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ABSTRACT
In functional magnetic resonance imaging, voxel time courses
after Fourier or non-Fourier “image reconstruction” are com-
plex valued as a result of phase imperfections due to mag-
netic field inhomogeneities and random noise. Nearly all
fMRI studies derive functional “activation” based on magnitude-
only voxel time courses. Here the entire complex or bi-
variate data are modeled rather than just the magnitude-
only data. A nonlinear multiple regression model is used
to model activation of the complex signal, and a likelihood
ratio test is derived to determine activation in each voxel.
The magnitude-only and complex time course models are
applied to a real dataset.

1. INTRODUCTION

In magnetic resonance imaging, after Fourier or non-
Fourier image reconstruction, each voxel contains a time
course of real and imaginary components. Magnitude-only
images are produced by taking the square root of the sum of
squares of the real and imaginary parts of the complex val-
ued time courses in each voxel at each time point. Nearly all
fMRI studies obtain a statistical measure of functional acti-
vation based on magnitude-only image time courses. When
this is done, phase information in the data is discarded. This
is illustrated in Fig. 1, where real-imaginary and magnitude-
phase image sequences are shown to depict the example
dataset discussed later.
Magnitude-only models [2, 4] typically assume normally

distributed errors; alternatively, one can assume that the orig-
inal real and imaginary components of the PSD have nor-
mally distributed errors. Independent normally distributed
errors on the measured complex signal translates to a Ricean
distributed [10] magnitude image that is approximately nor-
mal for large signal-to-noise ratios.
When computing magnitude-only image time courses

and activations, the signal-to-noise ratio (SNR) may not be
large enough for this approximate normality to hold. This
is increasingly true with higher voxel resolutions and in ar-
eas with a large degree of signal dropout. In addition, phase

information or half of the numbers are discarded. A more
accurate model should properly model the noise and use all
the information contained in the real and imaginary compo-
nents of the data.
Previous models for complex fMRI data have been pro-

posed, [7, 9]. The first by and Lai and Glover (1997) did
not accurately model the phase, while here the phase is cor-
rectly accounted for through a nonlinear multiple regression
model. The second model by Nan and Nowak (1999) cor-
rectly modeled the phase coupling between the means of the
real and imaginary components, but was limited to a single
baseline and signal model because of their model parame-
terization. In addition, the second model did not directly
estimate the regression coefficients or phase angle and used
critical values based on Monte Carlo simulation. The sec-
ond model is reparameterized and extended to a multipa-
rameter baseline and signal model. Additionally, hypothe-
sis tests are formulated in terms of contrasts, which allows
for more elaborate testing such as deconvolution and com-
parisons between multiple task conditions. Finally, the cur-
rent parameterization allows the estimation of the phase an-
gle directly instead of the sine and cosine of the phase an-
gle. The results of the proposed model are compared to a
strict magnitude-only model in terms of thresholded activa-
tion maps on a real dataset.

2. MODEL

In MRI/fMRI, the aim is to image a real valued physi-
cal object ρ(x, y) and obtain a measured object ρm(x, y) by
measuring a 2D complex valued signal sm(kx, ky) at spa-
tial frequencies (kx, ky). This signal consists of a true com-
plex valued signal s(kx, ky) plus a random complex noise
term δ(kx, ky) with real and imaginary components that are
assumed to be independent and identically normally dis-
tributed. Even if there were no phase imperfections, it is
necessary to observe the imaginary parts of this signal be-
cause we phase encode for proper image formation. Af-
ter image reconstruction, we obtain a complex valued mea-
sured object plus complex valued noise.
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Fig. 1. Image sequences.

(a)Real-Imaginary (b)Magnitude-Phase

Fig. 2. Real Imaginary vector in a voxel over time.
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Neglecting the voxel location and focusing on a particu-
lar voxel, the complex valued image measured over time in
a given voxel is

ρmt = [ρRt + ηRt] + i[ρIt + ηIt]

where (ηRt, ηIt)′ ∼ N (0, Σ) and Σ = σ2I2. The distribu-
tional specification is on the real and imaginary parts of the
image and not on the magnitude.
A nonlinear multiple regression model is introduced in-

dividually for each voxel that includes a phase imperfection
θ in which at time t, the measured effective proton spin den-
sity is given by

ρmt = [x′
tβ cos θ + ηRt] + i[x′

tβ sin θ + ηIt] (1)

where ρt = x′
tβ = β0+β1x1t + · · ·+βqxqt. The phase im-

perfection in Eq. 1 is a fixed and unknown quantity, which
may be estimated voxel by voxel.
In fMRI, we take repeatedmeasurements over time while

a subject is performing a task. In each voxel, we compute
a measure of association between the observed time course
and a preassigned reference function that characterizes the
experimental paradigm.

