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Abstract 
In fMRI, it is important to acquire volume images of the brain as rapidly as possible to 

capture cognitive temporal dynamics. The limiting temporal factor in fMRI is the sampling 
time for an array of spatial frequencies to reconstruct an image. The multi-coil SENSE in-
plane reconstruction technique has greatly contributed to decreasing image scan time. 
However, the SENSE image reconstruction technique involves using a priori calibration 
images to estimate coil sensitivities, then using these estimated coil sensitivities as if they 
were precisely known to reconstruct images. Here, the a priori calibration image 
information is quantified in terms of a prior distribution on the reconstructed image and 
coil sensitivities, then combined with the data likelihood in order to form a posterior 
distribution that the reconstructed image is estimated from. This Bayesian SENSE 
(BSENSE) formally brings the prior image information to bear while estimating the 
reconstructed image in one step from the posterior distribution. BSENSE is applied to 
simulated data. 
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1. Introduction 

1.1 Background 
In the early 1990’s, fMRI (functional magnetic resonance imaging) was developed as a 

technique to noninvasively observe the human brain in action (1). FMRI is based upon the 
BOLD (blood oxygen level dependent contrast) in which blood oxygenation changes in the 
local vicinity of firing neurons (2). In fMRI and MRI, voxel values are not measured by 
the machine, the measurements taken by the machine are an array of complex-valued 
spatial frequencies called k-space (3). It generally takes up to two seconds to measure full 
arrays of data for all of the slices that form the volume image. A tremendous amount of 
work has been and is currently being devoted to accelerating the number of images acquired 
per unit of time since its initial postulation (4). Significant advances in accelerating image 
acquisition have been made by utilizing multiple local coils and subsampling k-space in an 
image plane by skipping lines in-plane. When lines of k-space are skipped, the 
reconstructed coil images are aliased. Two major approaches have been developed to 
unalias in-plane aliased images due to skipped lines of k-space. The first, SENSitivity 
Encoding (SENSE) operates on aliased images after reconstruction (5), while the second 
GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) operates on 
subsampled k-space prior to reconstruction (6). The technique described here is a Bayesian 
version of the SENSE image space approach (BSENSE). In order to lead up to the current 
work, single-coil full k-space inverse Fourier transform (IFT) image reconstruction needs 
to first be described, then multi-coil full-sampled k-space IFT image reconstruction with 
SENSE image combination, and finally multi-coil sub-sampled k-space with SENSE image 
combination. The entirety of what is discussed here will be for Cartesian k-space. 
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1.2 Single-Coil Full-Sampled k-Space Image Reconstruction 
Historically, a single channel coil as depicted in Figure 1 (left) was utilized for fMRI to 

measure a full-sampled k-space data array of the same dimensions as the image to be 
reconstructed as depicted in Figure 1 (right).  In Figure 1 (right), k-space data is measured 
in a zig-zag fashion from left to right and bottom to top.  

 

  
Figure 1: Single channel coil (left) and k-space zig-zag coverage (right). 
 
Measured k-space data is truly complex-valued as displayed in Figure 2 (column 2) with 

a real part (top) and imaginary part (bottom). This complex-valued k-space data is 
reconstructed by pre-multiplying with a complex-valued inverse Fourier transform matrix 
in Figure 2 (column 1) with a real part (top) and imaginary part (bottom) then post-
multiplying by the transpose of an inverse Fourier transform matrix in Figure 2 (column 3) 
with a real part (top) and imaginary part (bottom). The result of this complex-valued pre- 
and post-multiplication by inverse Fourier transform matrices is a complex-valued 
reconstructed image (column 4) with real part (top) and imaginary part (bottom).  

 

 
Figure 2: Inverse Fourier transform image reconstruction of a complex-valued k-space 
array to a complex-valued image. 
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Since the magnitude (and phase) of a reconstructed image is generally utilized for fMRI 

analysis, Figure 3 is a duplicate of Figure 2 except the fourth column displays magnitude 
(top) and phase (bottom) instead of real and imaginary. This is a conversion from Cartesian 
coordinates to polar coordinates. 

 

 
Figure 3: Inverse Fourier transform image reconstruction of a complex-valued k-space 
array to a magnitude and phase image. 

 
A series of these reconstructed images is produced while the subject is performing a task 

and either the magnitude alone can be utilized for activation (1) or both the magnitude and 
phase (8,9).  
 

1.3 Multi-Coil Full-Sampled k-Space Image Reconstruction 
In recent years, multi coil arrays have been used to acquire data to produce slice images. 

