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Abstract

In functional magnetic resonance imaging (fMRI), the process of determining statistically significant brain activation is commonly
performed in terms of voxel time series measurements after image reconstruction and magnitude-only time series formation. The image
reconstruction and statistical activation processes are treated separately. In this manuscript, a framework is developed so that statistical
analysis is performed in terms of the original, prereconstruction, complex-valued k-space measurements. First, the relationship between
complex-valued (Fourier) encoded k-space measurements and complex-valued image measurements from (Fourier) reconstructed images is
reviewed. Second, the voxel time series measurements are written in terms of the original spatiotemporal k-space measurements utilizing this
k-space and image relationship. Finally, voxelwise fMRI activation can be determined in image space in terms of the original k-space
measurements. Additionally, the spatiotemporal covariance between reconstructed complex-valued voxel time series can be written in terms
of the spatiotemporal covariance between complex-valued k-space measurements. This allows one to utilize the originally measured data in
its more natural, acquired state rather than in a transformed state. The effects of modeling preprocessing in k-space on voxel activation and

correlation can then be examined.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In functional magnetic resonance imaging (fMRI), an
array of data for an individual image is observed in an
encoded form. The sampled data are generally Fourier
encoded [1,2] and, thus, are measured spatial frequencies.
These spatial frequency (k-space) observations are then
reconstructed into an individual image array by the process
of an inverse Fourier transformation. A series of these arrays
of encoded images are acquired, and the reconstruction
process is applied to each array. For each voxel, temporally
sequential voxel measurements are collected into a time
series for determination of statistically significant activation.
The originally sampled spatial frequencies are complex
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valued, and the inverse Fourier transformation image
reconstruction process may yield complex-valued data.
Due to measurement error and imperfections in the Fourier
encoding, voxel time series are generally complex valued.
The process of determining statistical activation in each
voxel has, for the most part, been from magnitude-only time
series [3,4]. The process of converting a complex-valued
time series into a magnitude-only time series is to take the
square root of the sum of the squares of the real and
imaginary parts of the complex-valued time series at each
time point [5]. An activation statistic from the magnitude-
only time series for each voxel is determined by computing a
measure of association between the observed voxel time
series and a preassigned ideal time series based on the timing
of the experiment and physiologic considerations. This
association measure for each voxel is statistically compared
with the association measure that would result from a time
series of random noise. A statistical threshold is chosen, a
scale of color values for the activation statistic is assigned
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and each voxel above threshold is given the color
corresponding to its activation statistic.

The idea of computing an activation statistic from the
complex-valued time series has been previously discussed
[6,7]. This idea of computing fMRI activation from
complex-valued data has recently been expanded upon
[4,5,8,9]. Work has also been performed on computing fMRI
activation from phase-only time series [10]. However, the
processes of image reconstruction and statistical activation
have been treated separately. Thus, activation is determined
in terms of complex-valued voxel measurements after
reconstruction and not the original encoded measurements.

In the current study, the relationship between the original
encoded k-space measurements and reconstructed voxel
measurements for each image is summarized. For each
image, a vector of real-imaginary reconstructed voxel
measurements is formed and written as a linear combination
of real-imaginary k-space measurements. A larger vector of
reconstructed real-imaginary voxel time series measure-
ments is formed by stacking the individual vectors of real—
imaginary voxel measurements for each image in temporal
order. This large vector is written as a linear combination of a
large vector of real-imaginary k-space time series measure-
ments that is ordered in a similar manor. A permutation
matrix is utilized to reorder the voxel measurements that are
real then imaginary per image to be of real then imaginary
per voxel. Statistical functional brain activation can then be
determined with the aforementioned recent complex-valued
activation models. A map of these activation statistics can
then be thresholded to determine statistically significant
activation while adjusting for multiple comparisons [11,12].

Statistically significant voxel activation and correlation
between voxels can, thus, be determined in image space in
terms of the originally acquired k-space measurements. This
will allow the modeling of the originally acquired measure-
ments in their original state, as they are acquired, and not in a
transformed state. Implications of k-space preprocessing on
voxel activation and correlation can then be evaluated.

