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Abstract 
It is often desirable to separate voxels that contain signal from tissue along with measurement noise from those that 
contain purely measurement noise. Generally this separation called thresholding utilizes only the magnitude portion of 
the images. Recently methods have been developed that utilize both the magnitude and phase for thresholding voxels 
[Pandian D, Ciulla C, and Haacke EM, Jiang J, Ayaz, M. A complex threshold method for identifying pixels that 
contain predominantly noise in magnetic resonance images. J Magn Reson Imaging 2008;28:727-735.]. This 
manuscript is an extension of that work and uses the bivariate normality of the real and imaginary values with phase 
coupled means. A likelihood ratio statistic is derived that simplifies to a more familiar form that is F-distributed in large 
samples. It is shown that in small samples, critical values from Monte Carlo simulation can be used to threshold this 
statistic with the proper Type I and Type II error rates. This method is applied to susceptibility weighted magnetic 
resonance images and shown to produce increased image contrast. 
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1. Introduction 
In magnetic resonance images, it is well known that noise manifests as independent and identically distributed normally 
distributed noise in the real and imaginary parts of the k-space measurements with a mean of zero and a constant 
variance [1,2,3]. It is also known that there is a linear relationship between complex-valued k-space measurement and 
complex-valued voxel measurements [4]. From the normality of k-space measurements and their linear relationship 
with voxel measurements, the voxel measurements are also normally distributed [1,2,4].  Voxel measurements can be 
described as  

cos , sinR R I Iy yρ θ ε ρ θ ε= + = +                                                                                                                        (1) 
where yR and yI  are the measurements for the real and imaginary parts, εR and εI are the error terms for the real and 
imaginary parts, while ρ and θ are the population magnitude and phase. It is desirable to separate voxels that are pure 
noise from those that contain signal and noise [5]. Assuming that the additive noise terms in Eq. (1) are normally 
distributed with a mean of zero and variance σ2, the joint probability distribution of the bivariate voxel observation 
(yR,yI) is 
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Upon conversion from Cartesian coordinates to polar coordinates in Eq. (2), the joint distribution of the observed 
magnitude and phase (m,φ) is 
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We would like to determine if the observed magnitude and phase in a voxel are signal or if they are noise. Given a 
collection of measurements (m1,φ1),…,(mn,φn) from p(m,φ) in Eq. (3), the  likelihood is 
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It is desirable to increase image contrast by thresholding noise voxels where the magnitude and phase are not 
statistically different from zero from those where the magnitude and phase are statistically different from zero. This 
separation of voxels that contain signal (within the object being imaged) has been described by other means that use an 
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estimate of the variance from voxels that contain pure noise [5]. We will show in the next section that a formal statistic 
can be derived from Eq. (4) and a statistical hypothesis test performed on the population magnitude and phase. 
 

2. Methods 
In statistics the formal procedure to separate voxels that contain noise from those that also contain signal is to perform a 
hypothesis test on the magnitude and phase.  In hypothesis testing there are four possible outcomes that are depicted in 
Table 1. In the top right and bottom left cells correct decisions are made. In the top left shaded cell a Type I error is 
made in which the null hypothesis is rejected when it is true. The probability of a Type I error is the level of 
significance denoted by α. In the bottom right shaded cell a Type II error is made in which the null hypothesis is not 
rejected when it is false. The probability of a Type II error is the level of significance denoted by β. These two error 
rates will be examined in more detail later. 
 

Table 1. Four outcomes from a hypothesis test. 
 H0 True H0 False 

Reject H0 Type I Error (α) Correct Decision (1- α) 
Do Not 

Reject H0 
Correct Decision (1-β) Type II Error (β) 

 
Formally, this voxel separation procedure can be achieved by testing null and alternative hypotheses H0: ρ=0, θ=0 
versus H1: ρ>0, θ≠0 where ρ is the population magnitude and θ is the population phase. In general, hypotheses can be 
evaluated with test statistics that are derived via a likelihood ratio statistic [6,7]. Under the constrained null hypothesis 
H0: ρ=0, θ=0, the maximum likelihood estimators (MLEs) for the magnitude and phase are 
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while under the unconstrained alternative hypothesis H1: ρ>0,θ≠0 they are 
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where Ry  is the mean of the real channel measurements and Iy  is the mean of the imaginary channel measurements. 
These estimates in Eq. (5) and Eq. (6) are then inserted back into the likelihoods and the ratio 

