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Abstract 
In functional MRI, each slice in a volume is traditionally excited individually, 

measuring enough data in a single k-space array to reconstruct an image for that slice. 
However, simultaneously exciting multiple slices that make up a volume can produce 
sufficient data in a single k-space array to represent multiple slices. This single array of 
k-space data can be reconstructed into a single image representing the aliased slices, and 
then separated into individual images for each slice. A statistical description of an image 
representing two aliased slices using a single channel coil is presented. Image separation, 
utilizing calibration reference scans of each slice, through both an existing magnitude-
only approach and a new complex-valued approach are described, and the statistical 
properties of these two image separation approaches are presented. Through examining 
the expected mean image and covariance matrix of the separated images, it is 
theoretically shown that correlations remain between images of slices through both 
approaches. Since the image separation process is not the inverse of the image aliasing 
process, the separated images have different statistical properties than slices excited 
individually. Through both theoretical and experimental data, the complex-valued 
approach is shown to out-perform the magnitude-only approach. 
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1. Introduction 
Since the advent of functional magnetic resonance imaging (fMRI), researchers have 

invested great efforts and have made significant progress on accelerating the acquisition 
of images of the slices needed to build up a single image volume. With the inception of 
parallel imaging (1), methods such as SENSE (2) and GRAPPA (3) have greatly 
contributed to the in-plane acceleration of images using multicoil arrays to reconstruct the 
image of a single slice. More recently, interest has been gaining momentum for the 
simultaneous excitation and acquisition of multiple parallel images of slices to build up a 
single volume. One justification for the simultaneous acquisition of images of slices is 
that they are temporally aligned, allowing for more accurate inferences to be made 
between them. The acquisition of images of two simultaneously excited slices in two 
experiments with a single channel coil has been presented (4, 5) and extended to multiple 
slices using multiple channel coils in a single experiment (6,7,8,9,10,11). The magnitude-
only approach to two encoded slices using a single channel quadrature coil was presented 
using images from Cartesian echo-planar sampling (8,12) and presented using images 
from spiral echo-planar sampling (13). Here we describe both the previously presented 
magnitude-only image separation approach and a new complex-valued approach for 
separating two aliased images of two slices using a single channel quadrature coil 
experiment. The recent line of research utilizing complex-valued images and magnitude-
phase time series models to compute fMRI activation (14,15,16) provides the motivation 
to separate complex-valued images over magnitude-only images. 

The outline of this manuscript is as follows: The Methods section describes the image 
aliasing model and the two separation approaches. The Theory section describes the 
statistical properties of the separated images including their expected mean, variance, and 
correlation structure. The Results section presents results from both models on Monte 
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Carlo computer simulated and MRI machine experimental data. Finally, the Discussion 
and Conclusion section discusses the presented methods, findings, and comments on 
image separation. 

2. Methods 
Traditionally in fMRI, each slice that makes up a volume is excited individually, and 

enough data for that slice is measured in a single k-space array to reconstruct an image. 
However, it is possible to simultaneously excite two slices, measuring sufficient data in a 
single k-space array to be reconstructed into a single aliased image representing the two 
slices, and then separated into two images for the two slices. 
2.1 Two Image Aliasing 

Each measured voxel value in the aliased image is described as the sum of the two true 
voxel values from aliased slices a and b plus measurement noise 

( ) ( cos sin ) ( cos sin ) ( )R I a a a a b b b b R Iy iy i i i                ,  

where yR and yI are the real and imaginary parts of the aliased voxel’s measured value, ρa 
and θa are the true noiseless magnitude and phase for slice a, ρb and θb are the true 
noiseless magnitude and phase for slice b, while εR and εI are additive error for the real 
and imaginary parts of the aliased voxel’s measured value. The process of aliasing two 
slices with a single coil can be equivalently represented for a given voxel as 
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or y=XAβ+ε, where y is 2×1 vector representing the observed real and imaginary aliased 
image voxel values, XA is 2×4 matrix describing the aliasing process, 
β=(ρacosθa,ρasinθa,ρbcosθb,ρbsinθb)′ is a 4×1 vector representing the voxel values for the 
two true fully acquired images, and ε is a 2×1 vector representing measurement error. In 
Eq. [1] we will assume that E(εR,εI)'=0 and cov(εR,εI)'=σ