2. Background

Previous work has included the development of a real-
valued representation of the standard complex-valued Four-
ier transform [13]. In this section, we review the representa-
tion and offer a graphical example to illustrate the method.
Magnetic resonance images are almost exclusively Fourier
encoded. That is, one ideally measures the Fourier transform
of an image and reconstructs the image via an inverse Fourier
transform. The Fourier transform and inverse Fourier
transforms are complex-valued procedures that results in
complex-valued arrays.

Standard, complex-valued Fourier matrices are defined
as follows. If Q¢ is a pxp Fourier matrix, it is a matrix
with (j,k)" element [Qc]jk=;<(wfk), where k=1 and w=exp
[-i2n(j—1)(k—1)/p] for the forward transformation, while

k=1/p and w=exp[+i2x (j—1)(k-1)/p] for the inverse
transformation, where j,k=1,...,p.

Consider the Fourier transform of an image that has
dimensions p,xp, (p, rows and p, columns). Often, the
image is square, although this is not necessary. More
specifically, consider an 8x8, ideal, noiseless, gray scale
image as presented in Fig. 1. Since the Fourier transform and
inverse Fourier transform procedures operate on and produce
complex-valued arrays, the real-valued image in Fig. 1 can
be represented as a complex-valued image R that has a real
part Ry as in Fig. 1, an imaginary part R; that is the zero
matrix so that Rc=Rr+iR;. The encoded data, or Fourier
transform of this image, can be found in Eq. (1) by
premultiplying the p,xp, dimensional complex-valued
matrix Rc by a standard complex-valued forward Fourier
matrix Q,c=(2,r+iQ,), that is of dimensions p,xp,, and
postmultiplying R by the transpose of another standard
forward Fourier matrix QC: (ﬁxR —|—i§xl) T, where T denotes
matrix transposition, that is of dimensions p,xp,. The result
of the pre- and postmultiplications is a complex-valued array
of spatial frequency (k-space) measurements, Sc, with real
part Sg and imaginary part Sy as also shown in Eq. (1).

(ﬁyR + iﬁ)y1> (RR + lR[) (QXR + l‘ﬁxl) r = (SR + lS[) (1)

This mathematical procedure is graphically illustrated in
Fig. 2 using the aforementioned 8x8 image. In Fig. 2, the
8x8 image, Rc, is utilized to mimic an image from a
magnetic resonance echo planar imaging (EPI) experiment.
Rc is displayed with real part, Rg, in Fig. 2C and imaginary
part, Ry, in Fig. 2D. The spatial frequency (k-space) values,
Sc=(Sr+iS)), associated with this complex-valued image, are
found by premultiplying the complex-valued image by the
complex-valued forward Fourier matrix ﬁyc (Fig. 2A and B)
and then postmultiplying the result by the transpose of the
symmetric forward Fourier matrix (Fig. 2E and F). The
spatial frequency (k-space) values, Sc, for the complex-
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Fig. 1. Ideal noiseless image.
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Fig. 2. Complex-valued two-dimensional (2D) forward Fourier transform. (A) Forward matrix ﬁyR. (B) Forward matrix ﬁyl. (C) Image real Rg. (D) Image
imaginary R;. (E) Forward matrix Q,g. (F) Forward matrix Q.. (G) Spatial frequencies Sg. (H) Spatial frequencies S.

valued image Rc are presented as an image with real part,
Sr, in Fig. 2G and imaginary part, Sj, in Fig. 2H. Note that,
as mentioned earlier, the image does not have to be square.

However, as previously described, in MRI, encoded (&-
space) measurements, Sc, are made and reconstructed
(transformed) into an image. The inverse Fourier procedure
is performed. This reconstruction procedure, or inverse
Fourier transform, of the spatial frequency (k-space)
measurements can be found as

(‘QyR + iQy]) (SR + iS[)(QxR + iQx])T = (RR + lR]) (2)

by premultiplying the p,xp, dimensional complex-valued
spatial frequency matrix, Sc, by a complex-valued inverse
Fourier matrix, €,, that is of dimensions p,xp,, and
postmultiplying Sc by the transpose of another Fourier
matrix, ﬁx, that is of dimensions p,xp,, where T denotes
matrix transposition. The result of the pre- and postmulti-
plications is a complex-valued array of image measurements
Rc, with real part Rr and imaginary part Ry as also shown in
Eq. (2).

