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INTRODUCTION

There have been a number of excellent studies that have discussed the basic properties of

noise in magnetic resonance (MR) imaging [1–12]. Removing noise in magnetic

resonance images is important for improving the visualization of phase images and

for the quantification of, for example, parametric maps such as the T2 map [13–19].

Once noise is removed, it is also possible to revisit the data and extract boundary

information, for instance. The simplest and most effective means to date to remove noise

is to use a simple threshold on the magnitude images, which is to set voxels whose

intensity fall below a certain threshold to zero. However, this approach has its

limitations and can lead to the loss of signal information in the image and an incomplete

removal of noise. In this chapter, we show that it is possible to achieve ‘‘better’’ results

using information from both magnitude and phase images by applying a connectivity

constraint [20, 21] or using a local neighborhood of voxels [22]. The motivation behind

this work stems from susceptibility weighted imaging (SWI) [23] where it has been

found that the tissue contrast was enhanced and the noise evidently reduced throughout

Susceptibility Weighted Imaging in MRI, By E. Mark Haacke and J€urgen R. Reichenbach
Copyright � 2011 by Wiley-Blackwell

577



the image [24] using both magnitude and phase data. This work builds upon the feature

of SWI to create a rapid means to remove as much noise from the image with as little

effect on the object as possible.

We are interested in the noise behavior for the magnitude and phase images, specifically

in complex-valued MR images. We assume that the original real and imaginary channels

generate independent noise that is Gaussian distributed with mean zero and standard

deviation s.
With the Gaussian distributed noise assumption, the real and imaginary channels are

yR¼A cos(u) þ hR and yI¼A sin(u) þ hI, where yR and yI are the observed measure-

ments for the real and imaginary parts, hR and hI are N(0, s2) error terms for the real

and imaginary parts, and A and u are the noise-free (population) magnitude and phase.

The joint probability distribution of a voxel’s bivariate real and imaginary observation

(yR, yI) is

pðyR; yIÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp �ðyR�A cos uÞ2
2s2

" #
� 1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �ðyI�A sin uÞ2

2s2

" #
ð31:1Þ

A change of variable can be performed from rectangular coordinates in equation (31.1) to

polar coordinates, and the joint probability distribution of a voxel’s bivariate observed

magnitude and phase (M, w) is

pðM;fÞ ¼ A

2ps2
exp � 1

2s2
M2 þA2�2AM cosðf�uÞ� �� �

ð31:2Þ

The (marginal) distribution of the magnitude pMðMÞ can be found by integrating equa-

tion (31.2) with respect to w to obtain the Rician distribution [4–6]:

pMðMÞ ¼ M

s2
e�ðM2 þA2Þ=2s2

I0
A �M
s2

� �
ð31:3Þ

where I0 is themodified zeroth-orderBessel function of the first kind [1].WhenA¼ 0,which

corresponds to areas where there is only noise and no signal, the Rician distribution in

equation (31.3) collapses to the Rayleigh distribution [2, 3]:

pMðMÞ ¼ M

s2
e�M2=2s2 ð31:4Þ

The mean of the Rayleigh distribution in equation (31.4) is s
ffiffiffiffiffiffiffiffi
p=2

p
and the variance is

sð2�p=2Þ.
For a low signal to noise ratio (SNR), that is, SNR� 1 where SNR¼A/s, the Rician

distribution is far from being Gaussian. On the other hand, it starts to approximate a

Gaussian distribution for SNR� 3:

pMðMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e� M� ffiffiffiffiffiffiffiffiffiffiffi
A2 þs2

pð Þ2=2s2 ð31:5Þ

with a mean of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þs2

p
and variance of variance s2.
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The phase (marginal) distribution p(w) can be found by integrating equation (31.2) with
respect to M to obtain the phase marginal (pham) distribution [5, 10]

pðwÞ ¼ 1

2p
exp � A2

2s2

� �
1þ A

ffiffiffiffiffiffi
2p

p

s
cosðw�uÞexp A2cosðw�uÞ

2s2

� �
F

A2cosðw�uÞ
s

� �	 

ð31:6Þ

whereK is the standard normal cumulative distribution function. This pham distribution in

equation (31.6) was described in detail by Rowe in the context of fMRI [25].

When there is signal present, the phase noise distribution in the image can be considered

as a Gaussian distribution with mean u¼ 0 and standard deviation sphase. When SNR� 1,

the standard deviation is sphase¼s/A, and the distribution of the phase is

pobjectðfÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p s=Að Þ2

q exp
�ðf�uÞ2
2 s=Að Þ2

 !
ð31:7Þ

As is obvious in equation (31.7), the standard deviation of the phase is [13]

sphase ¼ 1

SNR
ð31:8Þ

where the units forsphase are in radians. In the phase image, when there is only noise, A¼ 0,

and the distribution of the phase is the uniform distribution

pnoiseðfÞ ¼
1

2p
; if�p < f < p

0; otherwise

8<
: ð31:9Þ

The mean of the phase in equation (31.9) is zero and the variance is p2/3.
Our aim is to exploit the noise presence in both phase and magnitude images so as to

provide a more powerful thresholding technique. The complex threshold method (CTM)

and the magnitude and phase threshold (MAPHT) method for removing noise voxels in

complex-valued images are described in detail in the following.

THE CTM METHOD

The CTM consists of two steps. First, the magnitude image and the phase image are

thresholded byms0 and nsphase, wherem and n are real and positive numbers, respectively.