2I2. The goal is to separate the 

images of the two slices in a manner such as 1ˆ
AX y  . However, the aliasing matrix in 

Eq. [1], XA, represents a system of two equations with four unknowns, as it is not square 
or invertible, and thus a unique solution to these equations for β cannot generally be 
found. One solution, proposed in (8,11), is to use the singular value decomposition 
(SVD) to calculate the Moore-Penrose pseudoinverse (17), which provides a unique 
solution in the least squares sense, but not necessarily the correct solution. We will 
examine the statistical properties of the previously proposed magnitude-only approach 
and our newly proposed complex-valued approach in the Theory section along with their 
performance in the Results section. 
2.2 Calibration Reference Images 

In order to perform the separation of two simultaneously excited slices, full field-of-
view calibration “reference images” of the two slices need to be acquired. In a given fully 
acquired voxel, the measured reference images at time t are described as 
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for t=1,…,m, where yRat and yIat are the measured real and imaginary parts for the voxel in 
slice a, yRbt and yIbt are the measured real and imaginary parts for the voxel in slice b, Sa 
and a  are the true magnitude and phase of the voxel in slice a, Sb and b  are the true 

magnitude and phase of the voxel in slice b, while nRat and nIat are the real and imaginary 
parts of the measurement error for the voxel in slice a, nRbt and nIbt are the real and 
imaginary parts of the measurement error for the voxel in slice b, with m being the 
number of reference images. In Eq. [2] we will assume that E(nRat,nIat,nRbt,nIbt)'=0 and 
cov(nRat,nIat,nRbt,nIbt)'=σ

2I4. From these reference images, we calculate the averages 

( , , , ) 'R a Ia R b Iby y y y , which are converted to magnitude and phase ( , , , ) 'a a b br r 

 

to be 

used in separating the slices.

 

2.3 Magnitude-Only Image Separation 
The motivation behind a magnitude-only separation of slice images, proposed in 

(8,11,12,18), is a reduction in the number of parameters to solve for. Eq. [1] can be 
equivalently written as  
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or y=XMρ+ε, where XM is a 2×2 matrix representing the aliasing process, ρ=(ρa,ρb)′ is a 
2×1 vector representing the voxel magnitude values for the two true fully acquired 
images, while y and ε are 2×1 vectors of measured values and measurement error 
respectively, as previously described. Now we can separate magnitude-only images of the 

two slices using the model in Eq. [3] by  X M
1y , or for a given voxel, 
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where a  and 

 

are the phase of the average of the reference images, provided 

a b    is not an integer multiple of π. In the Results section we will see that many 

voxels have differences in reference image phase close to zero. 
2.4 Complex-Valued Image Separation 

Instead of transforming Eq. [1] to Eq. [3] and separating via Eq. [4] with an estimate of 
the phase from the reference images, we can add two additional linear constraints in each 
voxel to Eq. [1] in order to obtain four equations and four unknowns as  
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or yC=XCβ+e, where yC=(yR,yI,νR,νI)′ is a 4×1 vector representing the “observed” aliased 
image values with additional constraint values v=(vR,vI)′, XC=[XA;C] is a 4×4 matrix 
representing the voxel’s reference image values with additional linear constraints, 
β=(ρacosθa,ρasinθa,ρbcosθb,ρbsinθb)′ is a 4×1 vector representing the values for the two 
true fully acquired images of the slices, and e=(εR,εI,ηR,ηI)′ is 4×1 vector representing 
measurement error ε=(εR,εI)′ along with constraint information η=(ηR,ηI)′. Here “;” 


