INDEX OF VOLUME 5 (2002)

Journal of
Interdisciplinary Mathematics

Index of Volume 5 (2002)

Number 1, February

P. S. CHEN AND K. L. YANG : Approximation of the partially

backlogging ratio of inventory models

H. J. SHEU, S. WU AND J. H. PAN : An estimation process to

the value for voided tickets

I. P. PAVLOTSKY AND M. STRIANESE : Minimal distance
between the interacting points as a consequence of the singular

set of Euler-Lagrange equations

U. UFUKTEPE AND K. P. MCHALE : Inequalities for buckling of
a clamped plate

D. B. ROWE : A Bayesian approach to blind source separation

L. J. YEH AND T. S. LAN : Quantitative production scheme

model for an automated manufacturing system

N. A. KOFAHI, M. N. MESMAR AND S. H. GHARAIBEH : A
computer algorithm for the evaluation of heavy metal toxicity

in fresh water habitats

1-10

11-27

29-39

41-47

49-76

77-83

85-96



A Bayesian approach to blind source separation

Damel B. Rowe

Biophystcs Research Institute
Medical College of Wisconsin
8701 Waterlown Plank Road
Milwoukee, WI 53226
US.A.

ABSTRACT

This paper presents a Bayesjan statistical approach to the blind source separation
problem. The blind source separation mode] is described; the source distribuion is
discussed; other approaches such as Principal Components, Independent Components,
and Factor Analysis are detailed; prior distributions are introduced to incorporate
available prior knowledge; the posterior distribution for the model parameters
(ncluding the number of sources) is derived; and the parameter estimation procedure
is outlined. Finally Bayesian blind soucce separation is applied in a simulated example
and its advantages over the other methods are stated.

1. INTRODUCTION AND MODEL

The problem addressed by blind source separation is that of sepa-
rating unobservable or latent source signals when mixed signals are
observed. In other words, to take a set of observed mixed signal vectors
and unmix or separate them into a set of true unobservable source
signal vectors. This paper adopts a Bayesian statistical approach and
a linear synthesis model.

In the Bayesian approach to statistical inference, available prior
information either from subjective expert experience or prior experi-
ments 1s incorporated into the inferences. This prior information
yields progressively less influence in the final results as the sample
size increases, thus allowing the data to “speak the truth.” It should
also be noted that forcing the components of the source vectors to be
independent, as i3 dene in independent component analysis, is too
constraining. Here the comporents of the source vectors are allowed
to be correlated, as is frequently the case.
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50 D. B. ROWE

To motivate the blind separation of sources model, the context of
the “cocktail party problem” is adopted. At a cocktail party, there are
p microphones that record or observe m partygoers or speakers at
1 time increments. The observed conversations consist of mixtures of
true conversations. In other words, p-dimensional mixed signal vectors
x,=(x,. ... X))’ are observed and the goal is to separate these observed
signal vectors into m-dimensional tirue underlying source signal vectors,
$i=(8i), .-.e Sip)" Where 1=1, .., n.

The general blind separation of sources model 1s

(X ls;. my=£(s;1m) + ¢, (1)
wx1) (@Ex1) @®x1)

wheyse f(s;]m) is a function that mixes the source signals and g; is the
measurement error. Using a Taylor series expansion, the function
[, with appropriate assumptions can be expanded about the vector
¢ and written as :

flsilmy=[(©)+f'(e)(s;— )+ ...
and approximated by taking the first two terms
fsi)m) = (&) +(e)(s;— )
=[f(©) = f'(©)] +f(0)s,
=1+ Ag 2

where f'(c) and A are p x mn matrices. This is the linear synthesis
model. More formally the adopted model is

lp, A, s;,m)= g + A s+ g, 3)
(px1) (pxl) wxm)nx1) (px1)
where

g= a p-dimensional unobserved population mean vector,
H=Uy, 0

A= a pxm matrix of unobgerved mixing -constants,
A=, e A

5;= the ith m-dimensional unobservable source vector,
8; = (8i1, -+ S1)'; and

g, = the p-dimensional vector of errors or noise terms of the ith
observed signal vector, g; = (g;, ..., &))"
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The observed mixed signal x;; is the jth element of the observed
mixed signal vector {, which may be thought of as the recorded mixed
conversation signal at time increment i, i=1, ..., n for microphone
J,J=1,..., p. The observed signal x; is a mixture of the components or
true unohserved source signal conversations s; with error, at time incre-
ment i, i =1, ..., n. The unobserved source signal s, is the kth compo-
nent of the unobserved source vector i, which may be thought of as the
unobserved source signal ¢onversation of speaker k, k=1, ..., m at
time 1ncrement z, =1, ..., n.