Instead of a single channel coil as in Figure 1 (left), multiple local coils such as the 
illustrative example in Figure 4 (left) with NC=4 coils are used. In Figure 4 (left), coil 1 is 
on the top, coil 2 on the right, coil 3 on the bottom, and coil 4 on the left. To begin with in 
this subsection, each coil can measure a full-sampled k-space array as depicted in Figure 4 
(right), and later in the next subsection each coil will measure a sub-sampled k-space array 
by skipping lines. 
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Figure 4: Four channel coil (left) and k-space zig-zag coverage (right). 
 
Each local receive coil, possesses a depth sensitivity profile that is related to its size 

measuring a different sensitivity weighted version of the true slice. Subfigures in Figure 5 
and subsequent figures will have rows referred as top, middle, bottom and columns referred 
to as left, center, and right. In Figure 5 (middle center) is a true slice image with a particular 
voxel v indicated with a red circle. The depth sensitivity profile for coil 1 is given in Figure 
5 (top) with sensitivity S1 for voxel v. Neglecting noise, coil 1 measures a k-space array 
that after inverse Fourier transform reconstruction is the true image point-wise multiplied 
by the sensitivity profile for coil 1, a1=S1v as in Figure 5 (top right). Similarly without 
noise, coil 2 measures a k-space array that after inverse Fourier transform reconstruction is 
the true image point-wise multiplied by the sensitivity profile for coil 2, a2=S2v as in Figure 
5 (center right), coil 3 measures a k-space array that after inverse Fourier transform 
reconstruction is the true image point-wise multiplied by the sensitivity profile for coil 3, 
a3=S3v as in Figure 5 (bottom left), coil 4 measures a k-space array that after inverse Fourier 
transform reconstruction is the true image point-wise multiplied by the sensitivity profile 
for coil 4, a4=S4v as in Figure 5 (top left). 

 
With these NC=4 coil measurements, a system of equations can be formed as in Equation 

1 where a=[a1,a2,a3,a4]′ are the observed coil measurements, S=[S1,S2,S3,S4]′ are the 
unobserved coil sensitivities, and v is the unobserved true slice voxel value. 
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If we are able to obtain an estimate of the coil sensitivities Ŝ , then we can obtain a least 

squares estimate of the true slice voxel value v as 
 

1ˆ ˆ ˆˆ ( ' ) 'v S S S a  .                                                                                                               [2] 
 

This is repeated individually for each voxel in the image. 
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Figure 5: True slice image along with coil sensitivity profiles and sensitivity weighted 
true images. 
 
However, the goal is to obtain slice images faster. It takes an appreciable amount of time 

to measure a complex-valued k-space data array. For example, for a 96×96 image and the 
equivalent of approximately 83 elements in each turn-around for 95 turn-arounds totaling 
96×96+95×83=772,813 complex-valued points for the k-space array along with some 
additional time spent with other items such as slice selection and wait time for the gradient 
echo to bring the total time for about 7 to 11 slices close to a 1 s time to repetition (TR).  

  
1.4 Multi-Coil Sub-Sampled k-Space Image Reconstruction 

As previously noted, the goal is to accelerate the number of images acquired per unit 
time. Because there are limitations on how fast we can traverse k-space and measureits’ k-
space data values, it is of great interest to develop ways to measure less data, but still be 
able to form an image. As previously noted, one way that this is accomplished is to skip 
lines of k-space and not measure the corresponding array data values. Figure 6 (right) 
contains an illustration of skipping lines of k-space in the vertical direction and measuring 
every third line with measured black circle data values and not measuring intermediate 
white circled data values. Measuring every third line results in an acceleration factor A=3.  
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The consequence of inverse Fourier transform reconstruction of the rectangular coil k-
space arrays is that the reconstructed image has aliasing in the direction of the skipped 
lines. With an acceleration factor of A=3, the reconstructed coil images will appear as if 
the full image had been cut into three equal horizontal strips and the strips summed. 

 

 
 

Figure 6: Four channel coil (left) and k-space zig-zag coverage (right). 
 
Each coil measures a different sensitivity weighted version of the true slice. In Figure 7 

(middle center) is a true slice image with A=3 voxels v1, v2, v3 in a particular column and 
same row in each strip indicated with red, green, and blue circles. The depth sensitivity 
profile for coil 1 is given in Figure 7 (top) with sensitivity S11 for voxel v1, sensitivity S12 
for voxel v2, sensitivity S13 for voxel v3.  