The complex-valued image R can be recovered as seen
in Fig. 3. The process of recovering the original complex-
valued image Rc is to premultiply the complex-valued
spatial frequency (k-space) values Sc (Fig. 3C and D) by the
complex-valued inverse Fourier matrix Q¢, (Fig. 3A and B)
then postmultiply the result by the transpose of the
symmetric inverse Fourier matrix Qc, (Fig. 3E and F). The
recovered complex-valued image, Rc, is presented with real
part, Rg, in Fig. 3G and imaginary part, Ry, in Fig. 3H.

This complex-valued inverse Fourier transformation
image reconstruction process can be equivalently described
as a linear transformation with a real-valued representation
[13]. Such a transformation is often called an isomorphism in
mathematics. Define a real-valued vector, s, to be a 2p,p,
dimensional vector of complex-valued spatial frequencies
from an image where the first p,p, elements are the rows of
the real part of the spatial frequency matrix, Sg, shown in
Fig. 3C, and the second p.p, elements are the rows of the
imaginary part of the spatial frequency matrix, Sj, shown in
Fig. 3D. The real-valued vector of spatial frequencies is,
thus, formed as s=vec(Sg,S{), where (SkS7) is a p.x<2p,
matrix formed by joining the transpose of the real and
imaginary parts of Sc as seen in Fig. 4A, and vec(-) denotes
the vectorization operator that stacks the columns, shown in
Fig. 4B, of its matrix argument. This yields us a real-valued
vector representation of the matrix of spatial frequency (k-
space) values that is given in Fig. 5B.

Further define a matrix € that is another representation of
the complex-valued inverse Fourier transformation matrices
as described in Eq. (3) where the matrix elements of Q are

Q= [(2r ® Q) — (21 ® Qu)]
Q=[(2r ® Q) — (21 ® Q)]

and ® denotes the Kronecker product that multiplies every
element of its first matrix argument by its entire second matrix
argument. Utilizing the complex-valued Fourier matrix Qc,,
with real and imaginary parts Q,r and ©,; given in Fig. 3A
and B, along with the complex-valued Fourier matrix Qc,,
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Fig. 3. Complex-valued 2D inverse Fourier transform. (A) Inverse matrix Q. (B) Inverse matrix Q. (C) Spatial frequencies Sg. (D) Spatial frequencies S;. (E)
Inverse matrix Q,g. (F) Inverse matrix Q,;. (G) Image real Rr. (H) Image imaginary Ry.

with real and imaginary parts Q. and Q,; given in Fig. 3E
and F, the resulting ©2 matrix is presented in Fig. SA.

The real-valued vector representation s of the spatial
frequency (k-space) values in Fig. 5B is then premultiplied
by the (inverse Fourier) reconstruction matrix 2 as in Eq. (3)

r = Qs
() = (@ a)(®) .
r Q Si
where the real-valued representation, 7, of the complex-
valued image has a dimension of 2p.p,x1, true mean and no
measurement error.
This is pictorially represented in Fig. 5. Fig. 5B is the

spatial frequency vector s, and Fig. 5A is the inverse Fourier
transformation matrix Q as described in Eq. (3). This matrix

multiplication produces a vector representation, 7, of the
image voxel measurements given in Fig. 5C as described in
Eq. (3). The vector of voxel measurements, 7, is partitioned
into column blocks of length p,. These blocks are then
arranged as in Fig. 6A and formed into a single matrix image
as in Fig. 6B where the first (last) eight columns are the
transpose of the real (imaginary) part of the image. As can be
seen, the same resultant complex-valued image is recon-
structed with the complex-valued inverse Fourier transforma-
tion procedure described in Eq. (2) and presented in Fig. 3.

