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Abstract

In functional magnetic resonance imaging (fMRI), the
process of determining statistically significant brain ac-
tivation is commonly performed in terms of voxel time
series measurements after image reconstruction. The im-
age reconstruction and statistical activation processes are
treated separately. In this manuscript, the relationship
between complex-valued (Fourier) encoded k-space and
complex-valued image measurements from (Fourier) re-
constructed images is summarized. The voxel time-series
measurements are written in terms of spatio-temporal k-
space measurements utilizing this spatial frequency k-
space and image relationship. Voxel fMRI activation
can be determined in image space for example using
the Rowe-Logan complex-valued activation model [Rowe,
D.B., and Logan, B.R. (2004). A complex way to com-
pute fMRI activation. NeuroImage, 23 (3):1078-1092]
in terms of the original k-space measurements. Addi-
tionally, the spatio-temporal covariance between recon-
structed complex-valued voxel time series can be writ-
ten in terms of the spatio-temporal covariance between
complex-valued k-space measurements. This allows one
to utilize the originally measured data in its more natu-
rally acquired state rather than in a transformed state.
The effects of modeling preprocessing in k-space on voxel
activation and correlation can then be examined.

1. Introduction

In functional magnetic resonance imaging (fMRI), an
array of data for an individual image is measured in an
encoded form. This measured data is generally Fourier
encoded (Kumar, et al., 1975; Haacke et al., 1999) and
thus are measured spatial frequencies. These spatial fre-
quency (k-space) measurements are then reconstructed
into an individual measured image array by the process
of an inverse Fourier transformation. A series of these
arrays of encoded images is measured and the reconstruc-
tion process is applied to each. For each voxel, temporally
sequential voxel measurements are collected into a time
series for determination of statistically significant acti-
vation. The originally measured spatial frequencies are
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complex-valued as is the inverse Fourier transformation
image reconstruction process. Due to measurement er-
ror and imperfections in the Fourier encoding, voxel time
series are complex-valued.

The process of determining statistical activation in
each voxel has for the most part been from magnitude-
only time series (Bandettini et al., 1993; Friston et al.,
1994). The process of converting a complex-valued time
series into a magnitude-only time series is to take the
square root of the sum of the squares of the real and
imaginary parts of the complex-values time series at each
time point (Rowe and Logan, 2004). An activation statis-
tic from the magnitude-only time series for each voxel is
determined by computing a measure of association be-
tween the observed voxel time series and a preassigned
ideal time series based on the timing of the experiment
and physiological considerations. This association mea-
sure for each voxel is statistically compared to the as-
sociation measure that would result from a time series
of random noise. A scale of color values for the activa-
tion statistic is assigned and each voxel is given the color
corresponding to its activation statistic.

The idea of computing an activation statistic from the
complex-valued time series has been previously discussed
(Lai and Glover, 1997; Nan and Nowak, 1999). This
idea of computing fMRI activation from complex-valued
data has recently been developed and expanded upon
(Rowe and Logan, 2004,2005; Rowe, 2005a,b). Work has
also been performed on computing fMRI activation from
phase-only time series (Rowe et al., 2007b). However,
the processes of image reconstruction and statistical ac-
tivation have been treated separately. Additionally, ac-
tivation is determined in terms of complex-valued voxel
measurements after reconstruction and not the original
encoded measurements.

In the current study, the relationship between the orig-
inal encoded k-space measurements and reconstructed
voxel measurements for each image is summarized (Rowe
et al., 2007a). For each image, a vector of real-imaginary
reconstructed voxel measurements is formed and writ-
ten as a linear combination of real-imaginary k-space
measurements. A larger vector of reconstructed real-
imaginary voxel measurements is formed by stacking the
individual vectors of real-imaginary voxel measurements
in temporal order and written as a linear combination of
a larger vector of real-imaginary k-space measurements
that is formed by stacking the individual vectors of k-
space measurements in temporal order. A permutation
matrix as described in Appendix A is utilized to reorder
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the voxel measurements that are real then imaginary per
image to be of real then imaginary per voxel. Statisti-
cal functional brain activation can then be determined
with the aforementioned recent complex-valued activa-
tion models. A map of these activation statistics can
then thresholded to determine statistically significant ac-
tivation while adjusting for multiple comparisons (Logan
and Rowe, 2004).

Statistically significant voxel activation and correlation
between voxels will now be determined in image space in
terms of the originally acquired k-space measurements.
This will allow the modeling of the originally acquired
measurements in their original state and not in a trans-
formed state. Implications of k-space preprocessing on
voxel activation and correlation could then be evaluated.