Then, through voxel connectivity, both false positive (the error of leaving noise voxels) and

false negative (the error of eliminating signal voxels) rates are further minimized. A false

negative error is called a Type I error and a false positive error is called a Type II error. More

specifically, we define these errors as

Probability of Type I error ¼ total number of signal pixels removed

total number of signal pixels
ð31:10Þ

Probability of Type II error ¼ total number of noise pixels left

total number of noise pixels
ð31:11Þ

The processing algorithm is outlined graphically in Figure 31.1 and in detail below.
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Magnitude Threshold Step

Thresholding is applied to the magnitude image and a binary noise-removing mask image

M0 is created. This operation can be represented as

Tm : M0ðx; yÞ ¼ 0; if Mðx; yÞ < ms0

1; if Mðx; yÞ � ms0

�
ð31:12Þ

where M is the magnitude MR image, m is the magnitude threshold, s0 is the standard

deviation of noise as estimated from the image, and Tm is the threshold operator.
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FIGURE 31.1 Flowchart of the CTM. Thresholds are applied to magnitude and phase images, and a

mIP noise-removing mask is generated. A connectivity algorithm is run on the magnitude image and the

noisemask is thencorrectedby restoring recoverednon-noiseobject voxels.Connectivity is runagain, but

this time on the phase image to create a final noise mask that is then used to filter noise voxels from both

magnitude and phase images.
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Phase Threshold Step

The useful information in the phase images is exploited by a phase thresholdmethod. For the

phase image f, a binary noise-removing mask f0 is created by admitting all phase values

between ð�nsphaseÞ and ðnsphaseÞ. Here, sphase is the sample standard deviation of noise in

the phase image estimated from the SNR in the magnitude image (see equation (31.8)). Let

fðx; yÞ be the phase image. Then the mask f0 is determined as

Tf : f0ðx; yÞ ¼ 0; ifjfðx; yÞj > nsphase

1; otherwise

(
ð31:13Þ

where Tw is the phase threshold operator.

Combined Magnitude and Phase Thresholds

By combiningmagnitude and phase thresholds, it is possible to eliminate more noise voxels

than when either method is used independently. This is accomplished by taking the

minimum intensity projection (mIP) n0ðx; yÞ of the magnitude mask M0ðx; yÞ and phase

mask f0ðx; yÞ as follows:

n0ðx; yÞ ¼ 0; if eitherM0ðx; yÞ ¼ 0 or f0ðx; yÞ ¼ 0

1; otherwise

(
ð31:14Þ

The effect of thresholding with the distributions of both the magnitude and the phase is

shown in Figure 31.2. As seen in Figure 31.2, these thresholds still remove information from

the object (Type I error) and fail to remove some noise voxels (Type II error).

A short remark about Figure 31.2 is in order. When only the phase threshold is

applied, Type I error can result for any value of the signal where the phase exceeds the

threshold value. If both thresholds are applied, the dominant source of Type I error is

from those true points to the left of the threshold being thrown out. Similarly, for Type II

error, the phase-only threshold can still allow points to the left of the magnitude threshold

to contribute to the noise being counted as part of the object. If both thresholds are

applied, the dominant source of Type II error is from those noise points to the right of the

magnitude threshold.

CONNECTIVITY

To reduce Type I error, we propose adding a local connectivity algorithm. Voxel connec-

tivity describes a relation between the voxel under investigation and the surrounding

neighborhood of voxels. Let p be a voxel with the coordinates (x, y), then its 8-

neighborhood N8(p) is defined as all those voxels that are immediate neighbors of p. The

connectivity algorithm is applied only to those points that were discarded by the thresh-

olding procedure. For the magnitude image, it is applied under the following conditional

guideline: If the number of voxels connected to p in N8(p) of the magnitude image

exceeding themagnitude thresholdms0 is greater than or equal to some integer number tM,
then do not discard p. Similarly, for the phase image, if the number of voxels connected to p

inN8(p) of the phase image exceeding the phase threshold nsphase is greater than or equal to

CONNECTIVITY 581

DanRowe
Cross-Out

DanRowe
Typewritten Text

DanRowe
Sticky Note
retaining

DanRowe
Sticky Note
Marked set by DanRowe



some integer number tP, then do not discard p. We refer to these two connectivity operators

as Cm and Cw, respectively. Then the combined thresholded mask n0ðx; yÞ is

modified to n0mðx; yÞ ¼ Cmðn0ðx; yÞÞ and this in turn is modified according to

n0mfðx; yÞ ¼ Cfðn0mðx; yÞÞ.

Type I error by both magnitude
and phase threshold

# of voxels

Signal

Type I error

Type II error

Voxel intensity

Noise

Voxels removed
by phase
threshold

Potential Type I error by
phase threshold

Type II error by both magnitude
threshold

Type II error by
threshold

FIGURE 31.2 CTM bimodal curve showing the Rayleigh distribution for the noise (left distribution) and

Riciandistribution for thesignal (right distribution). Thebold cutoff line shows themagnitude threshold,which

removesall thenoise tothe leftof the threshold.Theregionunder the innercurve in thenoisemoderepresents

the voxels removed by the phase threshold. In the left insert, the region shown in dark gray represents Type I

error introduced by the phase threshold, while the light gray region represents the conventional Type I error

from the magnitude threshold. In the right insert, the light gray region represents Type II error from the

magnitude threshold while the dark gray region represents Type II error from the phase threshold.
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Applying CTM Connectivity for Spike Removal and Hole Restoration

As a final step, a simple spike removal and hole restoration algorithm is applied to reduce

Type I and Type II errors. Since most of the noise has already been removed with the

connectivity technique, the remaining points that constitute Type II error are predominantly

single noisy points, whereas Type I error constitutes a few single voxels that are lost along

the edges of the object. The spike removal and hole restoration algorithm works on these

single voxels to remove or restore them. The algorithm works as follows: every voxel’s

neighborhood in the noise-reduced image is examined for connected voxels. If themagnitude

connectivity shows that there is no neighboring voxels that are connected to the one under

consideration, then it most likely is noise and should be removed. If the surrounding voxels

are all signal, the examined voxel should be regarded as signal as well.

The MAPHT Method A local statistic based on the measured signal at the voxel of

interest and its neighbors is defined. This statistic is a function of one or more random

variables that does not depend on any unknown parameter and it has a distribution that

approximates an F distribution [22]. Monte Carlo simulations are performed to determine

critical values for this distribution, which is used to perform a statistical hypothesis test by

thresholding [29, 30] to identify voxels containing predominantly noise.

With a sample of n independently and identically distributed measurements (magnitude

Mi and phase fi, i¼ 1, . . ., n) from equation (31.1), the joint distribution of the measure-

ments viewed as a function of the magnitude, phase, and error variance is the likelihood

function:

LðA; u;s2Þ ¼ 2ps2
� ��n

Yn
i¼1

Mi

" #
exp � 1

2s2

Xn
i¼1

M2
i þA2�2AMicosðfi�uÞ� �( )

ð31:15Þ

To identify voxels that contain predominantly noise, MAPHT performs a hypothesis test

to determine whether the magnitude and the phase are statistically different from zero. A

formal statistic can be derived from equation (31.15) and a joint statistical hypothesis test

can be performed on the population magnitude and phase parameters.