In the above-described procedure, measurement noise
was not considered. Redefine Sc to be the p,xp,
dimensional complex-valued spatial frequency measure-
ment of a slice with noise that consists of a p,Xp,
dimensional matrix of true underlying noiseless complex-

Fig. 4. Matrix to vector spatial frequency (k-space) values. (A) Spatial frequencies S"=(Sk, S7). (B) Partitioned spatial frequencies .
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Fig. 5. Isomorphism for complex-valued 2D inverse Fourier Transform. (A) Reconstruction matrix Q. (B) Frequency vector s. (C) Image vector r.

valued spatial frequencies, Soc, and a p,*p, dimensional
matrix of complex-valued measurement error, Ec. This
partitioning of the measured spatial frequencies in terms of
true noiseless spatial frequencies plus measurement error
can be represented as

Sc = (Sor +iSo1) + (Er +iEy) (4)

where i is the imaginary unit, while Sor, So, £r and Ej
are real and imaginary matrix valued parts of the true
spatial frequencies and measurement noise, respectively.
Let Qc, and Qc, be pXp, and p,¥p, complex-valued
Fourier matrices as described above. Then, the p,>xp,
complex-valued inverse Fourier transformation recon-
structed image, Rc, of Sc can be written as

RC = QyCSC Q)Z-C
= ch (SOR + l.S()]).Qgc + ch (ER + lEI)Q};C (5)
= Roc +iN¢

where Rc has a true mean Ryc and measurement error Nc.
Note that the complex-valued matrices for reconstruction,
Q. and Q, in Eq. (5), need not be exactly Fourier
matrices but may be Fourier matrices that include
adjustments for independently measured magnetic field
inhomogeneities or reconstruction matrices for other
encoding procedures.

The real-valued inverse Fourier transformation method
for image reconstruction can also be directly applied to noisy
measurements. We can represent the noisy complex-valued
spatial frequency matrix as s=sote, where these 2p.p,
dimensional vectors include the real parts of the rows
stacked upon the imaginary parts of the rows of the
corresponding matrix. This implies that if the mean and
covariance of the spatial frequency measurement vector, s,
that is of dimension 2p,p,*1, are so and I, then the mean and
covariance of the reconstructed voxel measurements, r, are
Qsy and QT Q7.

Fig. 6. Vector to matrix image values. (A) Partitioned images R”. (B) Combined image R'=(R%, R}).
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3. Theory

The previously described data for a single image is expanded upon to mimic an fMRI experiment. In fMRI, a series of
the previously described image slices are acquired. Denote the p xp, complex-valued spatial frequency matrix, corrupted by
random noise, acquired at time ¢ as Sc=Soc+Ec; and define s=vec(Sg,,St;), where Sg, and Sj, are the real and imaginary
parts of Sc, for time points 7=1....,n. Define the total number of voxels in the image, which is the same as the number of
complex-valued k-space measurements in fully sampled, Fourier encoded, Cartesian acquisitions, to be p=p.p,. This
sequence of measured spatial frequency vectors can be collected into a 2pxn matrix S=(si,...,s,,) as in Fig. 7A, where the t#th
column contains the p real k-space measurements stacked upon the p imaginary k-space measurements for time ¢ The true
mean Sy of S is in Fig. 7B and noise E in Fig. 7C. Having done this, n reconstructed images can be formed by the 2pxn
matrix R=QS, where the 7th column of R as in Fig. 8A contains the p real voxel measurements stacked upon the p
imaginary voxel measurements for time ¢, =1,...,n. The true mean R, of R is in Fig. 8B and noise N in Fig 8C.

The k-space measurements and the image voxel measurements can be stacked as s=vec(S) and r=vec(R). Note that s in

Fig. 9C and 7 in Fig. 9A and have been redefined from their initial definition with the reconstruction matrix enlarged in
Fig. 9B. If the mean and covariance of the 2npx1 vector of spatial frequency measurements, s, are so and A, then the mean
and covariance of the 2npx1 vector of reconstructed voxel measurements, r, are (/,®Q)s, and (I,®Q)A(,®R"). For
example, if the k-space measurements were taken to be temporally independent, then A=[,®T" and cov(r)=L,®(QI'Q7),
where I" is the covariance matrix for one k-space acquisition. Thus, we have described the fMRI voxel measurements as a
linear function of the fMRI k-space measurements.
We can alternatively organize the voxel measurements by stacking the first set of p columns of R” upon the second set of p
columns of R” to form a matrix ¥ of dimension 2nxp. Having done this, the jth column of the resulting data matrix ¥ contains
the n real voxel measurements stacked upon the n imaginary voxel measurements for voxel j, j/=1....,p. The voxel measurements
Y can be described with the complex fMRI model [9] as