2.1. Magnitude-Only Activation

The typical method to compute activations [2, 4] is to use
only the magnitude which is denoted by yt and written as

yt =
[
(x′

tβ cos θ + ηRt)2 + (x′
tβ sin θ + ηIt)2

] 1
2 . (2)

The magnitude-only model in Eq. 2 discards any informa-
tion contained in the phase, given by

φt = tan−1

[
ρIt + ηIt

ρRt + ηRt

]
.

The magnitude is not normally distributed but is Ricean
distributed. Both the magnitude and the phase are approx-
imately normal for large SNR’s [5, 10] as outlined in the
appendix. The special case of the Ricean where there is no
signal is known as the Rayleigh distribution. It is known
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[6] that a histogram of noise outside the brain without any
signal is Rayleigh distributed.
The Ricean distribution is approximately normal for large

signal-to-noise ratios (small relative error variance). This
can be shown by completing the square in Eq. 2 and us-
ing the Taylor series approximation

√
1 + u ≈ 1 + u/2 for

|u| � 1 that

yt ≈ x′
tβ + εt (3)

where εt = ηRt cos θ + ηIt sin θ ∼ N (0, σ2). This model
can also be written as

y = X β + ε
n × 1 n × (q + 1) (q + 1) × 1 n × 1

(4)
where ε ∼ N (0, σ2Φ) andΦ is the temporal correlation ma-
trix, often taken to be Φ = In after suitable pre-processing
of the data.
The unconstrainedmaximum likelihood estimates of the

vector of regression coefficients β̂ and the error variance σ̂2

are given by

β̂ = (X′X)−1X ′y,

σ̂2 = (y − Xβ̂)′(y − Xβ̂)/n . (5)

To construct a generalized likelihood ratio test of the hy-
pothesis H0 : Cβ = 0 vs. H1 : Cβ �= 0, we maximize the
likelihood under the constrained null hypothesis. This leads
to constrained MLE’s

β̃ = Ψβ̂,

σ̃2 = (y − Xβ̃)′(y − Xβ̃)/n, (6)

where

Ψ = Iq+1 − (X ′X)−1C′[C(X ′X)−1C′]−1C. (7)

Then the likelihood ratio statistic for the magnitude-only
model is given by

−2 logλM = n log
(

σ̃2

σ̂2

)
. (8)

This has an asymptotic χ2
r distribution, where r is the full

row rank of C, and is asymptotically equivalent to the usual
t− or F -tests associated with statistical parametric maps.
For example, consider a model with β0 representing an in-
tercept, β1 representing a linear drift over time, and β2 rep-
resenting a contrast effect of a stimulus. Then to test whether
the coefficient for the reference function or stimulus is 0, set
C = (0, 0, 1), so that the hypothesis is H0 : β2 = 0. The
LR test has an asymptotic χ2

1 distribution and is asymptoti-
cally equivalent to the usual t tests for activation. The χ2

representation is used for ease of comparability with the
complex activation model. Alternatively, complex valued
permutation resampling techniques may be used, which the
author found to give similar results in the example used
later.

2.2. Complex Activation

Alternatively, we can represent the observed data at time
point t as a 2 × 1 vector instead of as a complex number

(
yRt

yIt

)
=

(
x′

tβ cos θ
x′

tβ sin θ

)
+

(
ηRt

ηIt

)
,

t = 1, . . . , n .