2. Background

To aid in describing the quantitative methods of this
study, a simple illustrative example is presented along
with the mathematical descriptions. In MRI, the voxel
intensities are not measured directly. In MRI, measure-
ments are taken of an encoded (transformed) version of
the image and the image reconstructed (inverse trans-
formed) from the encoded measurements. The MRI en-
coding (transformation) is almost exclusively Fourier en-
coding. That is, in MRI we measure the Fourier trans-
form of an image and reconstruct the image via an in-
verse Fourier transform. The Fourier transform and in-
verse Fourier transforms are complex-valued procedure
that results in complex-valued (real-imaginary) arrays.
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Figure 1: Ideal noiseless image.

To gain some intuition into the Fourier encoding pro-
cess, consider the Fourier transform of an image that has
dimensions py × px. That is, py rows and px columns.
Often the image is square and the number of rows is the
same as the number of columns but this is not neces-
sary. More specifically, consider an 8 × 8 ideal noise-
less gray scale image as presented in Figure 1. Since the
Fourier transform and inverse Fourier transform proce-
dures can operate on and produce complex-valued arrays,
the real-valued image in Figure 1 can be represented as
a complex-valued image RC that has a real part RR as
in Figure 1 an imaginary part RI that is the zero matrix
so that RC = RR + iRI . The encoded or Fourier trans-
form of this image can be found as in Equation 2.1 by
pre-multiplying the py × px dimensional complex-valued
matrix RC by a complex-valued forward Fourier matrix

Ω̄yC = Ω̄yR + iΩ̄yI that is of dimensions py × py and
post-multiplying RC by the transpose of another forward
Fourier matrix Ω̄T

xC = (Ω̄xR + iΩ̄xI)T that is of dimen-
sions px × px where T denotes matrix transposition. The
result of the pre- and post-multiplications is a complex-
valued array of spatial frequency (k-space) measurements
SC with real part SR and imaginary part SI as also shown
in Equation 2.1.

(Ω̄yR + iΩ̄yI )(RR + iRI)(Ω̄xR + iΩ̄xI)T = (SR + iSI)
(2.1)

This mathematical procedure is graphically illustrated
in Figure 2 using the aforementioned 8×8 image. In Fig-
ure 2 the 8 × 8 image RC is displayed with real part RR

given in Figure 2c and imaginary part RI in Figure 2d
is utilized to mimic a magnetic resonance echo planar
imaging experiment. The spatial frequency (k-space) val-
ues SC associated with this complex-valued image can be
found by pre-multiplying the complex-valued image RC

with real image part RR in Figure 2c and imaginary im-
age part RI in Figure 2d by the complex-valued forward
Fourier matrix Ω̄Cy presented as an image with real part
Ω̄Ry in Figure 2a and imaginary part Ω̄Iy in Figure 2b
then post-multiplying the result by the transpose of the
symmetric forward Fourier matrix Ω̄Cx presented as an
image with real part Ω̄Rx in Figure 2e and imaginary part
Ω̄Ix in Figure 2f. The spatial frequency (k-space) values
SC for the complex-valued image with real image part
RR in Figure 2c and imaginary image part RI in Fig-
ure 2d are presented as an image with real part SR given
in Figure 2g and imaginary part SI in Figure 2h. Note
that the image does not have to be square.
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(e) Ω̄xR
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(h) SI

Figure 2: Complex-valued 2D forward Fourier transform.
(a) Forward matrix real, (b) Forward matrix imaginary,
(c) Image real, (d) Image imaginary, (e) Forward matrix
real, (f) Forward matrix imaginary, (g) Spatial frequen-
cies real, (h) Spatial frequencies imaginary.

However, as previously described, in MRI encoded (k-
space) measurements SC are taken and reconstructed
(transformed) into an image. The inverse Fourier proce-
dure is performed. This reconstruction procedure or in-
verse Fourier transform of the spatial frequency (k-space)
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measurements can be found as

(ΩyR + iΩyI)(SR + iSI )(ΩxR + iΩxI)T = (RR + iRI)
(2.2)

by pre-multiplying the py × px dimensional complex-
valued spatial frequency matrix SC by a complex-valued
inverse Fourier matrix Ωy that is of dimensions py×py and
post-multiplying SC by the transpose of another Fourier
matrix Ω̄T

x that is of dimensions px × px where T de-
notes matrix transposition. The result of the pre- and
post-multiplications is a complex-valued array of image
measurements RC with real part RR and imaginary part
RI as also shown in Equation 2.2.
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(e) ΩxR
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(b) ΩyI
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(h) RI

Figure 3: Complex-valued 2D inverse Fourier transform.
(a) Inverse matrix real, (b) Inverse matrix imaginary, (c)
Spatial frequencies real, (d) Spatial frequencies imagi-
nary, (e) Inverse matrix real, (f) Inverse matrix imagi-
nary, (g) Image real, (h) Image imaginary.