The mode!l describes the mixing process by writing the observed
signal x; as the sum of an overall mean part p; plus a linear cornbi-
nation of the unobserved source signal components s, and the obser-
vation error €; as

e /"‘ "
(x,-jlpj, A.J, S;, m) = l.lj'l' z }ij Sip T Eij
k=1
= }J,} + R), Sl‘ 4 8,'}'. (4)

2. LIKELIHOOD

Regarding the errors of the observations, it 1s assumed that they
are independent normally distributed random vectors with mean zero
and covariance matrix ¥. This will be referred to as model assump-
tion (a). Formally, it is assumed that

(&;['¥) ~ N(O, ¥) )

for all t,i=1, ..., n. From (a), it is seen that the chservation vector
given the mean, the number of sources, the source vector, the mixing
matrix, and the error covariance matrix is normally distributed as ex-
pressed by

(xill-l!\P))n)A>Si)~N(“+A‘SZI\{J)I (21)
and the likeliheod 1s
plrlu. ¥, m, A, s)

—123 -% —%(x‘-p-Ml.)W"(x‘-—p—As‘)
=2m) *I¥| “e ) (2.2)

The joint likelihood of the observations is



52 D. B. ROWE

plxy, o lw,¥,m A8 .8,

h

L2 a o (x~H-As ;)"l’"(x,——u -As)

1

=@2r) 2P| e ? (2.3)

The goal is to unmix the sources, s;'s by computing estimates of

their values from probability distributions. It is further wished to gain

knowledge as to the mixing process by estimating the overall mean p,
the mixing matrix A, and the error matrix ¥.

3. SOURCE DISTRIBUTION

As Anderson and Rubin (1956) point out, two kinds of model can
be described. In the first, the sources can be considered to be random
vectors and in the second considcred to be nonrandom (fixed) vectors
which vary from one sample to another. In the first case, the distri- -
bution of the sample x,, ..., x, is equivalent to that of any other sample

of size n. x,,;, ..., %o, . In the second case, the distribution of the set of
observations x|, ...,%, 18 not equivalent to the distribution of
Xpe1s ---» X, DECAuse sy, ..., s, I1s not equivalent to s,,,, ..., S5, Which

enter as parameters.

The BSS model with nonrandom sources is inherently indetermi-
nate. The values of the parameters are not uniquely determined by
the likelihood. Additional information regarding the source vectors aid
in remedying this problem. Since the source vectors are unknown, this
uncertainty is quantified in the form of a prior distribution.

Anderson and Rubin further show that for the classical factor
analysis model, random sources are asymptotically equivalent to fixed
sources and that the estimates of A and ¥ for random sources can be
used for nonrandom sources in large samples due to asymptotic con-
vergence. For these reasons, the models include the sources as random
quantities.

When the source vectors are viewed as random quantities, then
they must have a (prior) distribution associated with them, say
p(s;lm, R). The prior distribution is a model assumption and will be
assigned the letter (b) with as appropriate subscript for each ap-
proach. In general. a given unobserved source signal vector s; has zero
expectation and variance R. This is general assumption (b,) stated as

E(s;lm, R)=0 and var(s;lm R)=R. (be)

The above leads to the following expectations and variances for
the observed signals
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Ex1p, Y, m, A)=E(u + As; + g;| p, ¥, m)
=1+ AE(s; I m, R) + E(g; | )

= 3.1
and

var(x| . ¥, m, A) = varn(As, + g;| ¥, m, A)
= Avar(s; | m, R)N + van(g;|'Y)
= ARA"+ V¥
=2 (3.2)

It is assumed that the sources have a mean of zero. If the source
mean were In fact non zero, say §;, then E(x; [y, m. ¥, A)=p" + Asg
=u and the sources have a mean of zero,

The joint distribution of the cbeserved mixed signals and the un-
observed source signals is

plx, shp, ¥, m, A, Ry=p(xlp, ‘¥, m, A, s)p(s;| m, R)

B Lo e hey ¥ (gmueAs)
=27) 2|¥I e 2 o
0
ITp(s,{m, R) (3.3)
=1
where x = (x|, ..., x,)’ and s=(sq, ..., §,)".

It is easily shown that the maximum likelihood estimator for the
mean ( is x, so without loss of generality and for simplicity, it is as-
sumed that the observations have been centered about the sample
mean.

The blind source separation model is now

(x;]1A, 5, m)= A 3; + g . 3.4)
(px1) (pxm)(mx 1) (px1)
and the likelihood is
- % - % - %(xrAs,)"{’. l(.r,.—)\sl)
plx ¥, m, s, Ay=2n) “{¥| “e = (3.5)

The observations are sometimes scaled or normalized so that T is
a matrix of correlations.
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There is an important fact regarding the product of the mixing
matrix and the source covariance matrix. The covariance between the
observation vectors and the unobserved source vectors is

coulx,, 5;1m, A, W, R)y= E(x; s/ |, A, ‘¥, R)

= E(x; | m, A, VYE] | m, B)

= E(As; 8/ | m, R)
= AFE(s; s/ Ilm, R)
= AR. (3.6)

The matrix AR is interpreted as a matrix of covariances between
the p elements of the observed mixed signal vectors and the m com-
ponents of the unobserved source signal vectors. Jf R = I, as in orthogo-
nal factor analysig, then the mixing matrix 18 a2 matrix of covariances.)
The elernent in the jth row and the kth column of AR is the covariance
between the jth element of the observed mixed signal vectors and the
kth component of the unobserved source signal vector.

