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Abstract

This paper incorporates available prior knowledge of the source waveforms into the
Bayesian approach to blind source separation. The source separation model is described,
prior distributions are introduced to quantify available prior knowledge regarding the model
parameters, the posterior distribution for the model parameters is formed, and parameter
estimation is detailed. Finally, the methods discussed are applied to an example.

1. Introduction and model

The problem addressed by source separation is that of separating
unobservable or latent source signals when mixed signals are observed.
In other words, to take a set of observed mixed signal vectors and unmix
or separate them into a set of true unobservable source signal vectors.
This paper adopts a Bayesian statistical approach and the linear synthesis
model.

For motivation and illustration of the source separation model, the
context of the “cocktail party problem” is adopted. At a cocktail party,
there are p microphones that record or observe m partygoers or speakers
at n time increments. The observed conversations consist of mixtures of
true conversations. In other words, p -dimensional mixed signal vectors
xi = (xi1, . . . , xip)′ are observed and the goal is to separate these observed
signal vectors into m -dimensional true underlying source signal vectors,
si = (si1, . . . , sim)′ where i = 1, . . . , n .
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The linear synthesis source separation model is

(xi | Λ, si)
(p× 1)

= Λ

(p×m)
si

(m× 1)
+ εi

(p× 1)
, (1.1)

where it has been assumed that the observed signals have had their mean
and liner trend subtracted off if they exist, further

Λ = a p×m matrix of unobserved mixing constants, Λ = (λ′1,. . . ,λ′p)′ ;

si = the ith m -dimensional unobservable source vector, si =
(si1,. . . ,s1m)′ ;

εi = the p -dimensional vector of errors or noise terms of the ith

observed signal vector εi = (εi1, . . . ,εip)′ .

2. Likelihood, priors and posterior

It is specified that the errors of the observations are independent over
time and motivated by the central limit theorem, normally distributed
random vectors with zero and covariance matrix Ψ , thus the likehood of
a given observation vector is

p(xi |Λ, si , Ψ) ∝ |Ψ|− 1
2 e−

1
2 (xi−Λsi)′Ψ−1(xi−Λsi) . (2.1)

The joint likelihood of the observations is

p(x1, . . . , xn|Λ, s1, . . . , sn, Ψ)∝|Ψ|− n
2 e−

1
2 ∑n

i=1(xi−Λsi)′Ψ−1(xi−Λsi). (2.2)

Analogous to regression, the source separation model can be written
in terms of matrices as

(X | Λ, S)
(n× p)

= S
(n×m)

Λ′
(m× p)

+ E
(n× p)

, (2.3)

with likelihood

p(X |Λ, S, Ψ) ∝ |Ψ|− n
2 e−

1
2 trΨ−1(X−SΛ′)′(X−SΛ′) (2.4)

where X′ = (x1, . . . , xn) , S′ = (s1, . . . , sn) , and E′ = (ε1, . . . ,εn) . The
time series of observations for the jth microphone is the jth column of X
and the time series of unobservables for the kth source is the kth column
of S .

Available knowledge regarding the parameter values is incorporated
into the inferences in the form of prior distributions.
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The source vectors si are specified to be normally distributed with
mean si0 and covariance matrix R represented by

(si | R) ∼ N(si0, R) (2.5)

and distribution function given by

p(si | R) ∝ |R|− 1
2 e−

1
2 (si−s0)′R−1(si−s0) . (2.6)

The joint prior probability distribution function for all the
unobserved source signal vectors is

p(s1, . . . , sn | R) ∝ |R|− n
2 e−

1
2 ∑n

i=1(si−si0)′R−1(si−si0) . (2.7)

The prior distribution for the source vectors can also be rewritten as
a matrix normal distribution

p(S | R) ∝ |R|− n
2 e−

1
2 tr(S−S0)R−1(S−S0)′ (2.8)

where S′0 = (s10, . . . , sn0) .
Again, the objective is to unmix the sources by estimating S and to

obtain knowledge about the mixing process by estimating Λ and Ψ .
Regarding the other parameters, information is incorporated as an

inverted Wishart distribution for the covariance of the source vectors with
η degrees of freedom and scale matrix V , an inverted Wishart distribution
for the covariance of the observed vectors with ν degrees of freedom and
scale matrix B , and a normal distribution for the mixing matrix with mean
Λ0 and covariance Ψ ⊗ H−1 . The inverted Wishart distribution is the
multivariate generalization of the inverted gamma distribution which is
used as a prior distribution for variances.