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indicates a separation between rows in the matrix. With suitable selection of the 
constraint values cjk, XC is of full rank and we can separate the complex-valued images of 

the two slices using the model in Eq. [4] by 1ˆ
C CX y  . It should also be noted that 

separation using 1ˆ
C CX y  and the least squares estimate 1ˆ ( )C C C CX X X y   are 

equivalent because XC is square and invertible. It should also be noted that the least 
squares estimator for the fully acquired voxels can be written as 

1ˆ ( ) ( , )( , ) 'A A AX X C C X C y v        , where C′C acts as a regularizer for a 

matrix inverse. 
One such set of constraints that can be used is that the imaginary parts of the true 

images are zero via v=η=(0,0)′ and C=[0,1,0,0;0,0,0,1]. Carrying out the separation 
process by matrix inverse, the separated voxel values for the two image slices are 
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where a  and b
 

are the phase of the average of the reference images, provided 

a b    is not an integer multiple of π. Upon comparing Eq. [6] to Eq. [4], one can 

see that the separated real parts of the two images in Eq. [6] are identical to the separated 
magnitudes in Eq. [4] and the separated imaginary parts of the two images in Eq. [6] are 
zero. Thus, the magnitude-only separation approach can be explained as the addition of 
two linear constraints in order to obtain a unique matrix inverse separation. 
 Since the aliasing process is predicated on the measured image being comprised of the 
true values for the two slices plus measurement error, we can utilize the reference images 
and describe another constrained image reconstruction. Assuming that the true images for 
the two slices are similar to the reference images, we can add two linear constraints as 
C=[1,0-1,0;01,0,-1] and additional “observed” data 

R R a R by y     and 

I Ia Iby y   , with η=(0,0)′. Carrying out the complex-valued image separation 

process by 1ˆ
C CX y  , because XC is of full rank with orthogonal rows, the voxel values 

for the two separated images are  
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In principle other linear constraints, or nonlinear constraints that can be approximated 
by linear constraints, can be utilized such as C=[1,-1-1,1;1,1,-1,-1] which again yields an 
XC of full rank with orthogonal rows. 
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3. Theory 
Since the image separation process is not the inverse of the image aliasing process, we 

need to examine the statistical properties of the separated images, such as expected 
means, variances, and correlations relative to the true values. 
3.1 Magnitude-Only Image Separation 

To examine the statistical properties of the magnitude-only image separation process, 

the expectation of Eq. [4], E( )  X
M
1E( y) , can be taken to yield  
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 Similarly, the covariance matrix of the magnitude estimators, 

cov( )  X
M
1 cov( y)( X

M
1)' , can be pursued. It can be shown that the expected 

covariance between the magnitude-only separated magnitudes is 
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with their correlation being cos( )a b   . One can see that the magnitude-only 

separation process has challenges when a b   is a multiple of π, does not contain 

signal from the other slice when a a  and b b  , and the correlation between the 

separated magnitudes is zero when 
a


b
  / 2. 

3.2 Complex-Valued Image Separation 
To examine the statistical properties of the complex-valued image separation process, 

the expectation of the estimator in Eq. [7] can be determined. The expectation of the 

estimator for the voxels is E( )= E(yC), and is found to be 
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In a similar fashion, the covariance matrix for the separated voxels is cov( )=

cov(yC)  , and is found to be  
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where cov((νR,νI)′)=0 because the reference images do not vary over the course of the 
experiment. 
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It has been noted that the magnitude is not a linear operator and that the magnitude-
square correlation is asymptotically equivalent to the magnitude correlation (19,20). The 
expected mean magnitude-square is 
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and the expected magnitude-square correlation between the separated complex-valued 
images is  
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where the elements of Eqs. [12] and [13] originate from μCV=[ μ1; μ2], and ∑CV=[ 
∑11,∑12;∑21,∑22]. It can be shown when Sa=ρa, a =θa and Sb=ρb, b =θb that the expected 

correlation between the magnitude squares is  
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which is very small when a b  =π/2. 