=[S ) ()= 1) ()] ©

where C; and S; are diagonal matrices with cosine and sine terms, respectively. Different activation models are found from Eq.
(6) by different choices of the C and S matrices. The complex constant phase model [5] can be found with C;=/,cos6, and
S=I,sin0;, where j indexes the jth voxel. The unrestricted phase or magnitude-only model [4] can be found by selecting the th
element of C; and S; to be C;=cos0;, and S;=sinf);, where 0}, is unique for each j and 7. The complex model for both magnitude
and phase [9] can be found by choosing the phase Q,-,=u,T 7, where u; is the #th row of a phase design matrix U and 7, are phase
regression coefficients for voxel ;.
Eq. (6) can be rearranged and written with y=vec(Y) as
( NRr1 )
Lo
()
n]p

YR1 ( ax 0 ) 0 By

i 0 SX . ﬁl

IRy 0 (X 0 B,

Yip 0  S,X By
where y=(y£1,y[T1,...,y]€p, yg,)T is a vector containing the real and imaginary reconstructed voxel measurements and n=(4&1,t1....,
ngp,mg)T is a vector containing the real and imaginary errors of the reconstructed voxel measurements. The model can simply be
written as y=u+e. For example, with constant phase model, the mean is

u=(hL®X) {(cos@l ,sind;) @p, ..., (cosb,, sinQP)T®ﬂ} .

(7)

The rearrangement of the voxel measurements from » to y is a linear transformation and can be achieved through
multiplication with a permutation matrix P (described in Appendix A and presented in Fig. 10) as y=Pr. In terms of the original
k-space measurements, the voxel time courses are y=P(I,®Q)vec[vec(Sk1,Sh).....vec(Sk,»St,)]. Having done this linear
transformation, the mean and covariance of y are u=P(1,®RQ)s, and A=P(I,®Q)A(I,®Q")P”. Since the matrices £ and P that
convert k-space measurements, s, to voxel measurements, y, are known a priori, the expression y=P(/,®)s can be inverted to
write s=(1,®Q )P "'y and, in terms of the parameters, as

pcos0;
81 psind, 3
= e )P (L, ®X) : +|

p,cosf
Sn known P~ P én
B,sinb;,
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Fig. 7. Noisy spatial frequency (k-space) values. (A) Noisy S. (B) True Sy. (C) Error E.

Thus, the optimization for the regression coefficients () and phases () in Eq. (8) can be performed in k-space to yield the same
parameter estimates as the standard method. Activations can then be computed from the described complex activation models.

Using ordinary least squares or a normal distributional specification on the errors, the voxelwise regression coefficients and
phases can be determined to yield the same point estimators as in Rowe [5]. The Rowe—Logan unconstrained alternative
hypothesis estimators (with hats) for H,:C#0 along with the constrained null hypothesis estimators (with tildes) for Hy:C=0 in
voxel j are

Bry (XX) By
2 R0 - B (X)) 2 (P (X0 By~ B (XTX)B, ) 2 Y
Bj - ﬁchos(éj) + Bljsin(éj) Bj = ﬁRjCOS(aj) + BIjSin(gj)

where C is an rx(g+1) matrix of full row rank, ¥=I,.,~(X'X)"'CT[CX"X)"'C"17'C, Bg;= (XT)()”XTyR, and
B = (X'X) _IXTyIj, while yg; and yy; are the nx1 vectors of real and imaginary voxel observations.

We can convert from the vector », which is presented in Fig. 10C, to the vector y, which is shown in Fig. 10A, via a
permutation matrix P, a portion of which is displayed in Fig. 10B. Now with the y vector being arranged as real and imaginary
observations in each voxel as described in Eq. (7), we can apply the complex activation models [5]. The regression coefficients
B, the phase angle 6, and the variance o are estimated under both the null and alternative hypotheses as described in Eq. (9)
then activation computed.