Thus a large element of AR imply a strong relationship between
the corresponding observed signal dimension and unobserved source
signal dimension. In the “cocktail party problem”, this implies that in-
formation on the Jocation of partygoers with respect to microphones
can be gained.

Analogous to regression, the blind source separation model can
be written in terms of matrices as

XIA, S, my= S A+ E | (3.7)
{(n x p) (ixm) (mxp) (nxp)
the likelihood as
_ip 2 e sayx-san
PXIW, m, 5, Ay=(2m) 2| 2e?

where X' =(xy, ..., x,), S =(51, ... 5,), and E' =(g,, ..., &)
Again, the objective is to unmix the sources by estimating S and

to obtain knowledge about the mixing process by estimating A and
Y.

(3.8)

4. PRINCIPAL COMPONENT ANALYSIS

For principal ecomponent analysis (PCA) it is assumed that the
number of signal sources is equal to the number of observed signals
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(m =p) and the observation error (noise) is zero (¥ = 0). Further, the

population covariance matrix T =ARA’' is estimated by its sample

X'X
n

A
value T = - Now, an estimate of the mixing matrix 1s computed.

It is assumed that the columns of A are orthonormal and each ce-
quentially maximizes the percent of variation. but no assumption is
made as to the form of the distribution of the sources.

No distributional assumption is made for p(s;im, R). (bpcy)

The matrix W= A"! is to be determined so that the sources can
be unmixed as

D |
Si—A x,

Wx,

7

Il

-2

Il
o

Wy

The first component of the unobserved source s is
- f
S =W
with variance given by

var(s;; | R) = wivar(x)w,

=witw,.

The vector w, is now determined to be that value that maximizes
the vanance subject to wjw, = 1. The method of Lagrange multipliers
is applied

53—1 (WS, — 6,(wjw, ~ 1Y) = 2Zw) - 20,10, = 0

which is reexpressed as

(T -0,Lw =0
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and since w, = 0, there can only be a solution if
|Z-8,7,1 =0.

It 1s apparent that 6, must be a latent root of T and w, is 2 nor-
malized latent vector of T. There are p such latent roots that satisfy the
equation. The largest is selected. The other rows of W are found in a
similar fashion.

The variance of the unobserved sources is
var(s;lm, B) = W var(x|p, D)W’
R=W=W'

and because we assumed that the rows of W were orthogonal, R is a
diagonal matrix. Thus the source components are uncorrelated,
R = diag(ry, ..., 1))

Now the factorization == W DyW = ARA’ can be written because
WW'=W'W=1I,and R =D, =diag®,, ..., 6,). The sources can now be
separated by s; = Wx;. For a more detailed account of the procedure re-
fer to Press (1982).

5. INDEPENDENT COMPONENT ANALYSIS

If it is further assume that the components of the source signals
are independent, which is a more stringent requirement than being
uncorrelated, then the described model is the independent components
analysis CA) model. This model also assumes that the number of
source signal components is equal to the number of observed signal ele-
ments (m =p) and that the observation error (noise) is zero (¥ = 0).

The probability distribution for the source signals with inde-
pendent components 18

"

ps;lm)= I1 sy (brea)
k=)

Thus for no distributional assumptions have been made about
the independent source signal components although it can be assumed
that they ave normal, as in the next section.

The likelihood for the observations is

plxls;, m, Ay =8(x; — As), (6.1)



BLIND SOURCE SEPARATION 57

a delta function due to the zero noise limit. The change of variable
u; = A lx; = Wx; is made and thus

pu s, m W)= | W(du;-s,). (5.2)

The likelihood and the prior distribution for the source components
are combined to form their joint distribution

m

pQu;, s;lm, W)= | Widu; - sy = I p(s;), (5.3)
=1

and is integrated with respect to the source signal components, to obtain

m

plu;im, W)= [1W(a(; - s) [ psp)ds;
k=1

m

= (Wi I p(uy. (5.4)
A=1

As stated by MacKay (1996), upon taking the logarithm, differen-
tiating, and changing A to ascend the gradient, the learning algorithm
of Bell and Sejnowslkd (1995) is obtained.

6. TFACTOR ANALYSIS

If it is assumed that observation errors (noise) are non zero
(¥ # 0), that there are at most as many unochserved source signal com-
ponents as observed mixed signal elements (m < p), that R i1s a corre-
lation matnx, and several other traditional assumptions that round
out the psychologic mode), then this describes the factor analysis (FA)
model.