It should be noted that if one were to use the reference image values in a local 
neighborhood of ℓ voxels, then 2ℓ additional rows will be added to yC in Eq. [5] 
corresponding to the ν’s for these voxels, then Sacos a  in Eq. [10] becomes ∑Sajcos aj  

and Sbcos b  becomes ∑Sbjsin bj  where j=1,…,(ℓ+1) indexes voxel number in the 

neighborhood, including the central one. 
4. Results 

To assist in illustrating the separation methodology in the Methods and Theory 
sections, two experimentally acquired echo planar imaging time series data sets, with 
matching fMRI acquisition parameters, of a spherical Agar phantom will be utilized. 
Both data sets were acquired on a GE Discovery MR750 MRI scanner (General Electric, 
Milwaukee, WI). For both data sets, a Cartesian gradient-recalled echo planar imaging 
sequence is employed. The first data set consists of 10 fully acquired slices while the 
second consists of 5 slices with aliasing between slices 1 and 6, slices 2 and 7, slices 3 
and 8, slices 4 and 9, and slices 5 and 10. Both data sets consist of 720 volume images 
that were acquired with a repetition time (TR) of 1 s, an echo time (TE) of 42.5 ms, a 
band width (BW) of 166 kHz, a field-of-view (FOV) of 24 cm, slice thickness (SLTH) of 
4.0 mm, a flip angle (FA) of 45 degrees, and an effective echo spacing (EESP) of 752 μs 
for a 96×96 k-space acquisition and reconstructed matrix. The fully acquired and aliased 
k-space arrays were Nyquist ghost corrected by the amount calculated from navigator 
echoes (21) then inverse Fourier transform reconstructed. The first aliased slice along 
with the first and sixth fully acquired reference slices were selected for analysis. The first 
5 aliased images and fully acquired pairs of reference images were discarded from 
analysis to ensure steady state magnetization. The subsequent m=2 fully acquired 
reference images are averaged and used to separate the n=715 volumes of aliased images.  

To correct for drift in the gradients, and any difference in baseline phase between the 
reference images and the aliased images, a phase correction was performed on the aliased 
images (18). In the phase correction, a mask was created from the average complex 
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reference images for voxels that exceeded 10% of its maximum magnitude. After 
applying the mask, the phase φSR of the (sum of the reference) images was subtracted 
from the original aliased phase φOAt of each of the n (original aliased) images in the time 
series by dividing each image by the normalized sum. The phase φAV of the average of the 
n (original aliased minus sum of reference phase) images was then subtracted by 
computing their average and dividing each image by its normalized version. A plane was 
then fit to the phase φOAt-φSR-φAV of each of the n masked (original aliased minus sum of 
reference and average phase) images for each of the non-overlapping and overlapping 
object regions. The fitted phase φPFt for each unmasked image was then subtracted by 
dividing each unmasked image by a complex number with this fitted phase and unit 
magnitude. The phase φSR of the sum of the reference images was finally added back to 
each of the n unmasked (original aliased minus sum of reference, average, and plane 
fitted phase) images to yield the n adjusted φOAt-φAV-φPFt aliased images. To correct for a 
difference in magnitude between the fully acquired and aliased images, the magnitude of 
the sum of the reference images was divided by the magnitude of the sum of the aliased 
images, averaged over the union of the masked regions for the two slices, then the aliased 
images were multiplied by this factor. The scaling factor for the acquired and simulated 
aliased data were 1.2922 and 1.0007, respectively. The corrected phase with scaled 
aliased magnitudes is separated using the previously described methods. 
4.1 Average of Fully Acquired Complex-Valued Images plus Complex-Valued 
Random Noise  

To illustrate the slice separation methods under known theoretical conditions, the first 
two volumes of the data set of fully acquired complex-valued images were averaged and 
used for true fully acquired reference images. To obtain true aliased images, pairs of slice 
images (slice 1 with 6, etc.) were added. Fully acquired reference images were obtained 
by adding independent and identically distributed noise with a variance as given in Fig. 
4c to the real and imaginary parts of slice a and variance, as given in Fig. 4d, to the real 
and imaginary parts to slice b. Aliased images were obtained by adding independent and 
identically distributed noise to the real and imaginary parts, as calculated from the 
experimental aliased images of the second set of data. For the simulated data, m=2 
volumes of nz=10 fully acquired 96×96 reference images were generated along with 720 
volumes of nz/2=5 aliased images with the first five removed to result in n=715 volumes. 
The first aliased slice, where slices a=1 and b=6 are aliased, was selected for separation 
with the a=1 and b=6 fully acquired slices. 