The complex-valued image RC with real image part RR

in Figure 2c and imaginary image part RI in Figure 2d
can be recovered as seen in Figure 3. The process of re-
covering the original complex-valued image RC is to pre-
multiply the complex-valued spatial frequency (k-space)
values SC with real image part SR in Figure 3c and imag-
inary image part SI in Figure 3d by the complex-valued
inverse Fourier matrix ΩCy presented as an image with
real part ΩRy in Figure 3a and imaginary part ΩIy in
Figure 3b then post-multiply the result by the transpose
of the symmetric inverse Fourier matrix ΩCx presented as
an image with real part ΩRx in Figure 3e and imaginary
part ΩIx in Figure 3f. The recovered complex-valued im-
age RC is presented with real part RR in Figure 3g and
imaginary part RI in Figure 3h.

In the above, the Fourier matrices are defined as fol-
lows. If ΩC is a p × p Fourier matrix, it is a matrix
with (j, k)th element [ΩC ]jk = κ

(
ωjk

)
where κ = 1 and

ω = exp[−i2π(j − 1)(k − 1)/p] for the forward transfor-
mation while κ = 1/p and ω = exp[+i2π(j − 1)(k− 1)/p]
for the inverse transformation, where j, k = 1, ..., p.

This complex-valued inverse Fourier transformation
image reconstruction process can be equivalently de-
scribed as a linear transformation with a real-valued rep-

resentation often called an isomorphism in mathematics
(Rowe et al, 2007a). Define a real-valued vector s to be
a 2pxpy dimensional vector of complex-valued spatial fre-
quencies from an image where the first pxpy elements are
the rows of the real part of the spatial frequency matrix
SR in Figure 3c and the second pxpy elements are the rows
of the imaginary part of the spatial frequency matrix SI

in Figure 3d. The real-valued vector of spatial frequen-
cies is formed by s = vec(ST

R , ST
I ) where ST = (ST

R , ST
I )

is a px × 2py matrix formed by joining the transpose of
the real and imaginary parts of SC as seen in Figure 4a
and vec(·) denotes the vectorization operator that stacks
the columns shown in Figure 4b of its matrix argument.
This gives us a real-valued vector representation of the
matrix of spatial frequency (k-space) values that is given
in Figure 5b.
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(a) Spatial frequencies ST (b) Partitioned spatial frequencies ST

Figure 4: Matrix to vector spatial frequency (k-space)
values.

Further define a matrix Ω that is another representaion
of the complex-valued inverse Fourier transformation ma-
trices. The matrix elements of Ω are

ΩR = [(ΩyR ⊗ ΩxR) − (ΩyI ⊗ ΩxI)] (2.3)
ΩI = [(ΩyR ⊗ ΩxI) + (ΩyI ⊗ ΩxR)] (2.4)

where ⊗ denotes the Kronecker product that multiplies
every element of its first matrix argument by its entire
second matrix argument. Utilizing the complex-valued
Fourier matrix ΩCy with real and imaginary parts ΩyR

and ΩyI given in Figures 3a and Figure 3b along with the
complex-valued Fourier matrix ΩCx with real and imagi-
nary parts ΩxR and ΩxI given in Figures 3e and Figure 3f
the resulting Ω matrix is presented in Figure 5a.

The real-valued vector representation s of the spa-
tial frequency (k-space) values in Figure 5b is then pre-
multiplied by the (inverse Fourier) reconstruction matrix
Ω as in Equation 2.5

r = Ω ∗ s(
rR

rI

)
=

(
ΩR −ΩI

ΩI ΩR

)
∗

(
sR

sI

)
(2.5)

where the real-valued representation r that is of dimen-
sion 2pxpy × 1 of the complex-valued image has a true
mean and measurement error.

This can be pictorially represented as in Figure 5. Fig-
ure 5b is the spatial frequency vector s and Figure 5a is
the inverse Fourier transformation matrix Ω as described
in Equation 2.5. This matrix multiplication produces a
vector representation r of the image voxel measurements
given in Figure 5c as described in Equation 2.5. The vec-
tor of voxel measurements r given in Equation 2.5 and
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(a) reconstruction matrix Ω (b) vector s (c) vector r

Figure 5: Isomorphism for complex-valued 2D inverse
Fourier Transform.

pictorially displayed in Figure 5c is partitioned into col-
umn blocks of length px. These blocks are then arranged
as in Figure 6a and formed into a single matrix image
as in Figure 6b where the first (last) eight columns are
the transpose of the real (imaginary) part of the image.
As can be seen, the same resultant complex-valued image
is arrived at as with the complex-valued inverse Fourier
transformation procedure described in Equation 2.2 and
presented in Figure 3.
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(a) partitioned image RT (b) combined image RT = (RT
R, RT

I )

Figure 6: Vector to matrix image values.