This model can also be written as

y =
(

X 0
0 X

) (
β cos θ
β sin θ

)
+ η

2n × 1 2n × 2(q + 1) 2(q + 1) × 1 2n × 1
(9)

where it is specified that the observed vector of data y =
(y′R, y′I)

′ is the vector of observed real values stacked on
the vector of observed imaginary values and the vector of
errors η = (η′

R, η′
I)

′ ∼ N (0, Σ ⊗ Φ) is similarly defined.
Here it is assumed that Σ = σ2I2 and Φ = In.
As with the magnitude-only model, we can obtain unre-

stricted maximum likelihood estimates of the parameters as
derived in the appendix to be

θ̂ =
1
2

tan−1

[
2β̂′

R(X ′X)β̂I

β̂′
R(X ′X)β̂R − β̂′

I(X ′X)β̂I

]

β̂ = β̂R cos θ̂ + β̂I sin θ̂,

σ̂2 =
1
2n

[
y −

(
Xβ̂ cos θ̂

Xβ̂ sin θ̂

)]′ [
y −

(
Xβ̂ cos θ̂

Xβ̂ sin θ̂

)]
(10)

where β̂R = (X ′X)−1X ′yR and β̂I = (X ′X)−1X ′yI .
Note that the estimate of the regression coefficients is a lin-
ear combination or “weighted” average of estimates from
the real and imaginary parts. The regression coefficients
of this model may also be estimated using principal com-
ponents. Also, note that although the ML estimate of σ2

is biased, the degree of bias is generally small (E(σ̂2) =
(2n − q − 2)/(2n) × σ2) because n is large relative to q.
The maximum likelihood estimates under the constrained

null hypothesis H0 : Cβ = 0 are derived in the appendix
and given by

θ̃ =
1
2

tan−1

[
2β̂′

RΨ(X ′X)β̂I

β̂′
RΨ(X ′X)β̂R − β̂′

IΨ(X ′X)β̂I

]

β̃ = Ψ[β̂R cos θ̃ + β̂I sin θ̃],

σ̃2 =
1
2n

[
y −

(
Xβ̃ cos θ̃

Xβ̃ sin θ̃

)]′ [
y −

(
Xβ̃ cos θ̃

Xβ̃ sin θ̃

)]
(11)

whereΨ is as defined in Eq. 7 for themagnitude-onlymodel.
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Fig. 3. Estimated reference function coefficients, β2’s.
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(a) Magnitude-only model
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(b) Complex model

Then the generalized likelihood ratio statistic for the
complex fMRI activation model is

−2 logλC = 2n log
(

σ̃2

σ̂2

)
. (12)

This statistic has an asymptotic χ2
r distribution similar to

the magnitude-only model statistic in Eq. 8 with the same
caveats as mentioned previously for themagnitude-onlymodel.

3. APPLICATION TO FMRI DATASET

A bilateral finger tapping experiment was performed in a
block design with 16s off followed by eight epochs of 16s
on and 16s off. Scanning was performed using a 1.5T GE
Signa in which 5 axial slices of size 96× 96 were acquired.
In image reconstruction, the acquired data was zero filled
to 128 × 128. After Fourier image reconstruction, each
voxel has dimensions in mm of 1.5625× 1.5625× 5, with
TE= 47ms. Observations were taken every TR= 1000ms
so that there are 272 in each voxel. Data from a single ax-
ial slice through the motor cortex was selected for analysis.
Pre-processing using an ideal 0/1 frequency filter was per-
formed to remove respiration and low frequency physiolog-
ical noise in addition to the removal of the first three points
to omit machine warm-up effects.
The linear magnitude-only and nonlinear complex mul-

tiple regression models were fit to the data with an inter-
cept, a zero mean time trend, and a ±1 square wave refer-
ence function. Parameter estimates of the task-related ac-
tivation β2 are given in Fig. 3 for (a) the magnitude-only
model and (b) the complex model. These coefficient esti-
mates are visually very similar between the two models, but
deviate slightly numerically.

As previously noted, the estimated β2 coefficients for
the complex model in Fig. 3(b) under the alternative hypoth-
esis are a linear combination or “weighted” average between
the estimated value from the real and imaginary parts. This
“weighting” is displayed in Fig. 4 where the cos θ “weights”
are in Fig. 4(a), the estimated coefficient values from the
real part βR2 are in Fig. 4(b), the sin θ “weights” are in
Fig. 4(c), and the estimated coefficient values from the real
part βI2 are in Fig. 4(d).
Next statisticallly significant task-related activation was

sought using 5% false discovery rate (FDR) and Bonferroni
thresholds. These were done by applying the Benjamini-
Hochberg and Bonferroni procedures to the χ2