Figure 1 contains magnitudes and phases of reference, aliased, and separated images. In 
Fig.1a and Fig. 1b are the magnitude and phase of the reference image for slice a, while 
in Fig. 1c and Fig. 1d are the magnitude and phase of the reference image for slice b. 
Note that there is some minimal Nyquist ghosting in the reference images that is 
particularly evident in the phase. The ratio of the magnitudes of the reference images for 
slices a and b is presented in Fig. 1e while the difference in phase between reference 
images of slice a and b is in Fig. 1f. The difference in reference image phase is 
particularly relevant in the denominator of the magnitude-only image separation used in 
Eq. [4]. To illustrate the slice separation methods, both their application to a single image 
and the expected values of their application are calculated. 
The magnitude and phase of the first aliased image from Eq. [1] are shown in Fig. 1g and 
1h respectively. Note that the magnitude of the aliased image appears visually similar to 
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the sum of the magnitude images in Figs. 1a and 1c. For the magnitude-only image 
separation approach, the expected magnitudes using from Eq. [8] are displayed in Fig. 1i 
for slice a and Fig. 1j for slice b, with the separated magnitudes for the first image in the 
series from Eq. [4] in Fig. 1k for slice a  and Fig. 1l for slice  b. Note that both the 
expected magnitudes in Figs. 1m and 1n from Eq. [8] in addition to the separated 
magnitudes in Figs. 1k and 1l using the magnitude-only approach from Eq. [4] have some 
challenges when the difference in phase of the reference images shown in Fig. 1f is clos e 
to zero. Some of the magnitudes using the magnitude-only separation approach are 
negative, thus illustrating the challenges with the magnitude-only approach.  

 
Figure 1: Images for simulated data. Reference images magnitude (a) and phase (b) for 

slice a, magnitude (c) and phase (d) for slice b, the ratio of magnitudes (e), the difference 
of phases (f) between slices a and b, with the aliased image magnitude (g) and phase (h). 
Magnitude-only expected image magnitude for slice a (i) and for slice b (j), with 
magnitude-only separated image magnitude for slice a (k) and for slice b (l). Complex-
valued expected image magnitude (m) and phase (n) for slice a, magnitude (o) and phase 
(p) for slice b, with complex-valued separated image magnitude (q) and phase (r) for slice 
a, and magnitude (s) and phase (t) for slice b. 
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Derived from Eq. [10], the complex-valued expected image magnitude and phase for 
slice a are displayed in Fig. 1m and 1n respectively, while the complex-valued expected 
image magnitude and phase for slice b are displayed in Fig. 1o and 1p respectively. Using 
Eq. [7] on the first aliased image in the series in Fig. 1g and Fig. 1h, the complex-valued 
separated image magnitude and phase for slice a are displayed in Fig. 1q and 1r 
respectively, while the complex-valued separated image magnitude and phase for slice b 
are displayed in Fig. 1s and 1t. Note that the separated image using the complex-valued 
approach are visually very similar to the expected values and reference images, thus the 
complex-valued approach performs extremely well in separating the slices in addition to 
not being dependent upon the difference in phase of the reference images. 

Figure 2 contains variances and correlations of the separated images. In Figs. 2a and 2b 
are the separated image variances for slices a and b respectively using the magnitude-
only approach. In Fig. 2c and 2d are the separated image variances for slices a and b 
respectively using the complex-valued approach. The expected image variances from Eq. 
[9] and [11] and the separated image variances were visually nearly identical and thus the 
expected variances are not shown. Note that the variances using the complex-valued 
approach are smaller than the variances using the magnitude-only approach.  