In the above described procedure, measurement noise
was not considered. Define the py × px dimensional
complex-valued spatial frequency measurement with
noise to be SC that consists of a py × px dimensional
matrix of true underlying noiseless complex-valued spa-
tial frequencies S0C and a py × px dimensional matrix of
complex-valued measurement error EC . This partition-
ing of the measured spatial frequencies in terms of true
noiseless spatial frequencies plus measurement error can
be represented as

SC = (S0R + iS0I) + (ER + iEI) (2.6)

where i is the imaginary unit while S0R, S0I , ER and EI

are real and imaginary matrix valued parts of the true
spatial frequencies and measurement noise, respectively.
Let ΩCx and ΩCy be px × px and py × py complex-valued
Fourier matrices such that

ΩCy = ΩRy + iΩIy and ΩCx = ΩRx + iΩIx (2.7)

where ΩRy and ΩRx are real while ΩIy and ΩIx are imag-
inary matrix valued parts. Then, the py × px complex-

valued inverse Fourier transformation reconstructed im-
age RC of SC can be written as

RC = ΩCy ∗ SC ∗ ΩT
Cx

= ΩCy(S0R + iS0I)ΩT
Cx + ΩCy(ER + iEI)ΩT

Cx

= R0C + NC

where RC has a true mean R0C and measurement error
NC . The complex-valued matrices for reconstruction Ωx

and Ωy need not be exactly Fourier matrices but may be
Fourier matrices that include adjustments for magnetic
field inhomogeneities derived from phase maps or recon-
struction matrices for other encoding procedures.

The real-valued inverse Fourier transformation method
for image reconstruction can also be directly applied
to noisy measurements. We can represent the noisy
complex-valued spatial frequency matrix as s = s0 + ε
there these 2pxpy dimensional vectors are the reals of the
rows stacked upon the imaginaries of the rows of the cor-
responding matrices. This implies that if the mean and
covariance of the spatial frequency measurement vector s
that is of dimension 2pxpy×1 are s0 and Γ, then the mean
and covariance of the reconstructed voxel measurements
r are Ωs0 and ΩΓΩT .

3. Methods

The previously described data for a single image is ex-
panded upon to mimic an fMRI experiment. In fMRI,
a series of the previously described slices are acquired.
Denote the py × px random complex-valued spatial fre-
quency matrix at time t as SCt = S0Ct + ECt and define
st = vec(ST

Rt, S
T
It), where SRt and SIt are the real and

imaginary parts of SCt for time points t = 1, ..., n. De-
fine the total number of voxels in the image, which is
the same as the number of complex-valued k-space mea-
surements to be p = pxpy. This sequence of measured
spatial frequency vectors can be collected into a 2p × n
matrix S = (s1, ..., sn) where the tth column contains the
p real k-space measurements stacked upon the p imagi-
nary k-space measurements for time t. Having done this,
n reconstructed images can be formed by the 2p× n ma-
trix R = ΩS where the tth column of R contains the p
real voxel measurements stacked upon the p imaginary
voxel measurements for time t, t = 1, ..., n.

As before, this procedure can be represented pictori-
ally. The complex-valued image in Figure 2c and Fig-
ure 2d is taken as the mean “active” or “on” image and
a duplicate of it with the two white voxels replaced by
grey voxels are used as the mean “inactive” or “off” im-
ages. For illustrative purposes, a single replicate of eight
on images followed by eight off images that form a sin-
gle block from an experiment with eight blocks is ini-
tially presented. Subsequently all eight blocks are ex-
amined. Eight column vectors of the spatial frequencies
for the true mean “on” image are joined into a matrix
with eight column vectors of the spatial frequencies for
the true mean “off” image as in Figure 7b. Each column
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in Figure 7b is the vector form of the spatial frequencies
for an image similar to that in Figure 5b.
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(c) error E

Figure 7: Noisy spatial frequency (k-space) values.

The mean “on” images contained voxels with values
β0 = 0 and β1 = 0 outside a four by four by four internal
region, inactive gray voxels within the four by four region
with values β0 = SNR ∗ σ and β1 = 0, along with two
active voxels with value β0 = SNR∗σ and β1 = CNR∗σ.
Activation parameter values were SNR= 30, CNR= 1
and σ = .05. In this parameterization, SNR denotes the
temporal signal-to-noise ratio, CNR denotes the func-
tional contrast-to-noise ratio, and σ denotes the voxel
standard deviation.