It is common to assume that the uncbserved source signal com-
ponents are uncorrelated, a weaker assumption than independence.
In particular model assumption (bg,) is made, that a priori, the source
vectors are distributed as

(S, { }n‘) -~ IV(O» k= Im)l N (bFA)

and is in PCA and ICA it is assumed that (¢) the error vectors and the
source vectors are independent,

(g4 & (s;1m, R) are independent. (c)
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When R =1, this is called the orthogonal factor model and when
R is a general correlation matrix. called the oblique factor model. The
orthogonal model is most common due to interpretability. Recall that
when R =], the mixing matrix called the factor loading matrix in factor
analysis has the interpretation of being a matrix of covariances
(correlations) between the observed elements and the unobserved
source components called factor scores. In assuming that the sources
have an identity covariance, the distribution of the observations re-
mains unchanged. For example, if it was assumed that

s;bm, R~ N, R, (6.1)
where RB" is a general covariance matrx, then
(x;1m, A, ¥, R") ~ N(O, AR"A' +¥) 6.2)

which 1s the same as

1 1
(x;lm, A, W) ~ N©, (AR"2)R(AR"2) +P)

where R is the identity matrix or a correlation matrix.
The resulting probability distribution function is

™ 1] -1

‘R s

]
35
2% . (6‘3)

pls;lm, Ry = (27[)_ 2 IRI_2 e_
and the joint prior probability distribution function for all the unob-
served source signal vectors is

nm n -ilrSR -IS;

p(S|m, Ry=@n) 2 IR| %e? : (6.4)

The likelihood for the observed mixed signals and the prior
(model) distribution for the unobserved source signal vectors are com-
bined to form their joint distribution

_hp _n
X, SI¥, m, A, By=2n) 2 (|¥} 2

L esayoesay
. e 2

nm n 1 op-!

== -= ——UrSR™S'
-@2r) IR %e? . (6.5)
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There are several approaches to ecstimating the unobserved
source vectors. the mixing matrix, and the errors. For classical factor
analysis the estimation methods range from maximum likelihocod by
the method of Lawley (1940) to EM maximum likelihood by Rubin and
Thayer (1982). More recently, the modern Bayesian approach of Press
and Shigemasu (1989/1997) that incorporate prior knowledge about
the parameter values with the result of eliminating indeterminacies
has generated much activity. For details and brief overview of elassical
and Bayesian factor analysis see Rowe (1998). Unfortunately, factor
analysis has the shortcoming that only normalized sources are ob-

tained.

7. BAYESIAN BLIND SOURCE SEPARATION

The aforementioned models are expanded to the general Bayesian
blind source separation (BBSS) model for several reasons. In the real
“cocktail party problem” the number of speakers is not in general
equal to the number of microphones as required by PCA and ICA, or
less than or egual to the number of microphones as required by FA.
The FA assumption that the sources have unit variance is inadequate
because only normalized sources are separated. It is further believed
by the current author that no observation is truly noiseless, as is
required by ICA and PCA. There is always some non zero random
variability as alluded to in MacKay (1996). BBSS also does not constrain
the sources to be independent as [CA does. This is ocbviously not the
case since speakers are not acting independently. BBSS allows the
source components to he correlated.

7.1. Likelihood
Continuing, the blind source separation model is

XIm, A, S)= S A + K (7.1)
(n xp) (xm)(mxp)  (nxp)

with assumptions
(8) (51'¥) ~ N0, )
(b) (s;lm, R)~ MO, R), R a general covariance matrix,
and it has implicitly been assumed that
(©) (g1'¥) and (s;l m, R) are independent.
That 1s, the mixed signals are observed with error that is

normally distributed with mean zero and variance-covariance matrix
Y, the unobserved source signals are normally distributed with mean
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zero and covariance matrix R, and the errors and the sources are
independent.

From assumption (a), the likelihood for the observed signals is

2p 2 %tr‘l‘_l(X-SA’)’(X-SA')

PX1¥. m, S, Ay =2n) 2|¥] 2e (7.2)
where X' =(xy, ..., x,), S = (81, ..., 8,), and E' = (g, ..., €.

The advantage of the Bayesian statistical approach 1s that available
prior information about parameter values can formally be brought to
bear in the problem through prior distributions. As stated earlier, the
prior parameter values will have decreasing influence in the posterior
estimates with increasing sample size, and the sources are allowed to
deviate from their a priori values, thus allowing the data to “speak the
truth.” This paper follows the Bayesian paradigm by assessing prior
distributions for the remaining unknown parameters.

7.2. Priors and Posterior

Natural conjugate prior distributions are assessed for the model
parameters, It 1s specified that the prior distributions for the source
covariance matrix R, the error covariance matrix ¥, and the mixing
matrix A follow inverted Wishart, inverted Wishart, and normal dis-
tributions respectively

: -3 ARty
pRim)=c(n, m)IR| *e * , (7.3
_y _l I‘P.IB
2 2 ~
p)=c(v,p)I¥! e ‘ (7.4)
- 2] S22y A=A H(A-A Y
PAIY, my=@2n) 2 1HI?IY| 2-e? "

(7.5)

where v>2p,m>2m; R, V,¥ and H are positive definite matrices;
¢(n, m) and ¢(v, p) are constants depending only on their arguments.
Further,

@=m=-Ym n-1 M b
e, myt=2 2 a¢IIr p-on
k=1 2

and ¢(v, p) has the same form. The hyperparameters q, V, v, B, A,,
and H are to be assessed. Hyperparameter assessment is discussed in
an appendix.
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For simplicity of assessment, it is specified that B=bd,1,,
V=uv, 1, and H=hy I, . The prior distribution p(A{¥, m) comes from
writing 1 = vec(A’), and specifying a multivariate normal distribution.
As a consequence, E(t) = vec(Ag) and var(t) = I,, ® hy' E(¥). Since B is
a priori diagonal, or equivalently the errors are a priori uncorrelated,
the elementa of A are a priori uncorrelated.