 
Neglecting noise, coil 1 measures a rectangular k-space array that after inverse Fourier 

transform reconstruction produces an aliased rectangular image that is the sum of three 
horizontal strips of the full true image as in Figure 7 (top right). In Figure 7 (top right) the 
true aliased image is the point-wise multiplication of the given voxel by the sensitivity 
profile for coil 1 summed for the three strips, a1=S11v1+S12v2+S13v3. Similarly without noise, 
coil 2 measures a rectangular k-space array that after inverse Fourier transform 
reconstruction is the point-wise multiplication of the given voxel by the sensitivity profile 
for coil 2 summed for the three strips, a2=S21v1+S22v2+S23v3 as in Figure 7 (bottom right), 
coil 3 measures a rectangular k-space array that after inverse Fourier transform 
reconstruction is the point-wise multiplication of the given voxel by the sensitivity profile 
for coil 3 summed for the three strips, a3=S31v1+S32v2+S33v3 as in Figure 7 (bottom left), 
coil 4 measures a rectangular k-space array that after inverse Fourier transform 
reconstruction is the point-wise multiplication of the given voxel by the sensitivity profile 
for coil 4 summed for the three strips, a4=S41v1+S42v2+S43v3 as in Figure 7 (top left). 
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Figure 7: True slice image along with coil sensitivity profiles and sensitivity weighted 
true aliased images. 
 
With these NC=4 coil measurements, a system of equations can be formed similar to 

Equation 1 where a=[a1,a2,a3,a4]′ are the observed coil measurements, S=[[S11,S21,S31,S41]′, 
[S12,S22,S32,S42]′,[S13,S23,S33,S43]′] are the unobserved coil sensitivities, and v=[v1,v2,v3]′  is 
the unobserved true slice voxel values. 
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                                                                                                                     [3] 

 
In Equation 3, a is NC×1, S is NC×A, and v is A×1. If we are able to obtain an estimate of 

the coil sensitivities Ŝ , then we can obtain a least squares estimate of the A true slice voxel 
values v as 

 
1ˆ ˆ ˆˆ ( ' ) 'v S S S a  .                                                                                                               [4] 
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This is repeated individually for each voxel in the aliased image. In addition, ˆ ˆ'S S is not in 
general positive definite. 

 
 

2. Bayesian Multi-Coil Sub-Sampled k-Space Image Reconstruction 

2.1 The Complex-Valued Nature of SENSE Image Reconstruction 
The figures in the previous section were all illustrative. In actuality, the entire problem 

is complex-valued. Given the existence of NC=4 receive coils as in Figures 4 and 6 (left), 
each local receive coil possesses a depth sensitivity profile that is related to its size, but the 
sensitivity is complex-valued. Each coil measures a different complex-valued sensitivity 
weighted version of the true complex-valued slice. In Figure 8 (middle center) is a true 
complex-valued slice image with a particular voxel v=vR+ivI indicated with red circles. The 
complex-valued depth sensitivity profile for coil 1 is given in Figure 8 (top) with sensitivity 
S1=S1R+S1I for voxel v=vR+ivI. Neglecting noise, coil 1 measures a k-space array that after 
inverse Fourier transform reconstruction is the true complex-valued image point-wise 
multiplied by the complex-valued sensitivity profile for coil 1, a1R+a1I=(S1R+iS1I)(vR+ivI)  
or a1=S1v  as in Figure 8 (top right). Similarly without noise, coil 2 measures a k-space 
array that after inverse Fourier transform reconstruction is the true complex-valued image 
point-wise multiplied by the complex-valued sensitivity profile for coil 2, 
a2R+a2I=(S2R+iS2I)(vR+ivI) or a2=S2v as in Figure 8 (center right), coil 3 measures a k-space 
array that after inverse Fourier transform reconstruction is the true image point-wise 
multiplied by the sensitivity profile for coil 3, a3R+a3I=(S3R+iS3I)(vR+ivI) or a3=S3v as in 
Figure 8 (bottom left), coil 4 measures a k-space array that after inverse Fourier transform 
reconstruction is the true image point-wise multiplied by the sensitivity profile for coil 4, 
a4R+a4I=(S4R+iS4I)(vR+ivI) or a4=S4v as in Figure 8 (top left). 

 

 
Figure 8: True slice complex-valued image along with complex-valued coil sensitivity 
profiles and complex-valued sensitivity weighted true images. 