A hypothesis test is performed to separate voxels that contain predominantly noise

from those that contain predominantly signal. In hypothesis testing, there are four

possible outcomes as depicted in Table 31.1. Note that the MAPHT Type 1 is similar to

the CTM Type II (equation (31.10)) and that the MAPHT Type 2 is similar to the CTM

Type I (equation (31.11)). Correct decisions are made in the top right and bottom left

cells of Table 31.1. In the top left shaded cell, a Type 1 error is made in which the null

hypothesis is rejected when it is true. The probability of a Type 1 error is the false

positive rate denoted by a. In the bottom right shaded cell, a Type 2 error is made in

which the null hypothesis is not rejected when it is false. The probability of a Type 2

TABLE 31.1 Four Outcomes from a Hypothesis Test

H0 True H0 False

Reject H0 Type 1 error (a) Correct decision (1�b)

Do not reject H0 Correct decision (1�a) Type 2 error (b)
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error is the false negative rate denoted by b. These two error rates will be examined in

more detail later.

Voxels will be thresholded by testing the null hypotheses H0: A¼ 0, u¼ 0 versus the

alternative hypothesis H1: A> 0, u 6¼ 0. Maximum likelihood estimators (MLEs) of the

magnitude, phase, and noise variance under the two hypotheses can be computed from

the likelihood function [15] by simply setting the partial derivatives of the likelihood

function with respect to the sought-after parameters to zero and solving the resulting

equations. Under the constrained null hypothesis H0: A¼ 0, u¼ 0, the MLEs for the

magnitude, phase, and noise variance are

~A ¼ 0; ~u ¼ 0; ~s2 ¼ 1

2n

Xn
i¼1

y2Ri þ y2Ii
� � ð31:16Þ

while under the unconstrained alternative hypothesis H1: A> 0, u 6¼ 0, the MLEs are

~A ¼ �yRð Þ2 þ �yIð Þ2
h i1=2

; ~u ¼ tan�1
Xn
i¼1

yIi=
Xn
i¼1

yRi

" #
;

~s2 ¼ 1

2n

Xn
i¼1

y2Ri þ y2Ii
� �� 1

2
�yRð Þ2 þ �yIð Þ2

h i
ð31:17Þ

where �yR is the mean of the real channel measurements and �yI is the mean of the imaginary

channel measurements. These estimates in equations (31.16) and (31.17) are then inserted

back into the likelihood function in equation (31.15) and the ratio of null hypothesis

likelihood over alternative hypothesis likelihood is taken to form a likelihood ratio

statistic [27, 28]:

l ¼ Lð~A; ~u; ~s2Þ=LðÂ; û; ŝ2Þ ð31:18Þ

It is easily verifiable that the likelihood ratio statistic can be simplified to get

l ¼ ŝ2

~s2

� �n

ð31:19Þ

Finally, a statistic is formed by letting

F ¼ n 1�l1=n
 �

ð31:20Þ

According to equations (31.16) and (31.17), 0 < ŝ2 � ~s2. Thus, l1=n ¼ ŝ2=~s2 2 0; 1½ �,
which implies thatF 2 ½0; n�. For voxels containing predominantly noise, ŝ2 approaches ~s2

and F approaches zero. On the other hand, for voxels containing predominantly signal,

under the i.i.d. assumption of the measurements, it can be easily shown that ŝ2 approaches

zero and thusF approaches n. The hypothesis test onF statistic is then to determine a critical

value (threshold)Fa for a given significance levela (Type 1 error rate). Obviously, given the

same complex signal, as the error variance s2 increases, ~s2 increases and as a result F

increases and vice versa. In other words, the critical value for the F statistic should be a

monotone increasing function of the noise variance. This suggests bigger critical value for

an F statistic when the noise variance is large, as wewould expect. However, as described at
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the beginning of this chapter, the noise variance is a constant throughout an MR image,

which means that a single critical value can be applied to the whole image.

Upon substitution of equations (31.16), (31.17), and (31.19) into (31.20), we get [22]

F ¼
n �yRð Þ2 þ �yIð Þ2
h i

=s2

2

0
@

1
A, Pn

i¼1 y
2
Ri þ

Pn
i¼1 y

2
Ii

� �
=s2

2n

!
ð31:21Þ

It can be shown that n �yRð Þ2 þ �yIð Þ2
h i

=s2 and
Pn
i¼1

y2Ri þ
Pn
i¼1

y2Ii

	 

=s2 are x2 distributed

with degrees of freedom 2 and 2n, respectively. By dividing these two x2 distributed terms

by their degrees of freedom and taking the ratio, the result is generally a statistic that under

the null hypothesis has an F distribution with 2 and 2n degrees of freedom. However, this is

not true in this case. These two x2 statistics need be statistically independent in order for

this to be true. It can be shown that the correlation between these two statistics is 1=
ffiffiffi
n

p
. This

correlation approaches zero for large n and the F statistic becomes F distributed with 2

numerator and 2n denominator degrees of freedom. In nonfunctional MR imaging applica-

tions, there may be a very small number of repeated images if any. For the case where only

one single image is available, we take the voxel and its nearest neighbors as the sample set of

independent measurements. Still, n is small, and this asymptotic result does not hold. Thus,

critical values from the F distribution do not apply to this F statistic.

However, critical values for small n can be achieved by way of Monte Carlo simulation.

For a given level of significance (Type 1 error ratea), we rejectH0 (do not threshold voxel) if

the test statisticF is larger than the critical valueFa(2, 2n) and do not reject (threshold voxel)

if F is smaller than the critical value Fa(2, 2n). When thresholding the statistic image, an

adjustment for multiple comparisons such as with a Bonferroni corrected threshold can be

performed [29, 30].

To examine the theoretical Type 1 error and Type 2 error relationship, 20 million

independent simulated data values for n¼ 9 were created under the null hypothesis A¼ 0

and u¼ 0 and under the alternative hypothesis with A¼ (1, 3, 4, 5, 7.5, 10) and u¼ 0.