2 2ˆˆ( , , ) ( , , )L Lλ ρ θ σ ρ θ σ= )%% %  taken. Under some regularity conditions (that are satisfied in this case), -2log(λ) is 
asymptotically χ2 distributed with degrees of freedom equal to the difference in the number of estimated parameters 
between H0 and H1, (two in this case). However, algebra can usually be performed (as described in the Appendix) to 
simplify this into a statistic with known distribution under the null hypothesis. This procedure can be applied to the 
general linear model to derive the usual t and F statistics. Applying this procedure here, the test statistic  
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can be arrived at (as described in the Appendix). Further, one can show (as in the Appendix) that  
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is χ2 distributed with two degrees of freedom and that  
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is χ2 distributed with 2n degrees of freedom. The test statistic in Eq. (7) denoted by F is found by dividing these by their 
degrees of freedom and taking ratio.  
 
This statistic denoted by F should have an F distribution with two numerator and 2n denominator degrees of freedom 
when the null hypothesis is true. However, that is only if the two χ2 statistics x1 and x2 in the numerator and 
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denominator are statistically independent. It can be shown (as in the Appendix) that their correlation is 1/√n. The test 
statistic F has an asymptotic large sample F distribution with two numerator and 2n denominator degrees of freedom 
 for large n. In non-fMRI 
applications where there may 
be a very small number of 
repeated images if any, this 
asymptotic result does not hold. 
Thus, critical values from the F 
distribution do not apply to this 
F statistic. However, critical 
values for small n can be 
achieved via Monte Carlo 
simulation. For a given level of 
significance (Type I error rate 
α), we reject H0 (do not 
threshold voxel) if the test 
statistic F is larger than the 
critical value Fα(2,2n) and do 
not reject (threshold voxel) if F  
is smaller.  
 
 To examine the convergence of 
the distribution of the F statistic 
to the F distribution, one 
million simulated data sets was 
created under the null 
hypothesis (ρ=0 and θ=0) for 
n=5, 9, 25, 50, 100,  and 250. 
Normally distributed 
independent noise variates were generated for the real and imaginary parts with a variance of σ2=1. This corresponds to 
 a signal-to-noise ratio (SNR) of zero. It was found (but not shown), that regardless of the sample size n, the two 
statistics x1 and x2 in Eq. (8) and Eq. (9) that make up the numerator and denominator are χ2 distributed. Additionally,  
the 1/√n correlation between the numerator and 
denominator χ2 statistics was verified. For each sample 
size n, the F statistic was computed for each of the data 
sets. Cumulative distribution functions (CDFs) from the 
Monte Carlo empirical distributions (dashed curves) and 
corresponding CDF for the F distribution (solid curves) 
are presented in Figure 1 for n=5 (red), 9 (orange), 25 
(yellow), 50 (green), 100 (blue), 250 (violet). Note the  
disparity between the Monte Carlo empirical distributions 
(dashed curves) and corresponding CDF for the F  
distribution (solid curves). One can see that it takes a 
relatively large sample size for this disparity to decrease. 
Therefore for small samples, Monte Carlo critical values 
need to be used. 
 
For our application, we will be utilizing the test statistic 
denoted by F for a sample of size n=9. The Type I error 
rate was examined in Figure 1 for several values of n. 
However, the Type II rate is also of interest. To examine 
the Type II error rate, one million simulated data sets for n=9 were created under the alternative hypothesis (ρ≠0 and 
θ≠0) with ρ=(0,1,2,3,5) and θ=0°. Normally distributed independent noise variates were generated for the real and 
imaginary parts with a mean of zero and a variance of σ2=1. Figure 2 shows histograms for the million data sets when 
ρ=0 in blue and ρ=1 in red. The vertical line is at F.05=2.8102 which is the critical value with α =0.05. The false 
positive rate α is the magenta colored area that is to the right of Fα. The blue and magenta colored areas less than Fα are  
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Figure 1: CDF from Monte Carlo simulation (dashed) and F distribution (solid) for 
n=5 (red), 9 (orange), 25 (yellow), 50 (green), 100 (blue), 250 (violet). 