All together, the prior distribution are

p(S | R) ∝ |R|− n
2 e−

1
2 (S−S0)R−1(S−S0)′ , (2.9)

p(R) ∝ |R|− η
2 e−

1
2 trR−1V , (2.10)

p(Ψ) ∝ |Ψ|− ν
2 e−

1
2 trΨ−1B , (2.11)

p(Λ | Ψ) ∝ |Ψ|−m
2 e−

1
2 trΨ−1(Λ−Λ0)H(Λ−Λ0)′ , (2.12)

where S0, η, V, ν, B, Λ0 and H are hyperparameters to be assessed.
Available information as to a functional form for the sources can now

be incorporated. For example, if the kth source varied sinusoidally then
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this is incorporated as

sik0 = sin(aki + bk) (2.13)

or as a square wave

sik0 =

{
1, for akl < i < pkl

−1, otherwise

for l = 1, . . . , L .
Upon using Bayes’ rule the posterior distribution for the unknown

parameters is

p(Λ, S, Ψ, R | X) ∝ |Ψ|− (n+m+ν)
2 |R|− n+η

2 e−
1
2 trΨ−1U

· e−
1
2 trR−1 [(S−S0)′(S−S0)+V] (2.14)

where

U ≡ (X− SΛ′)′(X− SΛ′) + (Λ−Λ0)H(Λ−Λ0)′ + B .

This posterior distribution must now be evaluated in order to obtain
parameter estimates of the mixing matrix, the sources, the errors of the
sources, and the errors of observation.

3. Estimation

With the above posterior distribution, it is not possible to obtain
marginal distributions and thus marginal estimates for any of the
parameters in an analytic closed form. For this reason, the maximization
technique iterated conditional modes (ICM) is used (Lindley and Smith,
1972) to obtain maximum a posteriori estimates. For the ICM estimation
procedure, the posterior conditional distributions are required.

Form the joint posterior distribution we can obtain the posterior
conditional distributions. The conditional posterior distributions for the
mixing matrix is

p(Λ | S, Ψ, R, X) ∝ p(Λ, S, Ψ, R)p(X | Λ, S, Ψ)

∝ p(Ψ)p(Λ | Ψ)p(R)p(S | R)p(X | Λ, S, Ψ)

∝ p(Λ | Ψ)p(X | Λ, S, Ψ)

∝ |Ψ|−m
2 e−

1
2 trΨ−1(Λ−Λ0)H(Λ−Λ0)′
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· |Ψ|− n
2 e−

1
2 trΨ−1(X−SΛ′)′(X−SΛ′)

∝ e−
1
2 trΨ−1 [(Λ−Λ0)H(Λ−Λ0)′+(X−SΛ′)′(X−SΛ′)]

∝ e−
1
2 trΨ−1(Λ−Λ̃)(H+S′S)(Λ−Λ̃)′ (3.1)

where the posterior conditional mean and mode is given by

Λ̃ = [X′S + Λ0H](H + S′S)−1 . (3.2)

The conditional distribution for the mixing matrix given the other
parameters and the data is normally distributed.

The conditional posterior distribution of the observation error
matrix is

p(Ψ | Λ, S, R, X) ∝ p(Λ, S, Ψ, R)p(X | Λ, S, Ψ)

∝ p(Ψ)p(Λ | Ψ)p(R)p(S | R)p(X | Λ, S, Ψ)

∝ p(Ψ)p(Λ | Ψ)p(X | Λ, S, Ψ)

∝ |Ψ|− ν
2 e−

1
2 trΨ−1B|Ψ|−m

2 e−
1
2 trΨ−1(Λ−Λ0)H(Λ−Λ0)′

· |Ψ|− n
2 e−

1
2 trΨ−1(X−SΛ′)′(X−SΛ′)

∝ |Ψ|− (n+m+ν)
2 e−

1
2 trΨ−1U (3.3)

where

U = (X− SΛ′)′(X− SΛ′) + (Λ−Λ0)H(Λ−Λ0)′ + B (3.4)

with a mode given by

Ψ̃ =
U

n + m + ν
. (3.5)

The conditional distribution of the observation error covariance
matrix given the other parameters and the data is an inverted Wishart.

The conditional posterior distribution for the sources is

p(S | Λ, Ψ, R, X) ∝ p(Λ, S, Ψ, R)p(X | Λ, S, Ψ)

∝ p(Ψ)p(Λ | Ψ)p(R)p(S | R)p(X | Ψ, S, Λ)

∝ p(S | R)p(X | Λ, S, Ψ)

∝ |Ψ|− n
2 e−

1
2 trΨ−1(X−SΛ′)′(X−SΛ′)
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∝ |Ψ|− n
2 |R|− n

2

×e−
1
2 tr[(S−S0)R−1(S−S0)′+(X−SΛ′)Ψ−1(X−SΛ′)′]

∝ e−
1
2 tr(S−S̃)(R−1+Λ′Ψ−1Λ)(S−S̃)′ (3.6)

where the posterior conditional mean and mode is given by

S̃ = (XΨ−1Λ + S0R−1)(R−1 + Λ′Ψ−1Λ)−1 . (3.7)

The conditional posterior distribution for the sources given the other
parameters and the data is normally distributed.