A big guestion in the blind separation of sources problem has
been neglected. How many unobserved source signals are to be un-
mixed? The number of sources is often unknown. The methods in this
paper allow researchers to incorporate their prior beliefs as to the
number of sources in the form of a prior distribution.

It allows the general specification of a discrete prior distribution
p(On) on the number of sources m. If the true number of sources were
known, then the degenerate distribution

_ 1, ifm=ln0 76
pom) = 0, ifm=my, (7.6)

is assigned, and the posterior is only defined for m =m,.

Upon using Bayes’ rule the posterior distribution for the unknown
parameters 18

= ‘H&B!m E _ !n+m+v§
pim, S, A, ¥, RIX)xe p(m)2z) % 1HIZ|P| 2
L -éer"(s'&V)

- ¢(n, m)lRI_ ‘e
-%lr‘P-‘U
e ? (1.7)
where

U=(X—SAY(X - SA) + (A - AgH(A - Ay + B,

and « denotes proportionality.

This posterior distribution must now be evaluated in order to ob-
tain parameter estimates of the number of sources, the mixing matrix,
the sources, the errors of the sources, and the errors of observation.

8. ESTIMATION

With the above posterior distribution, it is not possible to obtain
marginal distributions and thus marginal estimates for any of the
parameters in an analytic closed form. For this reason, the determi-
nistic hill climbing Lindley/Smith optimization I.SO) is used. It is
also possible to use stochastic Gibbs sampling (as outlined in the
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appendix) but it 1s more computationally intensive and time consuming.
For the L8O estimation procedure, the posterior conditional distribu-
tions are required.

From the joint posterior distribution we can obtain the posterior
conditional distributions. The conditional posterior distributions for
the mixing mauwrix is

pAIY, m, S, R, X))« p(¥, m, S, A, R)p(X|¥, m, F, A)
< p(P)p(m)p(Sim, Rp(AlY¥, m)p(R)
p(X[W¥, m, S, A)
oc p(A 1Y, \m)p(Xt\P. m, S, A)

n 1

-1
-5 mHrY (A=AQR(A-AY
< |¥] 2e

n

1 S P
-2 Y -SAY(X-SA)
Y] e ?

; %lr‘y_‘[(A-/\QH(A-AQ)’-r(X-Sz\')’(X—SA’)]

} ~t -~ ' -~
— I (A-AXH+S 'S A-AY
xe ® (8.1

where the posterior conditional mean and mode is given by
A=[X'S+AHH+SS™.

The conditional distribution for the mixing matrix the observation
error covariance matrix, the number of sources, the sources, the
source covariance matrix, and the data is normally distributed.

The conditioral posterior distribution of the observation error
matrix is

p¥Im, S, A, R, X))« p(¥, n, S, A, )p(X|I¥, m, S, A)
< p()p(m)p(S|in, R)p(A1'¥, m)p(R)
-pX|¥, m, S, A)
« p(V)p(A 1Y, mp(X1¥, m, S, A)

T T |

\Y ~}
- —gir ¥ (A=A IH(A-Ap)
o« |¥| 2e 2 Wi Ze ?

" 1 1
== =Y (X=SAY(X-SA)
)Yl e ?
+ HI+V 1 - .
-1"2_'+) ~Loey
w || e - (8.2)
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where

U=X-SAYX-SNY+(A-ADHA - AY' + B (8.3)
with a mode given by

‘{’—L 8.9

Tnaemev

The distribution of the observation error covariance matrix given
the number of sources, the mixing matrix. the sources, the source co-
variance matrix, and the data is an inverted Wishart.

The conditional posterior distxibution for the sources is
SIY, im, A, R, X)<cp(¥, m, S, A, R)p(X|¥, m, S, A)

x p(P)p(m)p(S1m, Rp(A 1Y, m)p(R)
-pXI¥, m, S, A)
« p(Sim, R)p(X|¥, m, S, A)

r _1sp7g

3 "9
<« |R| “e =

L - sayx-8an

I\};! 262

n -l

n 1 0,
-= -= ==tr[SR S HX-SAM (X-SAY)
o |¥| ?IR| 2¢?

——,];u(S—§ YA A AxS-Sy
xe

where the posterior conditional mean and mode is given by
S=XY AR+ AV AL

The conditional posterior distribution for the sources given the
observation error covariance matrix, the number of sources, the mixing
matrix, the sources, the source covariance matriy, and the data is
normally distributed.

The conditional posterior distribution for the source covariance
matrix is

PRIV, m, S, A, X)) p(¥, m. S, A, R)p(X}¥, m, S, A)
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o p(¥)p(m)p(S| m, R)p(A|'Y, m)p(R)
-p(X|¥, m, S, A)
« p(Sim, R)p(R)

- -%trSR st

« |R| Z%e

X -ltrR_'V

|R| 282

St 1 psisyy
oc IRI 2 2

with the posterior conditional mode given by

S'S+v
n+n

R= (8.5)

The conditional posterior distribution for the source covariance
matrix given the observation error covariance matrix, the number of
sources, the sources, the mixing matrix, and the data is normally dis-
tributed.