Voxelwise activations are the same as in Rowe [5]. Then the generalized likelihood ratio statistic for the complex fMRI
activation model is —2log4; =2n 6'? / 6? . This statistic has a large sample x; distribution. Note that when r=1, two-sided
testing can be done using the signed likélihood ratio test given by

z;=sign(CB,)/—2logl;, (10)

which has a large sample standard normal distribution under the null hypothesis. Alternatively, with =1, a Wald type statistic
can be formed

AT A
0= Ltan™! Py (XTX) Py

1
0= _tan~!
j=5tan

w=Ch,/\/o,C(X"X)"'CT, (11)

which also has a large sample standard normal distribution under the null hypothesis. A map of these activation statistics from
either Eq. (10) or Eq. (11) is then thresholded while adjusting for multiple comparisons [11,12]. However, correlations
between voxels are characterized in terms of spatiotemporal correlations between k-space measurements.

The variances and covariances in the spatiotemporal domain in an example with a specification of uncorrelated temporal k-
space measurement vectors (s,) are included in the covariance matrix A=P(1,® QI'@")P” for the voxel measurements. Define the
voxel measurement covariance matrix to be . Having estimated the voxelwise regression coefficients and phases, we can
estimate the mean of the vector of voxel measurements y by [i (under the alternative hypothesis) and the mean of the matrix of
voxel measurements R by M= W(P‘1 i ) Here vec(+) is the operator that is the inverse operation of the vec(-) operator. The
voxel covariance matrix 3, can now be estimated by 3:=(R—M)(R—M)"/n.
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With the physically motivated specification of the same voxel covariance, 2., within the real-imaginary channels and voxel
covariance, 5, between the real-imaginary channels, the previous the voxel covariance matrix becomes

_ 2w 2B
Z B |:ZB ZW:| (12)
We can estimate the covariance matrices in Eq. (12) under the alternative hypothesis by
£ (R ¥1e) (Re — ¥12) "+ (R — ¥ (R~ ¥1)] /20
= (R~ V) (R = ¥1) "+ (R ) (R )]/ 2m)

and under the null hypothesis similarly find 2y and 3 by replacing hats in Eq. (13) with tildes. It should be noted that the jth
diagonal elements of 3, are equivalent to those given in Rowe [5], where the estimate under the alternative hypothesis is

(14)

R . AT R R
52 1 [ij—XﬁjcosHj] [ij—XﬁjcosHj]
i72n

2n \/ Xﬁjsinéj Yy — Xﬁjsinéj

and under the null hypothesis is similarly ’(\’}]2’ found by replacing hats in Eq. (14) with tildes. As described in Eq. (13), we can

also estimate covariance between voxels, >.-

4. Methods

As before, this time series procedure can be represented
pictorially. The complex-valued image in Fig. 2C and D was
taken as the mean “active” or “on” image, and a duplicate of
it with the two white voxels replaced by gray voxels were
used as the mean “inactive” or “off’” images. For illustrative
purposes, an experiment with eight blocks where each block
consists of eight on images followed by eight off images is
initially presented. Subsequently, all eight blocks were
examined. Eight column vectors of the spatial frequencies
for the true mean “on” image were joined into a matrix with
eight column vectors of the spatial frequencies for the true
mean “off” image as in Fig. 7B. Each column in Fig. 7B is
the vector form of the spatial frequencies for an image
similar to that in Fig. 5B.

80 80

96 96

112 112

128

A B

128

Fig. 8. Reconstructed noisy images. (A) Noisy R=QS. (B) True Ry=2S,. (C)
Error N=QF.

The mean “on” images contained voxels with values 5,=0
and 3,=0 outside a four-by-four internal region, inactive
gray voxels within the four-by-four region with values
Bo=SNRa and ,=0, along with two active voxels with value
Bo=SNR-o and ;=CNRg. Activation parameter values were
SNR=30, CNR=1 and ¢=.05. In this parameterization, SNR
(signal-to-noise ratio) denotes the temporal signal-to-noise ratio,
CNR (contrast-to-noise ratio) denotes the functional contrast-
to-noise ratio and o denotes the voxel standard deviation.