Figure 2: Histogram when H0 is true and when and 
 when H1 is true.  
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the true positive rate 1-α. The red and magenta 
areas to the right of Fα are the true negative rate 
1-β. The false negative  
rate β is the magenta and red colored areas that 
are to the left of Fα. By sliding this vertical line 
left and right for varying false positive rate 
areas α to the right of it, we can determine the 
true positive rate 1-β. A plot of α on the 
horizontal axis and 1-β on the vertical axis is 
called a receiver operating characteristic (ROC) 
curve [8]. This curve can be made for each 
combination of ρ and θ. In Figure 3 are the 
ROC curves for ρ=(0,1,2,3,5) and θ=0°. When 
θ≠0, minor variations from the curves for the 
corresponding ρ value are produced. 
 
To determine more accurate critical values in 
the upper tail of the F statistic for n=9, 5×107 
data sets were generated. For each set, the F 
statistic was computed. A histogram of these F 
statistics for n=9 is presented in Figure 4. 
These F statistics were ordered and percentiles 
determined. For example, the 0.95×(5×107)th 
largest value was taken as the 95th percentile. 
Selected critical values are presented in Table 2 
for n=5 and n=9. These critical values will be 
used for thresholding the magnitude and phase of voxels. 
Additional critical values can reliably be interpolated. 
 
From a statistical point of view, we would like to have n repeated 
images. However, we are interested in thresholding high-
resolution anatomical images where replicated images are rarely 
available. We will use the observed magnitude and phase values in 
each voxel and its surrounding voxels. Each voxel and its eight 
neighbors (n=9) will be used to estimate the magnitude and phase 
of every voxel with image wrap around. Alternative each voxel 
and its four neighbors (n=5) can be used. The estimated values for 
each voxel will be used to compute the described F statistic. The 
map of these F statistics is thresholded with the critical values in 
Table 2. A zero-one mask is produced from the thresholded F 
statistics then applied to the original magnitude and phase images. 
 

Table 2. Critical F statistic values for n=5 and n=9. 
n=5 

α .05 .01 .001 .001 .0001 .000001 .05/256/256 .05/512/352 .05/512/512 
 Fα 2.6355 3.4189 4.1104 4.4992 4.7162 4.8445 4.8617 4.8776 4.8874 

n=9 
α .05 .01 .001 .0001 .00001 .000001 .05/256/256 .05/512/352 .05/512/512 
  Fα 2.8102 3.9377 5.1991 6.1512 6.8678 7.3911 7.5627 7.5869 7.7575 

 
Since only a single image is available, using a voxel and its neighboring voxel will result in minor local correlation in 
the F statistics. A statistical critical value for a given α level might be slightly lower than the values we have used from 
the Monte Carlo simulation. To investigate this phenomenon, additional simulations were performed where images 
were created and the F statistics computed using a voxel and its four neighbors. Images of size 352×512 and 
1000×1000 were created where each voxel had a magnitude of ρ=(0,1,2,3,5) and a phase of θ=0°. Normally distributed 
independent noise variates were generated and added to the real and imaginary parts with a mean of zero and a variance 
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Figure 3: ROC curves from Monte Carlo simulation for 
ρ=(0,1,2,3,5) and θ=0°. 
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Figure 4: Histogram of F statistic for 5×107  
data sets under null hypothesis for critical values. 
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of σ2=1. ROC curves were produced for each magnitude (equivalently SNR) value. The fraction of true positives and 
false positives were determined. The false positive α and false negative rates β were consistent with previous values 
and yielded visually identical ROC curves as seen in Figure 3. Simulations were also performed in which 512×512 
images were produced with a circle of radius 128 pixels containing the same magnitudes of ρ=(0,1,2,3,5) and a phase 
of θ=0°. True and false positive rates were also consistent as were ROC curves. The small local correlation does not 
affect the global image threshold as previous reports suggest [9]. 
 

3. Results 
Susceptibility weighted imaging (SWI) [10] MRI data is used to test the noise removal procedure both in magnitude 
and phase. A SWI brain volume was acquired on a 3T Siemens Trio with a matrix size of 352×512, FOV of 176 mm × 
256 mm, and an in-plane resolution of 0.5×0.5 mm2, TR=26 ms, TE= 15 ms, flip angle (FA) = 11o [8]. 
 