All of these conditional posterior densities are well known recogniz-
able distributions that do not require rejection sampling. Standard
random varizble generation methods can be used.

However, the conditional distribution for the number of sources
is not tractable and recognizable.

The conditional posterior distribution of the number of sources is
p(m|¥, S, A R, X)) p(XI\¥, m, S, A)p(¥, m, S, A, R)
o p(XI'¥, m, S, p(¥)p(S | m, R)p(Al'Y, m)p(R)p(n)

. —%:N"(sty(X—SA')
e {2n) “|W¥] “e
v 1 -1 nm n 1 )
-3 vy L -2 _24SR7's
Wl %2e? (2n) 2IR| %e?

e BT - %xr*?"(A—AO)H(A—AO)'
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i ),_,.R"‘(s'snl) _{nephm 4

« p(m)e(n, m)|R| 2 e ? @ny % 1H|?
_(n,NJH\'l ——ll.r\P"U
Syl % e? (8.6)

As previously stated, the conditional posterior density for the
number of sources given the observation error covariance matrix, the
sources. the source covariance matrix the mixing matrix, and the data
does not have a tractable and recognizable form.

It is not necessary to compute modes from the above number of
sources conditional posterior distribution for LSO (or generate random
samples for Gibbs sampling). Parameter estimates can be computed
for each number of sources and the value that maximizes the posterior
conditional distribution is selected.

The Lindley/Smith optimization procedure consists of starting
with initial values for m, S and R, say mg, S(O), RO) and for a given
number of sources m =m, cycling through

/N\(m) = (Xlg(l) + AgH) (H + S‘(" )hs-m)-l ,

o XS Aday) K= SN + By - AQH(A ) = Ag) + B

ey = n+m+v

= o B Sl , T G-l T A

Sa1y = X WAy Ry + Adey¥ gryAgery) -

~ AS{]* 1)§§’+l) + 1%

Koy = n+

n

until covergence i1s reached. The converged values (§, A, ¥ R ) are
joint posterior modal estimators of the parameters for the given number
of sources.

We carry out these procedures for each value of the number of
sources /m, then find the value of the number of sources that makes
the posterior conditional distribution for the number of sources a
maximum given the corresponding estimates of the other parameters.
This is the same as selecting the number of sources to be that value
which makes the conditional posterior odds ratio a maximum.

9. EXAMPLE

For an example, a simulation was carried out. The number of
sources was fixed at m=4 and n =100 ¢cbservations of dimension
p =3 were simulated with kmown true parameter values
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and

5
\YT= 0
0 5

The observations were formed by generating a random s; from
N0, Ryp), premultiplying it by A,, and adding an error term generated
randomly from N(O, ‘¥j).

The hyperparameters were assessed according to the methods tn
the appendix to be v=206, b,=1386, h,=20,

2 0 2 0
A0=2002
lo 2 2 0

n=1114.5 and v, = 115970.
Upon applying the LSO estimation procedure, the posterior pa-

rameter estimates were found to be

5.6878 0.2801 0.2943
¥=|02801 55096 -0.0873
(0.2943 -0.0378  5.5302

102.5938  -1.1721 2.7926 3.1392
-1.1721 100.4824 3.1910 0.6295
2.7926 3.1910 102.6598 -1.1864

. 3.1392 0.6295 -1.1864 100.4450

= I
n

4.8892 -0.4958 4.9022 -0.5088
A=| 4.4900 02165 -0.4012 5.1077
-0.3808 5.1323 45253 0.2263
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and the true sources, the mixed sources, along with the unmixed (esti-
mated) sources are displayed in Figure 1. while in the true and un-
mixed sources are displayed in more detail in Figure 2 as dashed and
solid lines respectively.

S0

'
Pl [
o (=] a
~
(=4
[=3
(=]

-S0

50 100
50, 0 0 50 100
0 -200 = )
100
200
-50° -50
50 1
50 00 0 5o 50 100
e 7200 50 0
100
200
-S0 -50
so0 100 0 50 100
50 S0
-200
0 WWM 50 00 0
-50 -50
50 100 50 100

Figure 1. The Sources, Mixed Sources and Unmixed Sources

10. CONCLUSION

This paper has laid the foundation for a Bayesian blind source
separation model and showed its relation to the PCA, ICA and FA
models. The Bayesian blind separation of sources model, has several
basic advantages over PCA, ICA, and FA.

Advantages over PCA:

(1) does pot assume ¥ =0

(2) does not assume m=p

(3) allows prior information to be incorporated
(4) does not assume that m is known.

Advantages over ICA:

(1) does not assume ¥ =0
(2) does not assume m=p
(3) does not require A
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Figure 2. True Sources and Unmixed Sources

(4) Qdoes not constrain sources to be independent
(5) allows prior information to be incorporated
(6) does not assume that /n is known.

Advantages over FA and Bayesian FA:

(1) does not assume m <p

(2) does not assume R is a correlation matrix

(8) does not require psychologic assumptions.