The conditional posterior distribution for the source covariance
matrix is

p(R | Λ, S, Ψ, X) ∝ p(Ψ, Λ, S, R)p(X | Λ, S, Ψ)

∝ p(Ψ)p(Λ | Ψ)p(R)p(S | R)p(X | Ψ, S, Λ)

∝ p(R)p(S | R)

∝ e−
1
2 trR−1V |R|− n

2 e−
1
2 tr(S−S0)R−1(S−S0)′ |R|− η

2

∝ |R|− (n+η)
2 e−

1
2 trR−1[(S−S0)′(S−S0)+V] (3.8)

with the posterior conditional mode given by

R̃ =
(S− S0)′(S− S0) + V

n + η
. (3.9)

The conditional posterior distribution for the source covariance
matrix given the other parameters and the data is inverted Wishart
distributed.

The ICM estimation procedure consists of starting with initial values
for S , and R , say S̃(0) , R̃(0) and cycling through

Λ̃(l+1) ≡ (X′ S̃(l) + Λ0H)(H + S̃′(l) S̃(l))
−1

Ψ̃(l+1) ≡

(
(X− S̃(l)Λ̃

′
(l+1))

′(X− S̃(l)Λ̃
′
(l+1))

+(Λ̃(l+1) −Λ0)H(Λ̃(l+1) −Λ0)′ + B

)

n + m + ν

S̃(l+1) ≡ (XΨ̃−1
(l+1)Λ̃(l+1) + S0R̃−1

(l) )(R̃−1
(l) + Λ̃′

(l+1)Ψ̃
−1
(l+1)Λ̃(l+1))

−1

R̃(l+1) ≡
(S̃(l+1) − S0)′(S̃(l+1) − S0) + V

n + η
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until convergence is reached. The converged values (S̃, Λ̃, Ψ̃, R̃) are joint
posterior modal or maximum a posteriori estimators of the parameters.

4. Example

For an example, a simulation was carried out in which there were
m = 3 sources and n = 128 observations of dimension p = 1 with
known true parameter values ΛT = (20, 50, 10) ,

RT =




0.5 0.25 0
0.25 0.5 0

0 0 0.5


 ,

and ΨT = 5 . The observations were formed by generating a random
si from N(si0, RT) , premultiplying it by ΛT , and adding an error term
generated randomly form N(0, ΨT) . The true sources were sine waves of
unit amplitude and frequencies 1/64 , 1/72 , and 1/20 , respectively.

The hyperparameters were assessed according to the methods in the
appendix to be ν = 46 , b0 = 420 , h0 = 1/2 , Λ0 = (25, 45, 5) ,
η = 20 , and v0 = 60 . Further, prior mean for the sources were assessed
to be square, sine, and sine waves with the same frequencies and unit
amplitude.

Upon applying the ICM estimation procedure, the posterior
parameter estimates were found to be

Ψ̃ = 2.4797

R̃ =




0.5064 0.2066 0.0248
0.2066 0.8282 0.0508
0.0248 0.0508 0.4115




Λ̃ = (24.9371, 51.0167, 6.1254),

and the true sources, mixed true sources, noisy sources, and mixed noisy
sources are displayed in Figure 1 ; while the noisy sources, mixed noisy
sources, prior sources, and unmixed sources are displayed in Figure 2.

5. Conclusion

It has been shown that available information as to a functional form
for the source waveforms can readily be incorporated into the Bayesian
source separation model. In an example, it has been shown that mixed
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observations can be separated out into their constituent components.
Bayesian separation of sources appears to be very promising in solving
the real “cocktail party problem”.

Figure 1
True sources, mixed true sources,

noisy sources, and mixed noisy sources

Appendix

A Hyperparameter assessment

The hyperparameters of the prior distributions are assessed in this
appendix.

Ψ : ν, B . For simplicity of assessment, specify that B = b0 Ip . With B
diagonal, the mean and variance of any diagonal element of Ψ , Ψ j j are

E(Ψ j j) =
b0

ν − 2p− 2

var(Ψ j j) =
2b2

0
(ν − 2p− 2)2(ν − 2p− 4)

. (A.1)
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Figure 2
Noisy sources, mixed noisy sources,
prior sources, and unmixed sources

Solving for ν in the above system of equations,

ν =
[E(Ψ j j)]2

2[var(Ψ j j)]
+ 2p + 4 . (A.2)

The unknowns are E(Ψ j j) and var(Ψ j j) . Prior values for the mean
and variance are to be elicited from the substantive field expert. In the
example, the values assessed were assumed to be E(Ψ j j) = 10 and
var(Ψ j j) = 5 .

R : η, V . Similarly, assessment is simplified by specifying that V = v0 Im
and thus

η =
[E(Rkk)]2

2[var(Rkk)]
+ 2m + 4 . (A.3)

In the example, the values assessed were assumed to be E(Rkk) = 5
and var(Rkk) = 5 .
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Λ : Λ0, H = h0 Im . The hyperparameter h0 and the prior mean for the
mixing matrix Λ0 must be subjectively elicited from the substantive field
expert or estimated from training data using another technique. In the
example, it was assumed that a substantive field expert provided them as
h0 = 1/2 and Λ0 = (25, 45, 5) .
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