Normally distributed independent noise variates were generated for the real and imaginary

parts with a mean of zero and a variance of s2¼ 1. Figure 31.3 shows a histogram for the

million data sets whenA¼ 0 in light gray (unshaded) andA¼ 1 in dark gray colors (shaded).

FIGURE 31.3 MAPHT histograms when H0 is true (A¼0) and when H1 is true (A¼ 1). (a) magnitude,

(b) phase, and (c) F statistic. The vertical line in (c) is at F0.05(2, 18)¼2.81, which is the critical value for

a¼0.05. Note that there is not a clear separation between the two populations in either the magnitude or

phase, but there is better separation with the F statistics.
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Figure 31.3a presents the distribution of magnitudes, (b) presents the distribution of phases,

and (c) presents the distribution of F statistics. The black vertical line in Figure 31.3c is at

F0.05¼ 2.81, which is the critical value when a¼ 0.05. The false positive rate a is the

intersection area that is to the right of Fa. The light gray and intersection areas less than Fa

are the true positive rate 1�a. The dark gray and intersection areas to the right ofFa are the

true negative rate 1�b. The false negative rate b is the intersection and the dark colored

areas that are to the left of Fa. It can be seen in Figure 31.3 that as the null hypothesis false

positive ratea decreases, the alternative hypothesis false negative rateb increases. Also, we

note that the Monte Carlo results validated that the distribution of F values never exceeds n

regardless of A.

For each valueFa for the vertical linewith corresponding false positive rate areasa to the

right of it, we can determine the false negative rate b. A plot of a on the horizontal axis and

1�b on the vertical axis is called a receiver operating characteristic (ROC) curve [8]. This

curve can be made for each combination of A. In Figure 31.4 are the ROC curves for A¼ (3,

4, 5, 7.5, 10). Note that as A increases for a given false positive rate a, the true positive rate
(1�b) increases. AsA increases, the alternative hypothesis distribution (dark gray colored)

in Figure 31.3c becomes more peaked and shifts to the right. As the alternative hypothesis

distribution shifts to the right, the lower tail has less area below a given Type 1 error rate

1
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(a) (b)
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0
0 0.3
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A=3

0.7 1
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FIGURE 31.4 MAPHT ROC curves fromMonte Carlo simulation for A¼ (0, 3, 4, 5, 7.5, 10). Note that

as A increases, for a given false positive rate a, the true positive rate 1�b increases.
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(false positive ratea), and thus the Type 2 error rate (false negative rateb) decreases and the
true positive rate (1�b) increases.

To determine Monte Carlo theoretical critical values for the F statistic when n¼ 9,

5� 107 data values were generated. For each data value, the F statistic was computed. A

histogram of these F statistics for n¼ 9 is presented in Figure 31.5. These F statistics were

ordered and percentiles determined. Selected critical values are presented in Table 31.2 for

n¼ 9. Intermediate critical values can be reliably interpolated or extrapolatedwithFmax¼ n

when a¼ 0.

In conclusion, when the MAPHT method is applied to a complex MR image, an F

statistic is computed for all the voxels. A critical value is estimated for the whole image

using the results of the Monte Carlo simulations and the voxels from the signal free area

(noisemeasurements). TheF statistic map is then thresholded by the critical value. A binary

mask is produced inwhich the number 1 (unity) corresponds to anF statistic greater than the

critical value and the number 0 (zero) corresponds to anF statistic less than the critical value.

0 1 2 3 4 5

F

6 7 8 9

FIGURE 31.5 MAPHT histogram of F statistic for 5�107 data sets under null hypothesis for critical

values. Note that larger F values are less likely.

TABLE 31.2 MCMC F Statistic Significance Level and
Critical Values for n¼9

a Fa(2, 18)

0.05 2.8102

0.01 3.9377

0.001 5.1991

0.0001 6.1512

0.00001 6.8678

0.000001 7.3911

0.05/256/256 7.5627

0.05/352/512 7.5869

0.05/384/512 7.7051

0.05/512/512 7.7575

CONNECTIVITY 587



This binary mask is used to threshold the original magnitude and phase images. The

magnitude and phase of thresholded voxels are set to zero but for display the thresholded

voxel phase values are set to –p.

SIMULATED DATA

Simulated images were created to test the algorithm under controlled conditions for a circle

with a radius of 128 voxels embedded in a field of view of 512 voxels. Using a Monte Carlo

approach, the SNR in the circle was set to 3:1, 5:1, and 10:1 and the algorithm was tested in

each case. A ROC [12] was produced for each SNR value in each of the steps defined in

Figure 31.1.More specifically, the real and imaginary channels were created for a givenA (of

3, 5, or 10) asA cos(u) þ hR andA sin(u) þ hI, wherehR andhI areN(0,s
2) withs¼ 1 and

u¼ 0. Magnitude and phase data were then generated from this complex-valued data set.

HUMAN DATA

To test the CTM under low SNRwhen phase is expected to have a zero mean, spin echo data

were collectedwith a thin slice andhigh resolution at 1.5Ton a SiemensSonata. The imaging

parameters were field of view (FOV)¼ (192� 256mm2), matrix size¼ 384� 512, in-plane

resolution¼ 0.5� 0.5mm2, slice thickness¼ 2mm, TR/TE¼ 300ms/15ms, and flip angle

(FA)¼ 90	. To evaluate data with a bulk of the phase with zero mean but some structures

within phase different from zero, such as the veins, SWI [23] data of brain and leg were

collected.TheSWIbrainvolumewas acquired at 3 Ton aSiemensVerio. Imagingparameters

were FOV¼ 196� 256mm2,matrix size¼ 384� 512, in-plane resolution¼ 0.5� 0.5mm2,

slice thickness¼ 2mm, TR/TE¼ 29ms/20ms, and FA¼ 15	. The SWI leg data were

collected at 1.5 T on a Siemens Sonata. The imaging parameters were FOV¼ 150� 200

mm2, matrix size¼ 384� 512, in-plane resolution¼ 0.4� 0.4mm2, slice thickness¼ 1

mm, TR/TE¼ 21ms/10.2ms, and FA¼ 15	.