Independent noise column vectors εt as seen in Fig-
ure 7c are generated from a normal distribution with zero
mean vector and covariance matrix Γ = γ2 Γ1 ⊗ Γ2 ⊗ Γ3.
This covariance structure mimics temporal autocorrela-
tion along the echo planar imaging (EPI) trajectory along
with correlation between real and imaginary parts. The
covariance matrix was formed with Γ1, Γ2, and Γ3 taken
to be unit variance correlation matrices while γ was taken
to be γ2 = pxpy σ2. The py × py correlation matrix Γ1 is
taken to be an AR(1) correlation matrix with (i, j)th ele-
ment %

|i−j|
1 where %1 = 0.25, the 2× 2 correlation matrix

Γ2 is taken to have an off diagonal correlation of %2 = .5
while the px × px correlation matrix Γ3 is taken to be
an AR(1) correlation matrix with (i, j)th element %

|i−j|
3

where %3 = 0.5.
Each matrix image in Figure 7a, b, and c was pre-

multiplied by the (inverse Fourier transform) image re-
construction matrix Ω given in Equation 2.5 and pre-
sented in Figure 5a. The results of this pre-multiplication
can be seen in Figure 8a, b, and c. The columns of
R = ΩS in Figure 8a are real and imaginary parts for
each noisy image. The noisy image in Figure 8a the sum
of the noiseless image in Figure 8b and the measurement
noise presented as an image in Figure 8. However, we
would like real and imaginary parts for each noisy voxel.
As described in Section 2, we can vectorize R and S to
yield r = vec(R) and s = vec(S) as seen in Figure 9.
The vector s of noisy spatial frequency (k-space) values
as presented in Figure 9c is pre-multiplied by a block di-
agonal matrix with Ω along the diagonal as displayed in
Figure 9b to produce a vector of noisy image measure-
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4 8 1216

16

32

48

64

80

96

112

128

(b) true R0=ΩS0
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(c) error N=ΩE

Figure 8: Reconstructed noisy images.

16

32

48

64

80

96

112

128

...
16

32

48

64

80

96

112

128

16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128 0
.. .

0 16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128

16

32

48

64

80

96

112

128

...
16

32

48

64

80

96

112

128

(a) noisy r (b) reconstruction matrix (In ⊗Ω) (c) noisy s

Figure 9: Reconstructed vectorized noisy images.

ments r as shown in Figure 9a.
The k-space measurements and the image voxel mea-

surements can be stacked as s = vec(S) and r = vec(R).
Note that s and r and have been redefined from their pre-
vious definition. If the mean and covariance of the 2np×1
vector of spatial frequency measurements s are s0 and ∆,
then the mean and covariance of the 2np × 1 vector of
reconstructed voxel measurements r are (In ⊗ Ω)s0 and
(In ⊗ Ω)∆(In ⊗ ΩT ). For example, if the k-space mea-
surements were taken to be temporally independent, then
∆ = In⊗Γ and cov(r) = In⊗(ΩΓΩT ). Thus, we have de-
scribed the fMRI voxel measurements as a linear function
of the fMRI k-space measurements. We can alternatively
organize the voxel measurements by stacking the first set
of p columns of RT upon the second set of p columns of
RT to form a matrix Y . Having done this, the jth column
of the data matrix Y of dimension 2n × p contains the
n real voxel measurements stacked upon the n imaginary
voxel measurements for voxel j, j = 1, ..., p. The voxel
measurements Y can be described with the complex fMRI
model (Rowe and Logan, 2005) as

Y =
[(

C1Xβ1

S1Xβ1

)
, ...,

(
CpXβp

SpXβp

)]
+

[(
ηR1

ηI1

)
, ...,

(
ηRp

ηIp

)]

(3.1)

where C1 and S1 are diagonal matrices with cosine and
sine terms respectively. Different activation models are
found by different choices of the C and S matrices. The
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complex constant phase model (Rowe and Logan, 2004)
can be found with Cj = In cos θj and Sj = In sin θj where
j indexes the jth voxel. The unrestricted phase or mag-
nitude only model can be found by by selecting the tth

element of Cj and Sj to be Cjt = cos θjt and Sjt = sin θjt,
where θjt is unique for each j and t. The complex model
for both magnitude and phase (Rowe, 2005) can be found
by choosing the phase θjt = uT

t γ where ut is the tth row
of a phase design matrix U and γ are phase regression
coefficients.

This can be rearranged and written with y = vec(Y )
as



yR1

yI1

...
yRp

yIp



=




C1X 0 0
0 S1X

. . .
CpX 0

0 0 SpX







β1

β1

...
βp

βp




+




ηR1

ηI1

...
ηRp

ηIp



(3.2)

where y = (yT
R1, y

T
I1, ..., y

T
Rp, y

T
Ip)

T is a vector containing
the real and imaginary reconstructed voxel measurements
and η = (ηT

R1, η
T
I1, ..., η

T
Rp, η

T
Ip)

T is a vector containing
the real and imaginary errors of the reconstructed voxel
measurements. The model can be written as y = µ + ε.
For example, with constant phase model, the mean is µ =
(I2p ⊗ X)[(cos θ1, sin θ1) ⊗ βT

1 , ..., (cos θp, sin θp) ⊗ βT
p ]T .

