measured CAIPIRINHA shift aliased 

images as described in Equation 1 was applied to the simulated data. Results for an 
acceleration factor A=2 are presented in Figure 3. The magnitude of the mean separated  

 
Figure 3. Results for CAIPIRINHA shift encoding separation. a) Magnitude of mean, b) 
Phase of mean, and c) Variance.  
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images are presented in Figure 3a and the phase of the mean image are in Figure 3b. 
Although not shown, there is no visual difference between the true magnitude and phase 
image values and the magnitude and phase of mean images in Figures 3a and 3b. The 
variances of the separated images are presented in Figure 3c. 
 

 
Figure 4. Results for CAIPIRINHA shift encoding separation. a) Magnitude square 
correlation between center voxel in slice 1 and voxels in other slices, b) Magnitude 
square correlation between center voxel in slice 2 and voxels in slices 2-4, c) Magnitude 
square correlation between center voxel in slice 3 and voxels in slices 3-4, d) Magnitude 
square correlation between center voxel in slice 4 and voxels in slice 4. 
 

One if the main issues with SMS encoding and separation is that there is often 
correlation between the voxels in the separated slices for the same (x,y) location. The 
magnitude square correlation from the complex-valued separated images is presented in 
Figure 4. In Figure 4a are the correlations between the center voxel in slice 1 and the 
others in slice 1 through slice 4. In Figure 4b are the correlations between the center 
voxel in slice 2 and the others in slice 2 through slice 4. In Figure 4c are the correlations 
between the center voxel in slice 3 and the others in slice 3 and slice 4. In Figure 4d are 
the correlations between the center voxel in slice 4 and the others in slice 4. What can be 
seen in Figure 4 is that there is no significant correlation between the separated slices. 
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Since the separated images are complex-valued, complex-valued fMRI activation was 
computed (9). The results for A=1 are presented in Figure 5a, for A=2 in Figure 5b, and 
for A=4 in Figure 5c. The activation for A=2 in Figure 5b appears similar to the activation 
for A=1 in Figure 5a. The activation for A=4 appears to have signal leakage between the 
slices, meaning that the activation is not placed in the correct slice. 
 

 
Figure 5. Complex-valued activation from CAIPRINHA shift separated images. a) 
Acceleration A=1, b) Acceleration A=2, c) Acceleration A=4.  
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4.2 Hadamard Sign Encoding 

 
The image separation process in Equation 5 with measured Hadamard sign aliased 

images as described in Equation 2 was applied to the simulated data. Results for an 
acceleration factor A=2 are presented in Figure 6. The magnitude of the mean separated 
images are presented in Figure 6a and the phase of the mean image are in Figure 6b. 
Although not shown, there is a small visual difference between the true magnitude and 
phase image values and the magnitude and phase of mean images in Figure 6a and 6b. 
The means of the separated images for the Hadamard sign encoding is slightly darker. 
The variance of the separated images are presented in Figure 6c. 
 

 
Figure 6. Results for Hadamard sign encoding separation. a) Magnitude of mean, b) 
Phase of mean, and c) Variance. 
 

As previously noted, one if the main issues with SMS encoding and separation is that 
there is often correlation between the voxels in the separated slices for the same (x,y) 
location. The magnitude square correlation from the complex-valued separated images is 
presented in Figure 7. In Figure 7a are the correlations between the center voxel in slice 1 
and the others in slice 1 through slice 4. In Figure 7b are the correlations between the 
center voxel in slice 2 and the others in slice 2 through slice 4. In Figure 7c are the 
correlations between the center voxel in slice 3 and the others in slice 3 and slice 4. In 
Figure 7d are the correlations between the center voxel in slice 4 and the others in slice 4. 
What can be seen in Figure 7 is that there is no significant correlation between the 
separated slices. 
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Since the separated images are complex-valued, complex-valued fMRI activation was 
computed (9). The results for A=1 are presented in Figure 8a, for A=2 in Figure 8b, and 
for A=4 in Figure 8c. The activation for A=2 in Figure 8b appears similar to the activation 
for A=1 in Figure 8a. The activation for A=1, 2, and 4 appears very similar and all 
extremely good with no signal leakage between the slices unlike what was seen with the 
CAIPRINHA shift aliased images. 

 
Figure 7. Results for Hadamard sign encoding separation. a) Magnitude square 
correlation between center voxel in slice 1 and voxels in other slices, b) Magnitude 
square correlation between center voxel in slice 2 and voxels in slices 2-4, c) Magnitude 
square correlation between center voxel in slice 3 and voxels in slices 3-4, d) Magnitude 
square correlation between center voxel in slice 4 and voxels in slice 4. 
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Figure 8. Complex-valued activation from Hadamard sign separated images. a) 
Acceleration A=1, b) Acceleration A=2, c) Acceleration A=4.  

 
 

5. Discussion and Conclusions 

 
It was theoretically demonstrated that the SPECS model separates CAIPRINHA shift 

and Hadamard sign encoded aliased images with the same mean and diagonal covariance 
matrix. However, simulation results indicate that the separated images after CAIPRINHA  
shift aliasing as compared to Hadamard sign aliasing produces better mean images, 
higher  variance in the separated images, and higher through slice correlation. Also the 
simulation results indicate that the separated images after Hadamard sign aliasing as 
compared to CAIPRINHA shift aliasing produces mean images that are biased darker, 
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lower variance in the separated images, and negligible through slice correlation. These 
results are somewhat counter to the theoretical properties in Equations 6 and 7. 
According to Equations 6, we would expect the mean images from both types of aliased 
images to be the same and not statistically different from the true values, which they are 
not. Further, according to Equation 7, we would expect the variances from the two 
aliasing techniques to be the same and equal to 1/(NSNacq), which they are not. Finally, we 
would also expect according to Equation 7 that the correlation between the separated 
slices would be the same for both aliasing methods would be the same and negligible, but 
it is not. It is possible that there was some subtlety overlooked when deriving the results 
in Equations 6 and 7 or that there was something overlooked when performing the 
simulation. 

Since experimentally it is difficult to reconstruct a CAIPIRINHA aliased image due to 
an imperfect Nyquist ghost correction and not a Hadamard aliased image, and because in 
this simulation the Hadamard aliased images did not yield correlation between the slices, 
we recommend that Hadamard encoding be utilized for SMS aliasing. 
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