Simulated Data for CTM

TheROC curves formagnitude and phase thresholds (both separately and combined) for the

simulated circle are shown in Figure 31.6 without connectivity for an SNR of 3:1, and in

Figure 31.7 with connectivity for SNRs of 3:1, 5:1, and 10:1. In Figure 31.7, we can see that

both errors remain rather large for either the magnitude or the phase method with moderate

improvement when both are combined. In order to keep Type II error less than 0.1, the best

choice for m and n would be an m of 1.5 or 2 and an n of 2–2.5. Adding magnitude

connectivity dramatically reduces the Type I error (figure not shown). Minimum error is

achieved for amagnitude connectivity tMof 3. In order to keep Type II error less than 0.004,

the best choice form and nwould now be anm of 3 or 4 and an n of roughly 2–4. In this case,

all the Type I error will now be less than 0.003. Finally, adding phase connectivity reduces

Type I error even further to less than 0.0001 for a phase connectivity tP of 2 or 3 and a

magnitude connectivity tM of 2 or 3. In summary, the set of (tM, tP,m, n) that will work best

for an SNR of 3:1 could range from the minimum of the above choices (2, 2, 3, 2) to the

maximum of roughly (3, 3, 4, 4), with a Type I error of no more than 0.0001. Generally, the

lower the n is, the lower the Type II error will be.
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FIGURE 31.7 CTM Type I error versus Type II error for magnitude (tM¼ 2–4) and phase (tP¼2–4)

connectivity along with magnitude threshold (m¼ 0.5–4.5) and phase threshold (n¼1.0–5.5) values for

SNRof 3:1, 5:1, and 10:1. Choosing a Type II error less than 0.003 provides a broad range of possible (tM,
tP, m, n) values with very small Type I error.
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FIGURE 31.6 The CTM ROC results combining both magnitude (circles) and phase (triangles)

threshold operations (SNR 3:1). There is a clear reduction of Type I and Type II errors in the combined

operation (diamonds).
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For higher SNR, tMand tP can range from2 to 4,m from1.5 to 4, and n from2 to 4.Under

these circumstances, Type I error will remain less than 0.0004 and Type II error will remain

less than 0.006. For example, a (tM, tP,m, n) of (3, 3, 3, 3) fits in this domain for an SNR of

5:1 or higher. Running the spike removal and hole restoration once yields Type I and Type II

errors of 1.944� 10�5 and 0.0035, respectively, and running it twice yields errors of 0 and

0.005, respectively. For the higher SNR cases, a magnitude and phase connectivity of 4

performs the best. An example of the full processing as applied to the simulated circle for an

SNRof 3:1 is shown in Figure 31.8. The final Type I error is 0.000486 (25 voxels thrown out)

and the final Type II error is 0.002112 (445 voxels not thrown out), in good agreement with

the above predictions. Finally, the time to fully process one complex-valued image is just

under 3 s at a processing speed of 3.06GHz.

FIGURE 31.8 CTM results for simulated data: (a) original magnitude image, (b) original phase image,

(c) thresholded magnitude image with (tM, tP, m, n)¼ (3, 3, 2, 2), and (d) thresholded phase image with

(tM, tP, m, n)¼ (3, 3, 2, 2), showing no noise remaining outside the image. In this case, Type I error is

0.000486 (25 points are removed, mostly around the edges) and Type II error is 0.002112 (445 noise

voxels remain). The SNR in the magnitude image is 3:1.
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Human Data for CTM

Estimation of background noise was done by selecting a region of interest outside the brain

and using the voxel intensity values to obtain s0 as explained in the ‘‘Methods’’ section.We

used the approach of taking the mean of the noise (signal) outside the object as being 1.25

standard deviations of that on the inside [12]. First, we tested a set of 1.5 T spin echo

images with an SNR of 3:1 (Figure 31.9). The original magnitude image (Figure 31.9a) is

very noisy and consequently shows little contrast. Figure 31.9b shows the usual magni-

tude-only threshold with m¼ 2, and thus a great deal of noise still remains in the image.

Figure 31.9c uses the full CTM processing with (tM, tP, m, n)¼ (3, 3, 2, 4). Much of the

noise is now suppressed. Figure 31.9d shows a heavily filtered and averaged image

showing what the background contrast of this T1-weighted spin echo scan would look like

if there were enough SNR. (This was accomplished by using a 4� 4� 3 average filter).

Figure 31.9e is the original phase image and, as expected for a spin echo scan, the phase is

flat (except in the vicinity of vessels that may not be fully flow compensated). The final

masked phase image is shown in Figure 31.9f. It is nowmuch easier to adjust window level

settings and the image is beginning to look more like a conventional MR image.

FIGURE 31.9 CTM results for spin echo brain data. (a) Original magnitude image with a resolution of

0.5�0.5�2mm3 andSNRof 3:1. (b)Magnitude result after CTMfilter with (tM, tP,m, n)¼ (0, 0, 2, 0), that

is, magnitude threshold of m¼ 2 and no connectivity. (c) Magnitude result after CTM filter with (tM, tP, m,

n)¼ (3, 3, 2, 4). (d) Magnitude image after 4�4�3 average filter on original magnitude, resolution

decreased to 2� 2� 6mm3. (e) The original phase image and (f) phase result after CTM filter with (tM, tP,
m, n)¼ (3, 3, 2, 4).
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FIGURE 31.10 CTM results for SWI brain data with an SNR of roughly >30:1. (A1) Original

magnitude image of midbrain, (B1) original phase image of midbrain, (C1) magnitude result after CTM

filter with parameters (tM, tP, m, n)¼ (3, 0, 5, 5), that is, thresholding with m¼n¼5, in both magnitude

and phase, p¼ 5 in magnitude connectivity and no connectivity, of A1 and B1, (D1) phase result after

CTM filter with parameters with (tM, tP, m, n)¼ (3, 0, 5, 5). (A2) Original magnitude image of

thalamostriate area; (B2) original phase image of thalamostriate area; (C2) magnitude result after

CTM filter with parameters (tM, tP, m, n)¼ (3, 0, 5, 5) of A2, B2; (D2) phase result after CTM filter with

parameters (tM, tP, m, n)¼ (3, 0, 5, 5) of A2, B2. (A3) Original magnitude image of motor cortex area;

(B3) original phase image of motor cortex area; (C3) magnitude result after CTM filter with parameters

(tM, tP, m, n)¼ (3, 0, 5, 5) of A3, B3; (D3) phase result after CTM filter with parameters (tM, tP, m, n)¼
(3, 0, 5, 5) of A3, B3.
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Another example in the human brain is shown from an SWI data set at 3 T (Figure 31.10).