 
With these NC=4 coil measurements, a system of equations can be formed in Equation 5 

similar to Equation 1 except now all quantities are complex-valued. In Equation 5, the a’s 
are observed while the S’s and v’s are unobserved.  
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It can be shown that an equivalent representation of Equation 5 is 
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Or more compactly as a=Sv where a is 2NC×1, S is 2NC×2, and v is 2×1. If we are able 

to obtain an estimate of the coil sensitivities Ŝ , then we can obtain a least squares estimate 
of the true slice voxel value v as 

 
1ˆ ˆ ˆˆ ( ' ) 'v S S S a  .                                                                                                               [7] 

 
This is repeated individually for each voxel in the image. In addition, ˆ ˆ'S S is not in general 
positive definite. 

 
However, because we want to accelerate the number of slices acquired per unit of time, 

we again skip lines of k-space for each coil as illustrated in Figure 6. Neglecting noise, coil 
1 measures a rectangular k-space array that after inverse Fourier transform reconstruction 
produces an aliased rectangular image that is the sum of three horizontal strips of the full 
true image as in Figure 9 (top right). In Figure 9 (top right) the true complex-valued aliased 
image is the point-wise multiplication of the given complex-valued voxel by the complex-
valued sensitivity profile for coil 1 summed for the three strips, a1R=S11Rv1R+S12Rv2R+S13Rv3R 

-S11Iv1I-S12Iv2I-S13Iv3I and a1I=S11Iv1R+S12Iv2R+S13Iv3R+S11Rv1I+S12Rv2I+S13Rv3I. Similarly 
without noise, coil 2 measures a rectangular k-space array that after inverse Fourier 
transform reconstruction is the point-wise multiplication of the given complex-valued 
voxel by the complex-valued sensitivity profile for coil 2 summed for the three strips, 
a2R=S21Rv1R+S22Rv2R+S23Rv3R-S21Iv1I-S22Iv2I-S23Iv3I and a2I=S21Iv1R+S22Iv2R+S23Iv3R+S21Rv1I+ 
S22Rv2I+S23Rv3I as in Figure 9 (bottom right), coil 3 measures a rectangular k-space array 
that after inverse Fourier transform reconstruction is the point-wise multiplication of the 
given complex-valued voxel by the complex-valued sensitivity profile for coil 3 summed 
for the three strips, a3R=S31Rv1R+S32Rv2R+S33Rv3R-S31Iv1I-S32Iv2I-S33Iv3I and a3I=S31Iv1R+ 
S32Iv2R+S33Iv3R+S31Rv1I+S32Rv2I+S33Rv3I as in Figure 9 (bottom left), coil 4 measures a 
rectangular k-space array that after inverse Fourier transform reconstruction is the point-
wise multiplication of the given complex-valued voxel by the complex-valued sensitivity 
profile for coil 4 summed for the three strips, a4R=S41Rv1R+S42Rv2R+S43Rv3R-S41Iv1I-S42Iv2I-
S43Iv3I and a4I=S41Iv1R+S42Iv2R+S43Iv3R+S41Rv1I+S42Rv2I+S43Rv3I as in Figure 9 (top left). 
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Figure 9: True slice image along with coil sensitivity profiles and sensitivity weighted 
true aliased images. 

 
With these NC=4 coil measurements, a system of equations can be formed as in Equation 

8 where a=[a1R,a2R,a3R,a4R,a1I,a2I,a3I,a4I]′ are the observed coil measurements, S as defined 
below are the unobserved coil sensitivities, and v=[v1R,v2R,v3R,v1I,v2I,v3I]′  is the unobserved 
true slice voxel values. 
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Or more compactly as a=Sv where a is 2NC×1, S is 2NC×2A, and v is 2A×1. If we are able 

to obtain an estimate of the coil sensitivities Ŝ , then we can obtain a least squares estimate 
of the true slice voxel values v as 

 
1ˆ ˆ ˆˆ ( ' ) 'v S S S a  .                                                                                                               [9] 

 
This is repeated individually for each voxel in the aliased image. In addition, ˆ ˆ'S S  is not 
in general positive definite. Equation 8 is a latent variable model similar to factor analysis 
but complex-valued (12). 
 

2.2 Distributions and Estimation 

2.2.1 Likelihood Distribution 
In an fMRI experiment as described for Equation 8, the aliased voxel measurements are 

taken with measurement error so a=Sv+ε where a is 2NC×1, S is 2NC×2A, v is 2A×1, and ε 
is 2A×1. It is assumed that ε ~N(0,σ2I). The likelihood for the measurements is  
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where a observed aliased, S unobserved sensitivities, and v unobserved voxel values. 
 