The rearrangement of the voxel measurements from
r to y is a linear transformation and can be achieved
through a permutation matrix P (described in Appendix
A) to form y = Pr. In terms of the original k-space
measurements the voxel time courses are y = P (In ⊗
Ω)vec(vec(ST

R1, S
T
I1), ..., vec(ST

Rn, ST
In)). A permutation

matrix is a square matrix that can be obtained by per-
muting (rearranging) either the columns or rows of an
identity matrix (Harville, 1999). A permutation ma-
trix is of full rank and therefore nonsingular and also
invertible. Having done this linear transformation, the
mean and covariance of y are µ = P (In ⊗ Ω)s0 and
Λ = P (In ⊗ Ω)∆(In ⊗ ΩT )P T . Since the matrices Ω and
P that convert k-space measurements s to voxel measure-
ments y are known a priori, the expression y = P (In⊗Ω)s
can be inverted to write s = (In ⊗Ω−1)P−1y in terms of
the parameters as



s1

...
sn


 = (In ⊗ Ω−1)P−1(I2n ⊗ X)︸ ︷︷ ︸

Known




β1 cos θ1

β1 sin θ1

...
βp cos θp

βp sin θp




+



ε1
...

εn




(3.3)

then the optimization for the regression coefficients (β)
and phases (θ) can be performed in k-space to yield the
same parameter estimates. Also note that P is an or-
thogonal matrix so P−1 = P T . Activations can then be
computed from Rowe’s complex activation models.

Using ordinary least squares or a normal distributional
specification on the errors, the voxel-wise regression co-
efficients and phases can be determined to yield the same

point estimators as in Logan and Rowe (2004). The
Rowe-Logan unconstrained alternative hypothesis esti-
mators (with hats) for H1: Cβ 6= 0 along with the
constrained null hypothesis estimators (with tildes) for
H0: Cβ = 0 in voxel j are

θ̂j =
1
2

tan−1

[
β̂T

Rj(X
′X)β̂Ij

(β̂T
Rj(X ′X)β̂Rj − β̂T

Ij(X ′X)β̂Ij )/2

]

β̂j = β̂Rj cos θ̂j + β̂Ij sin θ̂j

θ̃j =
1
2

tan−1

[
β̂T

RjΨ(X ′X)β̂Ij

(β̂T
RjΨ(X ′X)β̂Rj − β̂T

IjΨ(X ′X)β̂Ij )/2

]

β̃j = Ψ
[
β̂Rj cos θ̃j + β̂Ij sin θ̃j

]
(3.4)

where C is an r × (q + 1) matrix of full row rank,
Ψ = Iq+1 − (X ′X)−1C′[C(X ′X)−1C′]−1C, β̂Rj =
(X ′X)−1X ′yRj , and β̂Ij = (X ′X)−1X ′yIj, while yRj and
yIj are the n × 1 vectors of real and imaginary voxel ob-
servations.

Now we can convert the vector r, displayed in Fig-
ure 9a that has values arranged that are reals and imag-
inaries stacked for images, to the vector y, that has val-
ues arranged that are reals and imaginaries stacked for
voxels. We can convert from the vector r which is pre-
sented in Figure 9c to the vector y via a permutation
matrix P . Now with the y vector being arranged as real
and imaginary observations in each voxel as described in
Equation 3.2, we can apply the complex activation mod-
els (Rowe and Logan, 2004). The regression coefficients
β, the phase angle θ, and the variance σ2 are estimated
under both the null and alternative hypotheses as de-
scribed in Equation 3.4 then activation computed. In Fig-
ures 10a and c are the unthresholded activation maps for
the magnitude-only and complex-valued activation meth-
ods respectively. In Figures 10b and d are the Bonferroni
5% thresholded activation maps for the magnitude-only
and complex-valued activation techniques respectively.

Voxel-wise activations will be the same as in Rowe
and Logan (2004). Then the generalized likelihood ra-
tio statistic for the complex fMRI activation model is

−2 log λj = 2n log
(
σ̃2

j /σ̂2
j

)
. (3.5)

This statistic has a large sample χ2
r distribution. Note

that when r = 1, two-sided testing can be done using the
signed likelihood ratio test given by

zj = Sign(Cβ̂j)
√

−2 logλj , (3.6)

which has a large sample standard normal distribution
under the null hypothesis. Alternatively with r = 1, a
Wald type statistic can be formed

wj = Cβ̂j/
√

σ̂2
j C(XT X)−1C′, (3.7)

which also has a large sample standard normal distribu-
tion under the null hypothesis. A map of these activation
statistics is then thresholded while adjusting for multiple
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comparisons (Logan and Rowe, 2004). However, correla-
tions between voxels are characterized in terms of spatio-
temporal correlations between k-space measurements.
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Figure 10: Activation maps. Bonferroni 5% threshold.