Three slices are chosen, representing themidbrain (Figure 31.10A1 and B1), thalamostriate

area (Figure 31.10A2 and B2), and motor cortex area (Figure 31.10A3 and B3). The SNR is

very good, above 30:1, in the original magnitude image (Figure 31.10A1–A3). Thus, the

CTM filtered magnitude result does not have much change with the original input

(Figure 31.10C1–C3). The SWI filtered phase image, however, is fairly uniform except

for the phase variations caused by air/tissue interfaces at the top (Figure 31.10B1 and B2).

Phase aliasing or wrapping artifacts can be seen clearly (Figure 31.10B1). First, a threshold

value of m¼ n¼ 5 on magnitude and phase is applied to keep most of the data inside the

FIGURE 31.10 (Continued ).
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brain. To delete most of the spike or islands of noise, a magnitude connectivity of tM¼ 3 is

used. No phase connectivity is run in this example since the spike removal part was run. In

the resulting processed phase image, the noise outside brain has been discarded successfully

without sacrificing signal loss from within the brain (Figure 31.10D3), The phase wrapping

effects cause some signal lost at the air/tissue interface (Figure 31.10D1 and D2). The CTM

parameters used here were (3, 0, 5, 5).

Figure 31.11 shows the final example in the human leg SWI data, in which the method

works in a 1.5 T dataset using (3, 3, 2, 2). The original unthresholded magnitude image is in

FIGURE 31.10 (Continued).
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FIGURE 31.11 CTM results for the SWI leg data. (a) Original magnitude image, (b) original phase

image, (c) thresholded magnitude image (tM, tP, m, n)¼ (3, 3, 2, 2), and (d) thresholded phase image

(tM, tP,m, n)¼ (3, 3, 2, 2). This thresholdedphase image takesonmorecharacteristicsof the conventional

magnitude image, except that it shows the veins clearly, whereas no veins are seen in the conventional

image.The thresholdedphase image is no longerhamperedby thenoisepoints, andso it is easier toadjust

thewindowand the level and to avoidbeingdistractedby thepresenceof phasenoise cluttering the image.

The SNR in the magnitude image is 5:1.
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Figure 31.11a and original unthresholded phase image is in Figure 31.11b.ACTM threshold

of (tM, tP, m, n)¼ (3, 3, 2, 2) is applied and in Figure 31.11c is the resulting thresholded

magnitude image and in Figure 31.11d is the resulting thresholded phase image. The phase-

thresholded image in Figure 31.11d not only shows a significant removal of most noise but

also shows those areas where the veins have higher phase than the set threshold. This

observation can be useful for processing the SWI data.

Although Type I errors remain along the edges of the brain and the leg in the presented

examples due to partial volume signal effects and result from the phase variations there,

for display purposes, the overall feature of removing the noise from the phase image is

quite robust.

Simulated Data for MAPHT

The ROC curves characterizing the theoretical Type 1 and Type 2 error rates for the

MAPHTmethod were presented in Figure 31.4. To examine the empirical performance of

the MAPHT method in comparison to the CTM, new simulated data was generated

according to the same process as the simulated data that the CTMmethod was applied to.

The simulated image has a matrix size of 512� 512, and thus a Bonferroni corrected

threshold of a¼ 0.05/512/512 was applied with n¼ 9. Figure 31.12a shows the original

magnitude image with noise outside the object (simulated brain). Note that in

Figure 31.12b there is high noise in the phase image outside the object and in some

internal areas, while the magnitude noise in Figure 31.12a is relatively low. Figure 31.12c

shows the computedF statisticmap, and the anatomical structure of the object can be seen.

In Figure 31.12d, the histograms of the image magnitudes (top), the image phases

(middle), and the F statistic values (bottom) are shown. Note that in the histogram for

F statistics, there appear to be two populations, but there is no such presence in histograms

of either the magnitude or the phase. The population on the left for smaller F values

FIGURE 31.12 MAPHT results for simulated data. (a) Original magnitude image, (b) original phase

image, (c) unthresholded F statistic map, (d) histograms, magnitude data (top), phase data (middle),

and F statistics (bottom), (e) F¼7.7575 Bonferroni thresholded magnitude image, (f ) F¼ 7.7575

Bonferroni thresholded phase image, (g) F¼5.75 thresholded magnitude image, and (h) F¼5.75

thresholded phase image.
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(similar to the ones in Figures 31.3 and 31.5) corresponds to voxels that contain

predominantly noise and the other on the right for larger F values (similar to the one

in Figure 31.3) corresponds to voxels that contain tissue signal plus noise. The Bonferroni

threshold F¼ 7.7575 is depicted in Figure 31.12d (bottom) as a dash-dot vertical line. In

Figure 31.12e and f are the thresholded simulated magnitude and phase images. Note that

in Figure 31.12f there is not only an elimination of the voxels that contain predominantly

noise but also an elimination of many voxels that contain signal plus noise. As seen in

Figure 31.12d (bottom), many voxels that contain tissue signal plus noise appear to be

below the Bonferroni threshold indicated by the dash-dot line and thus eliminated. This is

due to low SNR of the object and the lack of a clear separation of two populations by

magnitude in Figure 31.12d (top). The threshold can be lowered to a value such as F¼ 5.5

denoted by a solid vertical line as in Figure 31.12d (bottom) at the expense of a very small

number of false positives (voxels that predominantly contain noise not being thresholded).

Figure 31.12g and h show the lower thresholded magnitude and phase images. More

anatomical detail (true object) is present in the phase image of Figure 31.12h and less

tissue plus noise voxels are eliminated.