The magnitude and phase statistical thresholding method described in this paper was applied to the human leg SWI 
data. The results from this analysis are presented in Figs. 5, 6, and 7. In Figure 5A and Figure 5B the original observed 
SWI magnitude and phase image data are respectively presented. Note that in Figure 5B there is high noise in the phase 
image outside the body and in some internal areas while the magnitude noise in Figure 5A is relatively low. The 
magnitude and phase model was applied to each voxel using its eight neighbors for samples of n=9. In Figure 5C and 
Figure 5D the estimated SWI magnitude and phase image data are respectively presented. Note that there is a reduction 
in the high frequency image content. In Figure 5E the estimated voxel variance is presented. Note that some high 
frequency spatial content is present in Figure 5E. In Figure 5F the F statistic map that is used for thresholding is 
presented. Note that spatial anatomical structure is present in Figure 5F where voxels with larger magnitude and phase 
have larger F statistics. 
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A) Observed voxel magnitude. C) Estimated voxel magnitude. E) Estimated voxel variance. 
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B) Observed voxel phase. D) Estimated voxel phase. F) Unthresholded F statistic map. 
Figure 5: Observed and estimated image values. 

 
In Figure 6A and Figure 6B histograms of the original observed SWI magnitude and phase image data are respectively 
presented. Note that in Figure 6A, the observed magnitude contains two populations of voxels that visually are fairly 
easily distinguishable. The first population has high magnitude (SNR) values while the second has low magnitude  
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(SNR) values. In Figure 6B, the observed phase contains two populations of voxels that are much more difficult to 
visually distinguish. The first population of voxels has phase values that are distributed closely around zero. The 
second population of voxels has phase values that a more uniformly distributed in the –π to π interval. The marginal 
distribution of the phase is uniform when ρ=0. In Figure 6C the two populations of voxels are still visually present but 
appear to have greater separation. In Figure 6D, there appears to be slightly fewer voxels with phase values near ±π and 
more near zero. In Figure 6E, it can be seen that most voxels have a small estimated variance but there are some with 
very large variances that span the entire horizontal axis. In Figure 6F, it is obvious that there are F statistic values from 
two different distributions. The first distribution is for large values of the F statistic (corresponding to large magnitude 
and or phase voxels) that tapers for smaller F statistic values. The second distribution is on the smaller side for smaller 
F statistic values (corresponding to small magnitude and or phase voxels) that tapers for larger F statistic values. Note 
the similarity between this second distribution for small F statistic values and the distribution of F statistic values in 
Figure 4 when no magnitude or phase signal is present (i.e. the null hypothesis is true). 
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A) Observed magnitude histogram. C) Estimated magnitude histogram. E) Estimated variance histogram. 
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B) Observed phase histogram. D) Estimated phase histogram. F) Computed F statistic histogram. 
Figure 6: Histograms of observed and estimated image values. 

 
The map of these F statistics in Figure 5F is thresholded with the critical values in Table 2 for α = 0.05, 0.0001, and 
0.05/512/352. A zero-one mask is produced from the thresholded F statistics then applied to the original magnitude and 
phase images in Figure 5A and Figure 5B respectively. Thresholded original observed images are presented in Figs. 7. 
The magnitude and phase of thresholded voxels are set to zero but for display the thresholded phase voxel values are 
set to –π. In Figure 7A and Figure 7B the images are thresholded at F=2.8102, in Figure 7C and Figure 7D the images 
are thresholded at F=6.1512, in Figure 7C and Figure 7D the images are thresholded at F=7.5869. A vertical line can be 
drawn in Figure 4 (that contains the distribution of F statistics under the null hypothesis) and in Figure 6F (that contains 
the observed F statistics with both null and alternative hypothesis statistics) for each of these threshold values. Note in 
Figure 7 that as the false positive rate decreases from Figure 7A and Fig 7B to Figure 7E and Figure 7F, the number of 
voxels outside of the head decreases but more voxels within the head are also eliminated. This phenomenon is due to 
the relationship between Type I and Type II error rates as illustrated in Figure 2. It is apparent that the magnitude image 
in Figure 7E shows similar anatomical to the phase image in Figure 7F indicating similar biological information. 
 