Independent noise column vectors ¢, as seen in Fig. 7C,
were generated from a normal distribution with zero mean
vector and covariance matrix F:y2F1®F2®F3. This
covariance structure mimics temporal autocorrelation along
the EPI trajectory along with correlation between real and
imaginary parts. The covariance matrix was formed with I"y,
I'; and I'; taken to be unit variance correlation matrices,
while y was taken to be yzszpyoz. The p,xp, correlation
matrix I'; is taken to be an AR(1) correlation matrix with (i,/)
th element z/:‘l’;j | where 1=0.25, the 2x2 correlation matrix
I'; is taken to have an off diagonal correlation of ¢/,=0.5,
while the pxp, correlation matrix I'; is taken to be an AR(1)
correlation matrix with (i,7)th element il where ¢5=0.5.

5. Results

Each matrix image in Fig. 7A, B and C was premultiplied
by the (inverse Fourier transform) image reconstruction
matrix Q, given in Eq. (3) and presented in Fig. SA. The
results of this premultiplication can be seen in Fig. 8A, B and
C. The columns of R=QS in Fig. 8A are real and imaginary
parts for each noisy image. The noisy image in Fig. 8A is the
sum of the noiseless image in Fig. 8B and the measurement
noise image in Fig. 8C. However, the real and imaginary
parts for each noisy voxel are useful for considering
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Fig. 9. Reconstructed vectorized noisy images. (A) Noisy 7. (B) Reconstruction matrix (Z,®8(}). (C) Noisy s.

activation. As described in Section 3, one can vectorize R
and S to yield r=vec(R) and s=vec(S) as seen in Fig. 9. The
vector s of noisy spatial frequency (k-space) values, as
presented in Fig. 9C, is premultiplied by a block diagonal
matrix with Q along the diagonal, as displayed in Fig. 9B, to
produce a vector of noisy image measurements, 7, as shown
in Fig. 9A.

In Fig. 11A and C are the unthresholded activation maps
for the magnitude-only and complex-valued activation
methods, respectively. In Fig. 11B and D are the Bonferroni
5% thresholded activation maps for the magnitude-only and
complex-valued activation techniques, respectively. Note the
spurious activation from the magnitude-only method as a
result of its suboptimal parameterization [8].

The sample voxel correlation from 3.y described in Eq.
(13)is displayed in Fig. 12 A with theoretical values presented
in Fig. 12B. The sample correlation from =0 '3@@"H!
is given in Fig. 12C with theoretical values in Fig. 12D.
Note the similarity between the sample values and the
theoretical values in Fig. 12A and C to the theoretical values
in Fig. 12B and D even for the small sample size.

6. Discussion

A linear representation of image reconstruction has been
presented, and that reconstruction operation has been
included into the complex-valued general linear model for
fMRI. This parameterization of the complex-valued general
linear model allows one to compute activations directly from
k-space measurements. This offers some advantages. The
previously separate, tedious processes of image reconstruc-
tion and functional analysis can now be considered in one
step. As the reconstruction matrix, permutation matrix and
design matrix (marked “known” in Eq. (8)) are all known,
their product may be computed once for a given experiment.
Thus, the determination of image space regression coeffi-
cients can be made with one matrix multiplication on the
acquired k-space data vector.

Of course, some data processing is more naturally
performed in image space. An example of such processing
is motion correction. In that case, a matrix that shifts and/or
rotates the reconstructed image can be used to multiply the
reconstruction operator. Thus, the processed and recon-
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Fig. 10. Reordered reconstructed voxels. (A) Voxel ordered y. (B) Permutation matrix P. (C) Image ordered r.

structed data would be the result of two matrices multiplying
the acquired k-space data in this linear representation.
Furthermore, in light of this parameterization, the
spatiotemporal covariances between the complex-valued
voxel measurements, A, can now be described in terms of the
spatiotemporal covariances between the complex-valued k-
space measurements, A. The covariance of the complex-
valued k-space measurements may be due to independent
sources, such as spatiotemporal independent noise A; and

true physiologic processes Ap, so that A=Ap+A;. Adjust-
ments to the k-space measurements could modify the cor-
relation structure. These k-space adjustments can be written
as s,~As=A(sote)=AsqtAe and r, =QA(sqte)=QAsy+QAe,
where the subscript 4 denotes an adjusted measurement.
Then the mean and variance/covariance matrices are £
(s4)=Asy and var(s,)=AT'A” for the spatial frequency
measurements and E(r,)=QAs, and var(r,)=QATA"Q" for
the voxel measurements. So unless I'=/ and A4’=I, the