Human Data for MAPHT

To examine the empirical performance of the MAPHT method compared to the CTM

method, it was applied to the same human brain spin echo data. The human brain spin

echo image has a matrix size of 384� 512, and thus a Bonferroni corrected threshold of

a¼ 0.05/512/384 was applied with n¼ 9. Figure 31.13b shows that there is high noise in

the phase image outside the brain and in some internal areas while the magnitude noise in

Figure 31.13a is relatively low. Some anatomical structure can be seen in the F statistic

FIGURE 31.13 MAPHT results for the spin echo brain data. (a) Original magnitude image, (b) original

phase image, (c) unthresholded F statistic map, (d) histograms, magnitude data (top), phase data

(middle), andF statistics (bottom), (e) F¼7.7051Bonferroni thresholdedmagnitude image, (f) F¼ 7.7051

Bonferroni thresholded phase image, (g) F¼4.5 thresholded magnitude image, and (h) F¼4.5 thre-

sholded phase image.
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map (Figure 31.13c). Figure 31.13d shows the histograms for magnitudes, phases, and

F statistics. Note again that there appear to be two populations in the histogram of F

statistics, but there is no such presence in histograms of either the magnitude or the

phase. The population on the left for smaller F values corresponds to voxels that contain

predominantly noise and the other for larger F values corresponds to voxels that contain

tissue signal plus noise. The Bonferroni threshold F¼ 7.7051 is depicted in

Figure 31.13d (bottom) as a dash-dot vertical line. Figure 31.13e and f show the

thresholded SWI magnitude and phase images. Note in Figure 31.13f that there is not

only an elimination of the voxels that contain predominantly noise but also an

elimination of many voxels that contain signal plus noise, which renders the thresholded

image useless. As seen in Figure 31.13d (bottom), many voxels that contain tissue signal

plus noise appear to be below the Bonferroni threshold indicated by the dash-dot line and

thus eliminated. This is due to low SNR of the brain and the lack of a clear separation of

two populations by magnitude in Figure 31.13d (top). The threshold can be lowered to a

value such as F¼ 4.5 denoted by a solid vertical line as in Figure 31.13d (bottom) at the

expense of a small number of false positives (voxels that predominantly contain noise not

being thresholded). Figure 31.13g and h shows the lower thresholded magnitude and

phase images, respectively. More anatomical detail is present in the phase image of

Figure 31.13h and less tissue plus noise voxels are eliminated.

The MAPHT method is also applied to a human brain SWI data. The human brain

SWI image has a matrix size of 352� 512, and thus a Bonferroni corrected threshold of

a¼ 0.05/352/512 was applied with n¼ 9. The results are shown in Figure 31.14. As seen in

Figure 31.14d (bottom), the Bonferroni threshold identified by a vertical dash-dot line can

FIGURE 31.14 MAPHT results for the SWI brain data. (a) Original magnitude image, (b) original

phase image, (c) unthresholded F statistic map, (d) histograms, magnitude data (top), phase data

(middle), andF statistics (bottom), (e) F¼7.5869Bonferroni thresholdedmagnitude image, (f) F¼ 7.5869

Bonferroni thresholded phase image, (g) F¼ 8 thresholded magnitude image, and (h) F¼ 8 thresholded

phase image.
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be raised to the solid line in order to obtain better tissue contrast with little elimination of

voxels that contain tissue signal plus noise. This is due to high SNR of the object.

Figure 31.14g and h shows the higher thresholded magnitude and phase images. More

anatomical detail (tissue contrast) is present in the phase image of Figure 31.14h.

Finally, the MAPHT method is applied to the same human leg SWI data. The human

leg SWI image has a matrix size of 384� 512, and thus a Bonferroni corrected threshold

of a¼ 0.05/384/512 was applied with n¼ 9. The results are shown in Figure 31.15. The

Bonferroni threshold F¼ 7.7051 is depicted in Figure 31.15d as a dash-dot vertical line.

In Figure 31.15e is the thresholded SWI magnitude and in Figure 31.15f is the thresholded

phase image. Note in Figure 31.15f that there is an elimination of the voxels that contain

predominantly noise, but there is a possible elimination of a small number of voxels that

contain signal plus noise. As seen in Figure 31.15d (bottom), a small number of voxels

that contain tissue signal plus noise appear to be below the Bonferroni threshold indicated

by dash-dot line and thus eliminated. This is due to some low SNR voxels in the object.

The threshold can be lowered to a value such as F¼ 5.5 denoted by a solid vertical line as

in Figure 31.15d (bottom). The results of lower threshold value are depicted in

Figure 31.15g and h.

CONCLUDING REMARKS

Removing noise involves finding the delicate balance between removing unwanted signal

components and components that are part of the object of interest. For low SNR, a simple

FIGURE 31.15 MAPHT processing on SWI leg image. (a) Original magnitude image, (b) original

phase image, (c) unthresholded F statistic map, (d) histograms, magnitude data (top), phase data

(middle), andF statistics (bottom), (e) F¼7.7051Bonferroni thresholdedmagnitude image, (f) F¼ 7.7051

Bonferroni thresholded phase image, (g) F¼5.5 thresholded magnitude image, and (h) F¼5.5 thre-

sholded phase image.
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magnitude threshold will remove a considerable amount of noise, but at the expense of

removing signal as well.

Complex Threshold Method

The goal of using phase and connectivity is to increase the probability of retaining as

much information about the object as possible (smallest Type I error) and removing

as much noise as possible (smallest Type II error). The results of this study show that it is

possible to reduce Type I and Type II errors to almost zero even for very noisy data with

an SNR of 3:1. The remnant areas that are hard to remove represent first some voxels near

the edges that are kept by applying the connectivity algorithm, and second, clusters of

noise points that exceed the diameter of three neighboring points. The choice of

connectivity¼ 3 appears to be optimal and makes sense geometrically. If there are three

connected points, then objects thrown out inside a rectangle-like object will be reinstated

while circle-like objects may not. This keeps some noise points inside the object but will

tend to enlarge the boundaries of the circle. A connectivity of 4 tends to throw out more of

these noise points, but at the expense of throwing out signal points when the SNR is too

low. However, if one extends this on a second pass to a connectivity of 4, then edges will

remain essentially untouched. Other methods [15, 18] recognize the need for edge

preservation as well.