The correlations presented about the center voxel in slices a and b in Figs. 2e through 
2t correspond to the magnitude-only and complex-valued approaches. The expected 
image correlations from Eqs. [9], [11], and [13] are not presented because all their values 
are zero except for a select few that contain a single one or minus one. The separated 
image correlation shown in Fig. 2e is for slice a magnitude and slice a magnitude, shown 
in Fig. 2f is for slice a magnitude and slice b magnitude, and shown in Fig. 2g is for slice 
b magnitude and slice b magnitude. Note that there is a distinct near -1 correlation 
between a voxels’ separated magnitude in slice a and the separated magnitude in slice b 
and almost no correlation with other voxels. 

The correlations presented about the center voxel in slices a and b in Fig. 2h through 2t 
correspond to the complex-valued approach. The separated image correlation shown in 
Fig. 2h is for slice a real and slice a real, shown in Fig. 2i is for slice a real and slice a 
imaginary, shown in Fig. 2j is for slice a real and slice b real, shown in Fig. 2k is for slice 
a real and slice b imaginary, shown in Fig. 2l is slice a imaginary and slice a imaginary, 
in Fig. 2m is for slice a imaginary and slice b real, shown in Fig. 2n is for slice a 
imaginary and slice b imaginary, shown in Fig. 2o is for slice b real and slice b real, 
shown in Fig. 2p is for slice b real and slice b imaginary, and shown in Fig. 2q is for slice 
b imaginary and slice b imaginary. The correlations between the real and imaginary parts 
of the images separated using the complex-valued approach appear similar to their 
expected values which are not shown, namely that there is a correlation of 1 in a voxel 
with its same complex component and almost no correlation with other voxels. 
From the separated images using the complex-valued approach, the magnitudes were 
computed and their correlations are presented in Figs. 2r through Fig. 2t. The expected 
magnitude-square correlations are asymptotically equivalent to magnitude correlations 
using the complex-valued approach but are not presented as they are all zero except for a 
single value that is the correlation of a voxel in slice a with the same voxel in slice b. The 
correlation for slice a magnitude and slice a magnitude is in Fig. 2r, for slice a magnitude 
and slice b magnitude is in Fig. 2s, for slice b magnitude and slice b magnitude is in Fig. 
2t.  The separated image correlations for both the magnitude-only and complex-valued 
approaches are similar to the expected image correlations with the exception that low 
dark red and blue separated correlations are absent in the expected correlations. 
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To further examine the slice separation methods under simulated experimental 
conditions, the first data set of 720 fully acquired complex-valued images were 
artificially aliased by summing pairs of slice images (slices 1 and 6, etc.) with the first 
five removed to result in n=715 volumes. The first m=2 fully acquired reference images 
were averaged and used for separation. The first aliased slice was selected for separation 

 
Figure 2: Variances and correlations for simulated data. Magnitude-only separated 

image variance for slice a (a) and for slice b (b), with complex-valued separated image 
variance for slice a (c) and for slice b (d). Magnitude-only separated image correlation 
for magnitudes of slices a and a (e), slices a and b (f), and slices b and b (g). Complex-
valued separated image correlation for slice a real and slice a real (h), for slice a real and 
slice a imaginary (i), for slice a real and slice b real (j), for slice a real and slice b 
imaginary (k), for slice a imaginary and slice a real (l), for slice a imaginary and slice b 
real (m), for slice a imaginary and slice b imaginary (n), for slice b real and slice b real 
(o), for slice b real and slice b imaginary (p), for slice b imaginary and slice b imaginary 
(q), for slice a magnitude and slice a magnitude (r),  for slice a magnitude and slice b 
magnitude (s), for slice b magnitude and slice b magnitude (t). 



 
Biometrics Section – JSM 2012 

212 

with the first and sixth fully acquired slices. The separated images are not shown here, as 
they are visually very similar to those in the next example of acquired aliased images. 
4.2 Experimental Aliased Complex-Valued Images 

To finally illustrate the slice separation methods under actual experimental conditions, 
the second data set of 720 aliased complex-valued with the first five removed to result in 
n=715 volumes were used. The first m=2 fully acquired reference images were averaged 
and used for separation. The first aliased slice was selected for separation with the a=1st 
and b=6th fully acquired slices.  