The variances and covariances for example with a spec-
ification of uncorrelated temporal k-space measurement
vectors (st) yields the covariance matrix Λ = P (In ⊗
ΩΓΩT )P T for the voxel measurements. Define the voxel
measurement covariance matrix to be Σ. Having esti-
mated the voxel-wise regression coefficients and phases,
we can estimate the mean of the vector of voxel mea-
surements y by µ̂ (under the alternative hypothesis)
and the mean of the matrix of voxel measurements R
by M̂ = vec(P−1µ̂). Here vec(·) is the operator that
is the inverse operation of the vec(·) operator. The
voxel covariance matrix Σ can now be estimated by
Σ̂ = (R − M̂ )(R − M̂ )T /n.

With the physically motivated specification of the same
voxel covariance ΣW within the real-imaginary channels
and voxel covariance between the real-imaginary channels
ΣB , the previous the voxel covariance matrix becomes

Σ =
[

ΣW ΣB

ΣT
B ΣW

]
. (3.8)

We can estimate the covariance matrices under the alter-
native hypothesis by

Σ̂W =
(RR − M̂R)(RR − M̂R)T +(RI − M̂I )(RI − M̂I)T

2n
(3.9)

Σ̂B =
(RR − M̂R)(RI − M̂I)T +(RI − M̂I )(RR − M̂R)T

2n
(3.10)

and under the null hypothesis similarly find Σ̃W and Σ̃B

by replacing hats with tildes in Σ̂W and Σ̂B .
Note that the jth diagonal elements of Σ̂W and Σ̃W are

equivalent to those in Rowe and Logan (2004)

σ̂2
j =

1
2n

[
yRj − Xβ̂j cos θ̂j

yIj − Xβ̂j sin θ̂j

]T [
yRj − Xβ̂j cos θ̂j

yIj − Xβ̂j sin θ̂j

]

(3.11)

σ̃2
j =

1
2n

[
yRj − Xβ̃j cos θ̃j

yIj − Xβ̃j sin θ̃j

]T [
yRj − Xβ̃j cos θ̃j

yIj − Xβ̃j sin θ̃j

]
.

(3.12)

As described in Equations 2.11 and 2.12, we can also
estimate covariance between voxels, Σ̂. Again, note that
the jth diagonal element of Σ̂W from Equation 3.9 is ex-
actly σ̂2

j from Rowe-Logan (2004) complex model. The
sample voxel correlation from Σ̂W described in Equa-
tion 3.9 is displayed in Figure 11a with theoretical value
presented in Figure 11b. The sample correlation from
Γ̂ = Ω−1Σ̂(ΩT )−1 is given in Figure 11c with theoretical
value in Figure 11d. Note the similarity between the sam-
ple valuesand the theoretical values in Figures 11a and c
to the theoretical values in Figures 11b and d even for
the small sample size.
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Figure 11: Correlation matrices

The spatio-temporal covariances between the complex-
valued voxel measurements Λ can now be described in
terms of the spatio-temporal covariances between the
complex-valued k-space measurements ∆. The covari-
ance of the complex-valued k-space measurements may
be due to independent sources such as spatio-temporal
independent noise ∆I and true physiologic processes ∆P

so that ∆ = ∆P + ∆I . Now adjustments to the k-
space measurements such as shifting of alternating lines
and apodization modify the correlation structure. These
k-space adjustments can be written as sA = As =
A(s0 +ε) = As0+Aε and rA = ΩA(s0 +ε) = ΩAs0+ΩAε
where the subscript A denotes an adjusted measure-
ment. Then the mean and variance/covariance matri-
ces are E(sA) = As0 and var(sA) = AΓAT for the spa-
tial frequency measurements and E(rA) = ΩAs0 and
var(rA) = ΩAΓAT ΩT for the voxel measurements. So
unless Γ = I and AAT = I the voxels are correlated be-
cause ΩΩT = I. We are changing the physiologic and
independent correlations. They change according to

var(s) = ΓP + ΓI

var(sA) = AΓP AT + AΓIA
T

var(r) = ΩΓP ΩT + ΩΓIΩT

var(rA) = ΩAΓP AT ΩT + ΩAΓIA
T ΩT
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It is possible that we are missing out on or inducing cor-
relations? We should adjust the covariance matrices.

One could apply temporal filtering or pre-whitening to
the k-space measurements that are residuals after fitting
a regression model in image space. After fitting the fMRI
model to the voxel image time courses, we can trans-
form the residual images into spatial frequencies (k-space)
and estimate the correlation due to adjustment sources
AAT . The spatial frequencies can then be temporally pre-
whitened, transformed back into residual images then the
noise variation ΣW re-estimated.