Although our focus has been on the low SNR cases (because these cases are perfect

examples of where the simple magnitude threshold methods fail), the higher SNR data can

be further optimized aswell usingCTM. From a practical point of view, ideally there exists a

fixed set of values for connectivity and thresholds thatwould give a robust result. For anSNR

of 3:1, the best choice of connectivity and threshold values (tM, tP,m, n) ranges from (3, 3, 2,

2) to (3, 3, 2, 4), as shown in Figures 31.8 and 31.9. For an SNR of 5:1 or higher, the best

choice for (tM, tP, m, n) ranges from (2, 2, 3, 2) to (3, 3, 4, 4), as shown in Figure 31.11.

Although many images in MRI have high SNR, with the recent push to higher resolution in

MR angiography, susceptibility weighted imaging, and anatomical imaging (especially at

high fields where the rf response is nonuniform), the SNR values will drop considerably

(perhaps approaching 3:1), making the CTM filter more useful.

For an SNR of 5:1 in the SWI leg data, (3, 3, 2, 2) suppresses the phase of veins more

efficiently (Figure 31.11d), while (3, 3, 2, 4) keeps many more voxels within the veins and

at the edge of air/tissue interfaces while still removing the background noise (image not

shown). The choice of a phase threshold of 2 or 4 depends on whether onewants to simply

remove phase noise higher than 4 standard deviations or to also remove signal from veins,

for instance, as in SWI. In such a case, onemaywish to push the phase threshold down to 2.

In the SWI brain example (SNR> 30:1), (3, 3, 2, 4) works fine and one can afford to

increase the magnitude threshold to 5 or even higher and use (3, 0, 5, 5). The choice of

m¼ 5 removes the outer boundary of the skull because of its lower signal butmaintains the

signal inside the brain. The higher connectivity of 4 tends not to restore many voxels

because the connectivity is too stringent a constraint, especially for the very low SNR of

3:1. When the SNR is higher than 10:1, (tM, tP, m, n) has a large range to chose from. As

demonstrated in Figure 31.10, the phase image can bewell separated from the noise even if

there are general baseline shifts.

As a practical point, the condition for equation (31.7), in which the phase has a mean of

zero, is valid only for a spin echo sequence with a perfectly centered echo. However, for an

asymmetric placement of the p pulse relative to the echo time or for a gradient echo
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sequence (if the phase is high pass filtered), the mean phase will again tend to be zero [23].

There are othermethodswhere the phase need not be zero for this approach to be useful. This

could include removing major veins in SWI (as shown in Figures 31.11 and 31.14) and

removing vessels in flow quantification techniques that use phase. Finally, this approach can

also be used to set the voxels determined as noise to have a high signal rather than zero, such

as a maximum value available to the system. Then, when a series of SWI data is evaluated

using a mIP method, the noise in one slice no longer causes the removal of regions having

signal in other slices. This is particularly valuable near the top of the brain where the head

narrows and eventually disappears. In this example, even if an image is completely noisy, the

algorithm will prevent the failure of the mIP operation.

The use of phase information can be important not only for gradient echomethods such as

SWI but also for spin echo methods if used as additional information for removing noise

points. TheCTMalongwith a connectivity criterion has been shown to give excellent results

for an SNR as low as 3:1. The most prominent advantage of the CTM method is its easy

implementation and reasonable computational time. The use of the phase information has

proven successful in removing noise that would otherwise not be recognized if only noise in

themagnitude image had been considered. Practically, using this approachmakes it possible

not only to improve the magnitude image but also to make phase images appear more like

magnitude images. The noise in the phase images leads to wild swings in the phase values,

causing a visually unappealing appearance in the phase images and difficulty in adjustments

of window level settings. Using the complex threshold technique to suppress the noise,

especially in the phase images used in susceptibility weighted imaging, makes phase data

more easily viewable. The CTM method is robust with a limited set of connectivity

parameters serving for a low SNR of 3:1 and another set for a broader range of SNRs of 5:1

and higher.

Magnitude and Phase Thresholding Method

The MAPHT method was successfully applied to both simulated and human MRI data. It

was shown to perform well in separating voxels that contain tissue signal plus noise from

voxels that contain predominantly noise. TheMAPHT thresholding procedure is based on a

likelihood ratio test and its theoretical statistical properties were shown through Monte

Carlo simulation in terms of both false positives and false negatives. The MAPHT method

for thresholding complex-valued magnetic resonance images was successfully applied to a

simulated data set and three human data sets and shown to produce increased tissue contrast

by eliminating false positives. It was seen that when the SNR is low, voxels cannot be

reliably separated by only themagnitude data because the histogramof predominantly noise

voxels overlaps with the histogram of tissue plus noise voxels. However, when the SNRwas

low, the MAPHT method produced an F statistic that could reliably separate the predom-

inantly noise voxels from the tissue plus signal voxels. It was found that a Bonferroni

threshold that is corrected for multiple comparisons may be too conservative. As an

alternative to a Bonferroni threshold, an FDR threshold can be used as it is less conser-

vative [29, 30].

TheCTMapproach to the elimination of voxels that contain predominantly noise utilized

not only complex thresholding but also local connectivity to enhance suppression of noise or

prevent the incorrect assignment of signal to noise in order to reduce Type I errors. The

MAPHT method does not use connectivity but a local neighborhood of voxel values and

looks at local variance on a voxel by voxel basis. The CTM approach may suffer when the
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phase itself deviates from zero or any set zero point. This can lead to the suppression of areas

where the phase is offset from flow effects or susceptibility effects (the later being

acceptable in some cases when the goal is to also suppress veins). However, the phase

has a rapid variation near the air/tissue interfaces, and in these areas the CTMmight fail and

that part of the brain will be suppressed. It is not so with the MAPHT method that uses the

local variance and keeps the local value as the phase offset (i.e., there is not a global offset of

zero in phase). For this reason, this new approach is more robust to variations in phase

caused by unwanted field inhomogeneity effects. Thismethod can also easily be adapted for

3D images.

In conclusion, two magnitude and phase thresholding procedures were described and

successfully applied to both simulated and human images. Both the CTM and MAPHT

methods were shown to produce increased tissue contrast by eliminating false positives.

The joint use of magnitude and phase images improves the removal of noise voxels in

magnetic resonance images. This can be useful in automated visualization of phase

images without the highly distractive noise voxels or in susceptibility weighted imaging

when taking the minimum intensity projections of variably sized regions.
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