As shown in the example, Bayesian blind separation of sources

appears to be very promising in solving the real “cocktail party
problem”.

Appendices

A. Hyperparameter Assessment

The hyperparameters of the prior distributions are assessed in
this appendix. These hyperparameters are assessed in terms of ques-
tions asked to the substantive field expert.



BLIND SOURCE SEPARATION €9

C o
: What range of values do you believe are possible for the number
of sources?

My, oy My, ) .

What is your degree of belief for each of the possible values? If
you had an urn with different colored balls in it corresponding to the
different number of sources, how many of each color would be in the

wrn. For the example, the number of sources was assumed to be

known.
For each m;
V. v, B

For simplicity of assessment, specify that B = b, I,. With B diago-
nal, the mean and variance of any diagonal element of ¥, ¥, are

: by
By = op-2
r(¥;) 2ty (A1)
P v=2p=-2Y(v-2p-4) '
Solving for v in the above system of equations,
E » 2
—M+2p+4. (A.2)

Y 2lvar(ey)]

The unknowns are E(¥;) and var(¥). Prior values for the mean
and variance are to be elicited from the substantive field expert. In
the example, the values assessed were assumed to be E(¥;) =7 and
var(¥;) =0.5.

RImy:n, V

Similarly. assessment is simplified by speafying that V =y, 1,
and thus

_[BRW)?

n= 2V Roy)] +2m + 4. (A.3)

In the example, the values assessed were assumed to be
E(R,;) = 105 and var(R;y) = 20.

A:Ao, H—_—ho.["'

As shown by Lee (1994) and Lee & Press (1998) in the area of
Bayesian factor analysis, the posterior distribution 1is robust to vajues
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of the hyperparameter hy. Making an analogy for BBSS, it is assumed
that the value hy= 20 was assessed from a substantive field expert.

The prior mean for the mixing matrix A, must be subjectively
elicited from the substantive field expert or estimated from training
data using another technique. In the example, it was assumed that
a substantive field expert provided the prior mean for the mixing
matrix.

B. Bayesian Estimation Methods

In this section we define some estimation procedures. The proce-
dures are marginalization and conditional estimation, LSO and Gibbs
sampling.

B.1. Conditional Model Estination

Often we have a set of parameters, 6 = (84, ..., 0) in our posterior
distribution p(8|X). The marginal posterior distribution of any of the
parameters, say €; can be obtained by integrating p(61X) with respect
all parameters except ;. That is

p@;1X)= [p(®,, ..., 0,)d8, ... 40, , db,,, ... d6, B.1)

where the integral is evaluated over the appropriate range of the
parameters, 1t 1s possible to calculate the marginal posterior distribution
for each of the parameters and calculate marginal posterior estimates
such as the mean

6= E(6;1 X) = [, p(6;) X)d6;. B.2)

We may instead chooge to compute conditional posterior distribu-
tions. If again 8 = (B, ..., 8,), then the conditional distribution of any
one of the parameters say 6, given another say 6; 18 given by

’ _p(@k. GIX)
p(ekle],X)_—l—p(ele) (B.3)

where

POy, 81X)= [p(0;, ..., 0,1X)d6, ... d8;.; dby,, ...
oy, doy., ... d9,. (B.4)

Now the conditional posterior mean (and mode) estimator may be
computed such as
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0, = E(016;, X) = {8, p(6,16;. X)d8,, (B.5)
or R
6,= E(8,18,.6;. X) = [6,p(6,18;. 6. X)a0,, (B.6)
where
0,16, 68, X) =k Ok 1 0) 7
p( lI ks V) )_ p(ek)e."X) . (B )

It is not always possible to obtain one or more marginal posterior
distributions In an analytic clased form. For this reason Lin-
dley/Smith optimization or Gibbs Sampling may be used.

B.2 Lindley/Smith Optimization (LSO)

Lindley/Smith optimization (Lindley and Smith, 1972) sometimes
called iterated conditional modes (ICM) is a deterministic optimization
method that finds the joint posterior modal estimators of p(®(X)
where 0 denotes the vector of parameters, and X denotes the data.

Assume that 6 =(8;, 065) where 8, and 6, are scalars and the pos-
terior density of 0 is p(8;, 6,1 X). We have a surface in 3-Dimensional
space. We have 6, along one axis and 6, along the other with
p(6,. 6,1X) being the height of the surface or hill.

We want to find the top of the hill which is the same as finding
the peak or maximum of the function p(6,, 6, X) with respect to both
8, and 6,. Well we find the maximum of a surface by differentiating
with respect to each variable (direction).

The maximum of the function p(6,, 6,1X) satisfies
2l 3
glp(e,.egX)IeI:g] =¥2p(61, eglefgz=0, (B.8)
whach is the same as

2] 0 -
gp(e)|92»X)P(92|X)|el=§(='86_P(62|61:X)P(elik)lefﬁz =0
{ 2

or
5 2 )
P, X) 20, p©,18,, X)14 5, =p(6, m)—‘aezp(%leh X)lo-5,=0

.(B.10)
assuming that p(@,{X) =0 and p(0,|X) = 0.
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We can obtain the posterior conditionalg (functions) p(0,18,, X)
and p(9.,|61, X) along with their respective modes (maximum)
8,=6,(6,, X) and 8, = 8,6, , X).