4. Discussion

Complex-valued voxel measurements have been writ-
ten in terms of the original complex-valued k-space mea-
surements. This allows the computation of statistically
significant fMRI brain activation directly from the origi-
nal k-space measurements but in image space. The cor-
relation between voxel measurements can also be written
in terms of correlation between k-space measurements.
Since the covariance matrix between the k-space mea-
surements and hence voxel measurements can be parti-
tioned into individual sources of covariation, statistical
associations between individual voxels or regions of in-
terest could be quantified utilizing unmodeled sources of
covariation.
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A. Permutation Matrix

The elements of the permutation matrix P are all zero
except for a single 1 in each row. The tth row, t = 1, ..., n
within the first set of n rows of the permutation matrix P
that form the n real measurements within the first voxel
have a 1 in column t = 0p + 1, 2p + 1, 4p + 1, ..., 2(n−
1)p + 1. The tth row within the second set of n rows
of the permutation matrix P that form the n imaginary
measurements within the first voxel have a 1 in column
t = p + 1, 3p + 1, 5p + 1, ..., 2(n − 1)p + p + 1. The tth

row within the third set of n rows of the permutation
matrix P that form the n real measurements within the
second voxel have a 1 in column t = 0p + 2, 2p + 2, 4p +
2, ..., 2(n − 1)p + 2. The tth row within the fourth set
of n rows of the permutation matrix P that form the n
imaginary measurements within the first second have a 1
in column t = p + 2, 3p + 2, 5p + 2, ..., 2(n− 1)p + p + 2.
This general pattern continues so that the tth row within
the (2p− 1)th set of n rows of the permutation matrix P
that form the n real measurements within the pth voxel
have a 1 in column t = 0p + p, 2p + p, 4p + p, ..., 2(n−
1)p + p. The tth row within the second set of n rows
of the permutation matrix P that form the n imaginary
measurements within the first second have a 1 in column
t = p + p, 3p + p, 5p + p, ..., 2(n− 1)p + p + p. In general,
the jth set of 2n rows for the jth voxel, j = 1, ..., p have
a 1 in columns 0p + j, 2p + j, 4p + j, ..., 2(n− 1)p + j of
its first n rows for the real voxel measurements and in

columns p + j, 3p + j, 5p + j, ..., 2(n− 1)p + p + j for the
imaginary voxel measurements.

References

[1] P.M. Bandettini, A. Jesmanowicz, E.C. Wong, and
J.S. Hyde. Processing strategies for time-course data
sets in functional MRI of the human brain. Magn.
Reson. Med., 30(2):161–173, 1993.

[2] K.J. Friston, P. Jezzard, and R. Turner. Analysis
of functional MRI time-series. Human Brain Mapp.,
1(8):153–171, 1994.

[3] E.M. Haacke, R. Brown, M. Thompson, and
R. Venkatesan. Magnetic Resonance Imaging: Prin-
ciples and Sequence Design. John Wiley and Sons,
New York, 1999.

[4] D.A. Harville. Matrix Algebra From a Statistician’s
Perspective. Springer-Verlag, New York, 1999.

[5] A. Kumar, D. Welti, and R.R. Ernst. NMR Fourier
zeugmatography. J. Magn. Reson., 18:69–83, 1975.

[6] S. Lai and G.H. Glover. Detection of BOLD fMRI
signals using complex data. Proc. ISMRM, 5:1671,
1997.

[7] B.R. Logan and D.B. Rowe. An evaluation of thresh-
olding techniques in fMRI analysis. NeuroImage,
22(1):95–108, 2004.

[8] F.Y. Nan and R.D. Nowak. Generalized likelihood
ratio detection for fMRI using complex data. IEEE
Trans. Med. Imag., 18(4):320–329, 1999.

[9] D.B. Rowe. Modeling both the magnitude and
phase of complex-valued fMRI data. NeuroImage,
25(4):1310–1324, 2005a.

[10] D.B. Rowe. Parameter estimation in the magnitude-
only and complex-valued fMRI data models. Neu-
roImage, 25(4):1124–1132, 2005b.

[11] D.B. Rowe and B.R. Logan. A complex way to
compute fMRI activation. NeuroImage, 23(3):1078–
1092, 2004.

[12] D.B. Rowe and B.R. Logan. Complex fMRI analysis
with unrestricted phase is equivalent to a magnitude-
only model. NeuroImage, 24(2):603–606, 2005.

[13] D.B. Rowe, C.P. Meller, and R.G. Hoffmann. Char-
acterizing phase-only fMRI data with an angular re-
gression model. J. Neurosci. Methods, 161(2):331–
341, 2007b.

[14] D.B. Rowe, A.S. Nencka, and R.G. Hoffmann. Signal
and noise of Fourier reconstructed fMRI data. J.
Neurosci. Methods, 159(2):361–369, 2007a.

Biometrics Section

114