1 activation
statistics. Images of statistically significant FDR activation
are given in Fig. 5 and for statistically significant Bonferroni
activation in Fig. 6 for both the magnitude-only and com-
plex models. As previously mentioned, resampling tech-
niques that permuted the complex valued residuals to deter-
mine false discovery rate and Bonferroni thresholded statis-
tical parametric maps were applied and found to be virtually
identical to assuming the χ2 distribution maps.
While the activation images are similar, note that the

complex model appears to have sharper or morewell-defined
activation regions which align better with the gray matter at
which the activation is supposed to occur.
To illustrate the differences, voxels above threshold for

both models are colored yellow, those only declared active
for the magnitude-only model colored red and those only
declared active for the complex model orange in Fig. 7.

4. CONCLUSIONS

A complex data fMRI activation model was presented as
an alternative to the typical magnitude-only data model. Ac-

ASA Section on Biometrics Section -to include ENAR and WNAR

443



Fig. 4. Complex real and imaginary estimated β2’s, and trigonometric weights.
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(a) real part weights, cos θ’s
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(b) real part estimates, βR2’s

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) imaginary part weights, sin θ’s
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(d) imaginary part estimates, βI2’s

tivation statistics were derived from generalized likelihood
ratio tests for both models. Activation from both models
were presented for real fMRI data, then simulations were
performed to compare the power to detect activation regions
between the two models for several signal-to-noise ratios
with varying task related contrast effects.
It was found that for large signal-to-noise ratios, both

models were comparable. However, for smaller signal-to-
noise ratios, the complex activation model demonstrated su-
perior power of detection over the magnitude-only activa-
tion model. This strongly indicates that modeling the com-
plex data may becomemore useful as voxel sizes get smaller,
since this decreases the SNR.

A. MAGNITUDE AND PHASE DISTRIBUTIONS

The distribution of the magnitude and phase can be de-
rived as follows. Let yR = ρ cos θ + ηR and yI = ρ cos θ +

ηI where ηR and ηI are normally distributed with mean
zero and variance σ2. Then, make a change of variable
from (yR, yI) to polar coordinates r2 = y2

R + y2
I and φ =

tan−1(yI/yR) or yR = r cos φ and yI = r sin φ. The Ja-
cobian of this transformation is J(yR, yI → r, φ) = r. The
joint distribution of r and φ using trigonometric identities
becomes

p(r, φ|ρ, θ, σ2) =
r

2πσ2
e−

1
2σ2 [r2+ρ2−2ρr cos(φ−θ)] .

A.1. Magnitude Distribution

The marginal distribution of the magnitude r is found by
integrating out the phase φ

p(r|ρ, θ, σ2) =
r

σ2
e−

1
2σ2 [r2+ρ2]

×
∫ π

φ=−π

1
2π

e
1

σ2 ρr cos(φ−θ)dφ
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Fig. 5. −2 ln λ statistics with a 5% FDR threshold
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(a) Magnitude-only model
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(b) Complex model

where the integral factor often denoted Io(rρ/σ2) is the ze-
roth order modified Bessel function of the first kind. The
normal limiting distribution for large SNR or ρ → ∞, is
found by using the asymptotic form

Io(rρ/σ2) ≈ exp(rρ/σ2)/
√

(2πrρ/σ2)

of the Bessel function [1]. Additionally, in this limit, it is as-
sumed that the exponential form of the normal distribution
drops off more rapidly compared to the variation in the ratio√

r/ρ left as a factor. The distribution of the magnitude be-
comes the normal distributionwith mean ρ and variance σ2.
The Rayleigh limiting distribution for zero SNR or ρ = 0,
is found by noting that Io(0) = 1. The distribution of the
magnitude becomes

p(r|ρ, σ2) =
r

σ2
e−

r2

2σ2 .

A.2. Phase Distribution

The marginal distribution of the phase φ is found by in-
tegrating out the magnitude r

p(φ|ρ, θ, σ2) =
e−

ρ2

2σ2

2π

[
1 +

ρ

σ

√
2π cos(φ − θ)

× e
ρ2 cos2(φ−θ)

2σ2

∫ ρ cos(φ−θ)
σ

z=−∞

e−z2/2

√
2π

dz .