Fig. 11. Activation maps. Bonferroni 5% threshold. (A) Magnitude unthresholded. (B) Magnitude thresholded. (C) Complex unthresholded. (D) Complex

thresholded.
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Fig. 12. Correlation matrices. (A) Sample between voxels. (B) Theoretical between voxels. (C) Sample between frequencies. (D) Theoretical between

frequencies.

voxels are correlated because 2Q7=/. Through reconstruc-
tion and other processing, one is changing the physiologic
and independent correlations. They change according to

var(s)=Ip+ I = var(spy) =ATlpAT + AAT
var(r) = QIpQT + QINQT = var(ry) = QATATQT + QANATQT

It is possible that incomplete consideration of correlations
induces undesirable correlations or obscures relevant
correlations. Proper modeling suggests that one should
adjust the covariance matrices in light of all data processing.

One could apply temporal filtering or prewhitening to the
k-space measurements that are residuals after fitting a
regression model in image space. After fitting the fMRI
model to the voxel image time courses, one can transform the
residual images into spatial frequencies (k-space) and
estimate the correlation due to adjustment sources AA4”.

The spatial frequencies can then be temporally prewhitened,
transformed back into residual images then the noise
variation X,y reestimated.

As mentioned earlier, although only Cartesian Fourier
reconstruction is described in this manuscript, any linear
reconstruction method may be used in place of Q. This
includes non-Cartesian sampling schemes, like spiral. Some
new reconstruction operator, £, may be considered, that is,
the product of two matrices that grid the data to the Cartesian
grid and Fourier transform the Cartesian data. Sparsely
sampled, multicoil data may be considered with yet another
reconstruction operator, ’, which generates the omitted data
as a linear combination of the acquired multicoil data and
Fourier transforms the generated, fully sampled data.

In this work, complex-valued voxel measurements have
been written in terms of the original complex-valued k-space
measurements. This allows the computation of statistically
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significant fMRI brain activation in image space directly
from the original k-space measurements. The correlation
between voxel measurements can also be written in terms of
correlation between k-space measurements. Since the
covariance matrix between the k-space measurements and,
hence, voxel measurements can be partitioned into indivi-
dual sources of covariation, statistical associations between
individual voxels or regions of interest could be quantified
utilizing unmodeled sources of covariation.
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Appendix A

The permutation matrix for rearranging values to be
grouped by image to be grouped by voxel is described. A
permutation matrix is a square matrix that can be obtained
by permuting (rearranging) either the columns or rows of an
identity matrix [14]. A permutation matrix is of full rank
and, therefore, nonsingular and also invertible. Also note
that a permutation matrix, P, is an orthogonal matrix so
P '=P" and PP"=I. The elements of the permutation matrix
P are all zero except for a single 1 in each row. The first n
rows of the permutation matrix, P, form the n real
measurements of the first voxel. The tth row, =1,...,n within
the first set of n rows of the permutation matrix, P, has a 1 in
column =0p+1,2p+1,4p+1,....2(n—1)p+1. The second n rows
ofthe permutation matrix, P, form the imaginary measurements
in the first voxel. The #th row within the second set of n rows of
the permutation matrix Phavea | incolumnz=p+1,3p+1,5p+1,
...,2(n—1)p+p+1. For the second voxel, the ¢#th row within the
thirdsetofnrows ofthe permutation matrix Phaveal incolumn
=0p+2,2p+2.4p+2,... . 2(n—1)p+2. The tth row within the
fourth set of n rows of the permutation matrix P that forms the

n imaginary measurements within the second voxel has a 1 in
column =p+2,3p+2,5p+2,...2(n—1)p+p+2. This general
pattern continues. In general, the jth set of 2n rows for
the jth voxel, j=1,...,p has a 1 in columns Op+7,2p+j,4p+j....,2
(n—1)p+j of its first n rows for the real voxel measurements
and in columns p+j3p+j,5ptj,...2(n—1)p+p+tj for the
imaginary voxel measurements.
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