We have the maximum of 6,, 6, for a given value of (conditional
on) 9,, and the maxirpum of 6,, 52 for a given value of (conditional on)
o,.

The optimization procedure consists of

(1) Selecting an initial value for 6,; call it 5&0)_

(2) Calculate the modal (maximal) value of p(6, (85>, X), 6{V.

(3) Calculate the modal (masimal) value of p8,18{", X), 61"

(4) Continue_to calculate the remainder of the sequence
6 oM 6@, 9;2), ... until convergence is reached.

If the posterior conditional distributions are not unimodal, we
ray converge to a local maximum and not the global maximum. If the
posterior conditionals are unimodal, then we will always converge to
a global maximum.

When convergence is reached, the point estimators (51. 5:.) are
the maximum a posteorl estimators.

This method can be generalized to more than two parameters. If
6 is partitioned by 6 =(®,, 6,, ..., 83) into J groups of parameters, we

begin with a starting point 60 = (6(0) 9(0) e 550*) and at the ith it-
eration define 8D by

6" =8,09. 89, ....8D) (B.11)
B = 5,0, 50, B9 ®.12
e(HI) e (e A (i+1) e(““-)) e(”‘“l (B.l3)

at each step computing the maximure or mode. To apply this method
we need to determine the functions é‘, which give the maximum of

p@E[X) with respect to 8;, conditional on the fixed values of all the
other elements of 8. This is the peneral form of LSO.

B.3. Gibbs Sampling

(Gibbs sampling is a stochastic method that draws random samples
from the posterior conditional distribution for each of the parameters
conditional on the fixed values of all the other parameters and the
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data X. Let p(81X) be the posterior distribution of the parameters
where 0 is the set of parameters and X is the data. Let 8 is partitioned
by 6=(6,.6,.....8,) into J groups of parameters. Ideally, we would
like to perform the integration of the joint posterior distribution to obtain
marginal posterior distributions

(01X = jp(el, v 0,)d0, ... O, dby,, ... dO; (B.14)
and marginal posterior mean estimates
E®:1X) = [8;p(8,1X)de;. (B.15)

Unfortunately, these integrations are usually of very high dimen-
sion and not available in a closed form. This is why we need the Gibbs
sampling procedure. With the random samples drawn from the posterior
conditional distributions, we can estimate the marginal posterior
distributions and the maxginal posterior means.

For the Gibbs sampling, we begin with an initial value
@@= (6, 62, ..., 6
and the ith iteration define
6(i+)) — (6()1'1- l)’ gg-i»l), . §y+l))
by the values from
8% = a random sample from p(6,(65>, 65, ....6% X) (B.16)

68"V = a random sample from p(6,16{*D, 6>, ...,6}‘), X) B.17)

5_‘}*”: a random sample from p(é_]léi”l), 55’“’, ) 65"_*“, X
. (B.18)

that is, at each step drawing a random sample from the conditional
posterior distribution. To apply this method we need to determine the
posterior conditionals of 6;, conditional on the fixed values of all the
other elements of 8 and X from p(6|X).

We will have 8,89, ., 0% . 6% Tue first s random sam-
ples called the “burn in” are discarded and the remaining t samples
are kept.
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The marginal posterior distributions (Equation B.14) are estimated
by

!
- 1 i~ —= - = - =
p(ej_) — 7 Zp( ej(ﬁk) | e){s+k)) 92(s+)¢)’ L e}_(_&;k)’ e}f;“) o el(’s+k)’ X),
k=)
i=1...,d (B.19)

and the marginal posterior mean estimators of the parameters (Equation
B.15) are estimated by 8=(6,, ..., 9,) where

L
6=1 L BEM, j=1, . J (B.20)

I=1
C. BBSS Gibbs Sampling

The Gibbs sampling estimation procedure consists of starting
with initial values for the parameters m, A, ¥, S, and R say H‘O), Ay
Yoy Sy and R,

Then for a given number of sources m =Iny, cycle through
X(M) = a random sample from p(/\f@,), Sy, Ry, Mgy, XD
Q(M)E a random sample from p(‘{-'|§(0, X(!+1)' E(IV mg,, X)
§(1+1)E a random sample from p(SI@(M), X(,m, R,), me. X)
E(M)E a random sample from p(RI@(M), §(M), §(,+1), my, X)

and for the given value for the number of sources m = my we have the
sequence

Ay Yoy Sy By

Awy Py S(U-)’ R(U))
(A(u-rl)’ \P(u+l)J S(uﬂy R(u+1))

(A(u»-rt)r \P(IMI)' S(|1+l)> B(uﬂ))'

The first © random samples called the “burn in” are discarded
and the remaining ¢ samples are kept to be used for our estimates. We
use the means of the remaining ¢ random samples
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as the sampling based marginal posterior mean estimates of the pa-
rameters for a given number of factors m ='mn,.
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