]

The normal limiting distribution for large SNR or ρ →
∞, is found by multiplying through, noting that the first

term is approximately zero, that the difference between φ
and θ is small so that the cosine of their difference is ap-
proximately one, and the sine of their difference is approx-
imately their difference. The distribution of the phase be-
comes the normal distribution with mean θ and variance
(σ/ρ)2.
The uniform limiting distribution for zero SNR or ρ =

0, is found by noting that the integral factor goes to unity.
The distribution of the phase becomes uniform on [−π, π].
The distribution of the magnitude and phase for intermedi-
ate values of SNR can be found by numerical integration or
Monte Carlo simulation. The complex model presented in
this paper does not make these large SNR approximations.

B. GENERALIZED LIKELIHOOD RATIO TEST

B.1. Complex Model

In applications using multiple regression including fMRI,
we often wish to test linear contrast hypothesis (for each
voxel) such as

H0 : Cβ = γ vs H1 : Cβ �= γ
σ2 > 0 σ2 > 0 ,

where C is an r × (q + 1) matrix of full row rank and γ is
an r × 1 vector.
The likelihood ratio statistic is computed by maximizing

the likelihood p(y|β, θ, σ2, X) with respect to β, θ, and σ2

under the null and alternative hypotheses. Denote the max-
imized values under the null hypothesis by (β̃, θ̃, σ̃2) and
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Fig. 6. −2 lnλ statistics with a 5% Bonferroni threshold
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(a) Magnitude-only model

16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128

5

10

15

20

25

30

35

40

45

(b) Complex model

those under the alternative hypothesis as (β̂, θ̂, σ̂2). These
maximized values are then substituted into the likelihoods
and the ratio taken. With the aforementioned distributional
specifications, the likelihood of the model is

p(y|X, β, θ, σ2) = (2πσ2)−
2n
2 e−

h
2σ2 (B.1)

where

h =
1
2n

[
y −

(
Xβ cos θ
Xβ sin θ

)]′ [
y −

(
Xβ cos θ
Xβ sin θ

)]

Unrestricted MLE’s

Maximizing this likelihood with respect to the parame-
ters is the same as maximizing the logarithm of the like-
lihood denoted LL with respect to the parameters. In the
case of β and θ it is the same as minimizing the h term in
the exponent.

∂h

∂β

∣∣∣∣ = 2(X′X)β̂ − 2(X ′X)
[
β̂R cos θ̂ + β̂I sin θ̂

]
∂h

∂θ

∣∣∣∣ = −2β̂′(X ′X)
[
(− sin θ̂)β̂R + (cos θ̂)β̂I

]
∂LL

∂σ2

∣∣∣∣ −2n

2
1
σ̂2

+
ĥ

2
1

(σ̂2)2

where ĥ is h with MLE’s substituted in. By setting these
derivatives equal to zero and solving, the MLE’s under the
unrestricted model given in Eq. 10 are obtained.

Restricted MLE’s

Maximizing this likelihood with respect to the parame-
ters is the same as maximizing the logarithm of the likeli-
hood denoted LL with respect to the parameters. This is
the same as minimizing the h term in the exponent with the
restriction in the form of a Lagrange multiplier added to h

∂h

∂β

∣∣∣∣ = 2(X ′X)β̃ − 2(X ′X)
[
β̃R cos θ̃ + β̃I sin θ̃

]
+2C′ψ̃

∂h

∂θ

∣∣∣∣ = −2β̃′(X ′X)
[
(− sin θ̃)β̃R + (cos θ̃)β̃I

]
∂h

∂ψ

∣∣∣∣ = 2(Cβ̃ − γ)

∂LL

∂σ2

∣∣∣∣ −2n

2
1
σ̃2

+
h̃

2
1

(σ̃2)2

where h̃ is h with MLE’s substituted in. By setting these
derivatives equal to zero and solving, the MLE’s under the
restricted model given in Eq. 11 are obtained.
Note that σ̂2 = ĥ/(2n) and σ̃2 = h̃/(2n). Then the

generalized likelihood ratio is

λ =
p(y|β̃, σ̃2, θ̃, X)
p(y|β̂, σ̂2, θ̂, X)

=

(
σ̃2

)−2n/2
e−2h̃n/(2h̃)

(σ̂2)−2n/2
e−2ĥn/(2ĥ)

, (B.2)

and Eq. 12 for the GLRT follows.
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Fig. 7. Voxels above the 5% threshold
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(a) FDR
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(b) Bonferroni
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