Figure 3 contains magnitudes and phases of reference and separated images. In Fig.3a 
and 3b are the magnitude and phase of the reference image for slice a, while in Fig. 3c 
and 3d are the magnitude and phase of the reference image for slice b. Note that there is 
some minimal Nyquist ghosting in the reference images that is particularly evident in the 
phase.  The ratio of the magnitudes of the reference images for slices a and b is presented 
in Fig. 3e while the difference in phase between reference images of slice a and b is in 
Fig. 3f. The difference in reference image phase is particularly relevant in the 
denominator of the magnitude-only image separation in Eq. [4]. To illustrate the slice 
separation methods, their application to a single image and the average of their 
application to all images are presented.   

The magnitude and phase of the first aliased image are in Fig. 3g and 3h respectively. 
Note that the magnitude of the aliased image appears visually similar to the sum of the 
magnitude images in Fig. 3a and 3c. For the magnitude-only approach, the magnitudes of 
the average of the images are displayed in Fig. 3i  and 3j for slices a and b respectively, 
while the separated magnitudes for the first image in Fig. 3g and Fig. 3h are in Fig. 3k 
and 3l for slices a and b respectively. Note that just as in the simulation example, the 
separated magnitudes in Figs. 3k and 3l from the magnitude-only approach in Eq. [4] 
have some challenges when the difference in phase of the reference images in Fig. 3f is 
close to zero. Some of the magnitudes using the magnitude-only approach are negative, 
thus highlighting the challenges with the magnitude-only approach.   

Derived from Eq. [7], the magnitude and phase of the average image using the 
complex-valued separation approach for slice a are displayed in Fig. 3m and 3n 
respectively, while the magnitude and phase of the average image for slice b are 
displayed in Fig. 3o and 3p. Derived using the complex-valued separation approach in 
Eq. [7], the magnitude and phase of the first image in the series for slice a are displayed 
in Fig 3q and 3r respectively, while the magnitude and phase of the first image for slice b 
are displayed in Fig. 3s and 3t. Note that the separated images using the complex-valued 
approach are visually very similar to the average values and the reference images, thus it 
performs extremely well in separating the slices in addition to not being dependent upon 
the difference in phase of the reference images. 

Figure 4 contains variances and correlations of the separated images. In Fig. 4a and 4b 
are the separated image variances for slices a and b respectively using the magnitude-
only approach, In Fig. 4c and 4d are the separated image variances for slices a and b 
respectively using the complex-valued approach. Note that the image variances for the 
magnitude-only approach are significantly larger than those for the complex-valued 
approach, and that there is a similarity between the separated image variances and the 
simulated and expected image variances in the previous example. 
The correlations presented about the center voxel in slices a and b in Fig. 4e through 4t 
correspond to the magnitude-only and complex-valued approaches. The separated image 
correlation shown in Fig. 4e is for slice a magnitude and slice a magnitude, shown in Fig. 
4f is for slice a magnitude and slice b magnitude, and shown in Fig. 4g is for slice b 
magnitude and slice b magnitude. Note that there is a distinct near -1 correlation between 
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a voxels’ separated magnitude in slice a and the separated magnitude in slice b and 
almost no correlation with other voxels. 

The correlations presented about the center voxel in slices a and b in Fig. 4h through 4t 
correspond to the complex-valued approach. The separated image correlation shown in 
Fig. 4h is for slice a real and slice a real, shown in Fig. 4i is for slice a real and slice a 
imaginary, shown in Fig. 4j is for slice a real and slice b real, shown in Fig. 4k is for slice 
a real and slice b imaginary, shown in Fig. 4l is for slice a imaginary and slice a 