4. Discussion and Conclusions 
A recent approach to suppress noise also used a complex threshold method (CTM) [5]. This method used not only 
complex thresholding but also connectivity to enhance suppression of noise or prevent the incorrect assignment of 
signal to noise to reduce Type I errors. We do not use connectivity in this approach since we are looking at local 
variance on a pixel by pixel basis. Also, the CTM [5] suffers when the phase itself deviates from zero or any set zero 
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point. This can lead to the suppression of areas where the phase is offset from flow effects or susceptibility effects (the 
later being acceptable in some cases when the goal is to also suppress veins). However, the phase has a rapid variation 
near air/tissue interfaces, particularly at the front of the head in Figure 5B for example. In that area the CTM method 
[5] would fail and that part of the brain will be suppressed. Not so with this approach where we look specifically at the 
local variance and keep the local value as the phase offset (i.e., there is not a global offset of zero in phase). For this 
reason, this new approach is more robust to variations in phase caused by unwanted field inhomogeneity effects.  
  
In summary, a magnitude and phase statistical thresholding procedure based upon a likelihood ratio test was presented. 
It was shown through Monte Carlo simulation that this method operates according to its theoretical statistical properties 
in terms of both false positives and false negatives. This statistical thresholding method was successfully applied to real 
human SWI data and shown to produce increased image contrast by eliminating false positives. 
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A) Magnitude, α=0.05. C) Magnitude, α=0.0001. E) Magnitude, α=0.05 Bonferroni. 
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B) Phase, α=0.05. D) Phase, α=0.0001. F) Phase, α=0.05 Bonferroni. 
Figure 7: Thresholded magnitude and phase images, α=0.05, 0.0001, and 0.05 Bonferroni. 

 
5. Appendix 

In deriving the F statistic, first maximum likelihood estimators are found first assuming the null hypothesis H0 is true 
then assuming the alternative hypothesis H1 is true. These estimators are inserted into the likelihood function and the 
ratio taken Algebra is performed and this ratio simplified into a more familiar form. 
  
When it is assumed that the null hypothesis H0: ρ=0, θ=0 is true, the likelihood in Eq. (4) is maximized. From the null 
hypothesis constraints, the MLEs for ρ and θ are that they are zero as given in Eq. (5). By differentiating the log 
likelihood with respect to the variance σ2 then setting this result equal to zero and solving, its MLE can be found as in 
Eq. (5). When it is assumed that the alternative hypothesis H1: ρ>0, θ≠0 is true, the likelihood in Eq. (4) is maximized. 
By differentiating the log likelihood with respect to the magnitude ρ, the phase θ, and variance σ2 then setting this result 
equal to zero and solving, the parameter MLEs can be found as in Eq. (6). 
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These MLEs are inserted back into the likelihood function and the ratio of null hypothesis likelihood over alternative 
hypothesis 2 2ˆˆ( , , ) ( , , )L Lλ ρ θ σ ρ θ σ= )%% %  taken. Upon insertion and cancellation of some terms, the likelihood ratio is 
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From Eq. (A.1), some algebraic simplification leads to F = (1-λ1/n) and yields Eq. (7). The probability distribution of 
this statistic needs to be found. The steps through the logic for the derivation of the distribution for the numerator and 
the denominator of the F statistic are shown below in Table 3. 
 
Since the numerator and denominator terms x1 and x2 are χ2 distributed with 2 and 2n degrees of freedom, dividing 
them by their degrees of freedom and taking the ratio should result in a statistic that under the null hypothesis has an F 
distribution with 2 and 2n degrees of freedom. However, this is not true in this case. These two χ2 statistics must be 
statistically independent for this to be true. The correlation between these two statistics can be derived. First, since 
these are χ2 distributed, their expectation is their degrees of freedom and their variances are twice their degrees of 
freedom E(x1)=2, E(x2)=2n, var(x1)=4, var(x2)=4n. The covariance can be found as cov(x1,x2)=E(x1x2)-E(x1)E(x2) 
where it can be shown that E(x1x2)=4n+4. The correlation between x1 and x2 is now 1/√n. This correlation tends to zero 
in large samples and the F statistic becomes F distributed.
 
Table 3. Derivation of the distribution of the chi square statistics. Numerator term (left) denominator term (right) 
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