2.2.2 Prior Distributions 

From the likelihood distribution, it can be seen that prior distributions need to be 
specified for (S,v,σ2) and hyperparameters assessed. For the coil sensitivities S and the 
voxel values v, normally distributed g-priors are specified and for the noise variance σ2 an 
inverse gamma distribution is specified. Together, these prior distributions are  
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with hyperparameters gS, S0, gv, v0, d, and q to be assessed. 

 

2.2.3 Posterior Distribution 
With the combination of the priors and the likelihood, the posterior distribution for the 

coil sensitivities S, the voxel values v, and for the noise variance σ2 the posterior 
distribution is 

 
2 2 2 2 2( , , | ) ( | ) ( | ) ( ) ( | , , )    p S v a p S p v p p a S v                                         [12] 

 
with distributions specifically described above in Equations 11 and 12. 
 

2.2.4 MAP Estimation 
From the posterior distribution in Equation 12 with priors detailed in Equation 11 and 

likelihood in Equation 10, the modes for the parameters to be estimated are 
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Maximum a posteriori (MAP) estimates of the parameters will be found using the ICM 
algorithm (11). Alternatively a Gibbs sampler can be utilized to obtain posterior means 
(12). 
 

3. Results 

3.1 Hyperparameter Assessment 
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Prior to an fMRI experiment, a short non-task based set of m full k-space volume 
images for the NC coils can be obtained similar to Figure 8. These “calibration” images 
can be utilized to assess the hyperparameters of the prior distributions for the parameters. 
These m calibration images can be averaged as in Figure 10. 

 

 
Figure 10: Average of m real and imaginary calibration images for the NC coils. 

 
The root sum of squares in each voxel is computed from these NC=4 complex-valued 

coil images 
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for the an initial magnitude v0M of the prior mean as in Equations 14. However there has to 
be an adjustment made at the center of the image due to nonuniform coil coverage. The 
initial prior mean magnitude in Figure 11 (left) is pointwise multiplied (Hadamard product, 
) by a Gaussian hill 
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                     [15] 

 
as in Figure 11 (middle) to account for this nonuniformity as in Figure 11 (right) for a 
revised v0M. The hyper parameter gv is assessed to be 0.10 to indicate that the uncertainty 
in the prior voxel values is ten times larger than that in the observed aliased coil images. 
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Figure 11: Point-wise adjustment for the magnitude of the prior voxel mean image. 
 
 The NC complex-valued averaged calibration images in Figure 10 are pointwise 

divided by the magnitude of the prior mean in Figure 11 (right) in order to arrive at the 
prior mean for the real-imaginary coil sensitivities in Figure 12 (top section) with 
magnitude-phase in Figure 12 (bottom section). The hyper parameter gS is assessed to be 
0.10 to indicate that the uncertainty in the prior sensitivities is ten times larger than that in 
the observed aliased coil images. The prior mean for the coil sensitivity phase is used for 
the phase of the prior mean v0P. 
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Figure 12: Prior mean for coil sensitivities. 
 
The hyper parameters for the residual variance are assessed to be d=10 and q=2dσ0

2 
where σ0

2=1.0 is the average residual variance over the voxels of the calibration images. 
 

3.2 FMRI Data 
To demonstrate the use of BSENSE, a single image was generated for the NC=4 coils by 

adding N(0,σ2) noise to the noiseless coil images in Figure 9 to arrive at the observed 
aliased noisy coil images in Figure 13. 

 

 

3.3 Posterior Unaliased Image 
Using the previously assessed hyperparameters along with the observed aliased coil 

images in Figure 13, MAP BSENSE unaliased images are presented in Figure 14. 
 

  
Figure 14: MAP BSENSE unaliased images. 

 

 
Figure 13: Simulated observed noisy coil images for one time point in an fMRI 
experiment. 
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We can see that the BSENSE unaliased and combined images with real-imaginary (left) 
and magnitude-phase (right) appear to be artifact free and a very good estimate of the true 
noiseless slice images. 
 

5. Discussion 
A Bayesian model for a latent variable image estimation of the SENSE image 

combination type was successfully formulated and applied to simulated data. Prior 
distributions were combined with a likelihood to form a posterior distribution. 
Hyperparameters were assessed using available calibration images. MAP estimates of the 
unaliased voxels were computed. This opens up the opportunity for more formal Bayesian 
models to formally incorporate available prior knowledge to separate accelerated images 
in fMRI. 
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