  
Figure 3: Images for experimental data. Reference images magnitude (a) and phase (b) 

for slice a, magnitude (c) and phase (d) for slice b, the ratio of magnitudes (e), the 
difference of phases (f) between slices a and b, with the aliased image magnitude (g) and 
phase (h). Magnitude-only average separated image magnitude for slice a (i) and for slice 
b (j), with magnitude-only separated image magnitude for slice a (k) and for slice b (l). 
Complex-valued magnitude (m) and phase (n) of average separated image for slice a, 
magnitude (o) and phase (p) of average separated image for slice b, with complex-valued 
separated image magnitude (q) and phase (r) for slice a, and magnitude (s) and phase (t) 
for slice b. 
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imaginary, shown in Fig. 4m is for slice a imaginary and slice b real, shown in Fig. 4n is 
for slice a imaginary and slice b imaginary, shown in Fig. 4o is for slice b real and slice b 
real, shown in Fig. 4p is for slice b real and slice b imaginary, while  shown in Fig. 4q is 
for slice b imaginary and slice b imaginary. Note that the separated image correlations 
appear similar to their expected values in Fig. 2.  The correlations between the real and 
imaginary parts of the images separated using the complex-valued approach appear 

 
Figure 4: Variances and correlations for experimental data. Magnitude-only separated 

image variance for slice a (a) and for slice b (b), with complex-valued separated image 
variance for slice a (c) and for slice b (d). Magnitude-only separated image correlation 
for magnitudes of slices a and a (e), slices a and b (f), and slices b and b (g). Complex-
valued separated image correlation for slice a real and slice a real (h), for slice a real and 
slice a imaginary (i), for slice a real and slice b real (j), for slice a real and slice b 
imaginary (k), for slice a imaginary and slice a real (l), for slice a imaginary and slice b 
real (m), for slice a imaginary and slice b imaginary (n), for slice b real and slice b real 
(o), for slice b real and slice b imaginary (p), for slice b imaginary and slice b imaginary 
(q), for slice a magnitude and slice a magnitude (r),  for slice a magnitude and slice b 
magnitude (s), for slice b magnitude and slice b magnitude (t). 
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similar to their expected values, namely that there is a correlation of 1 in a voxel with its 
same complex component and almost no correlation with other voxels.  

From the separated images using the complex-valued approach, the magnitudes were 
computed and their correlations are presented in Fig. 4r through Fig. 4t. The correlation 
for slice a magnitude and slice a magnitude is in Fig. 4r, for slice a magnitude and slice b 
magnitude is in Fig. 4s, for slice b magnitude and slice b magnitude is in Fig. 4t.  The 
separated image correlations for both the magnitude-only approach and the complex-
valued approach exhibit almost no correlation with other voxels except for very low 
correlation outlining the previously aliased slices attributed to a small difference between 
the phase of the sum of the reference images and the aliased images from phase due to 
gradient heating. Fitting a higher order polynomial would decrease this difference. 

5. Discussion and Conclusions 
In this manuscript, we have described the theory and application of both a previously 

derived magnitude-only approach and our newly defined complex-valued approach to 
separating aliased slices. It was highlighted that the magnitude-only approach has 
challenges separating the slices when the difference in phase between the reference 
images is close to a multiple of π and optimal when the difference is π/2.  The 
experimental data and simulated data derived from the experimental data illustrate that 
such phase differences can be a challenge to control in long echo time, gradient recalled 
echo images with well displaced slices and an imperfect shim. From the theoretical 
statistical results, it is apparent that a voxels in a given slice can be correlated with the 
corresponding voxel in the other slice with the magnitude-only and complex-valued 
separation approaches. It was shown in the Results that the complex-valued approach 
performed better than the magnitude-only approach in terms of separated images.   

New work in this manuscript separates the complex-valued images from two slices in a 
single aliased complex-valued image. Since the magnitude-only and complex-valued 
slice separation methods are performed in image space, k-space subsampling schemes 
such as partial k-space, SENSE, and GRAPPA can also be utilized to further increase the 
speed at which a single volume image is acquired. Analysis of complex-valued images in 
fMRI has been receiving increasing attention (14,15,16) and thus it is important to 
reconstruct complex-valued images. Future work on this topic includes extending to the 
aliasing of more than two slices, to more than one coil, combining with a statistical 
examination of SENSE (22), and application to experimental human and animal data. 
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