
Complex-Valued Voxel Thresholding 
Increases Image Contrast in SWI

Synopsis
It is often desirable to threshold signal plus noise voxels from  pure noise voxels. Generally 
thresholding utilizes only the magnitude of the images. More recently a method has used both the 
magnitude and phase. This work is an extension and uses the normality of the real and imaginary 
values with phase coupled means. A statistic is derived that is F-distributed in large samples. In 
small samples Monte-Carlo critical values can be used. We apply this method to SWI images and 
show increased image contrast while it is found to be more robust to phase variations from 
unwanted field inhomogeneity  effects. 
Introduction
In MRI it is often desirable to threshold voxels that contain signal from tissue along with   
measurement noise from those that contain purely measurement noise. Generally this thresholding 
utilizes only the magnitude portion of the images. Recently methods have been developed that 
utilize both the magnitude and phase for thresholding voxels [1]. This manuscript is an extension of 
that work and uses the bivariate normality of the real and imaginary values with phase coupled 
means. A likelihood ratio statistic is derived that simplifies to a more familiar form that is F-  
distributed in large samples. In small samples, critical values from Monte Carlo simulation can be 
used to threshold this statistic with the proper Type I and Type  II error rates. This method is applied 
to magnetic resonance susceptibility weighted images (SWI) and shown to produce increased 
image contrast.
Theory
In a voxel, the observed complex-valued data is described as yR  =ρcosθ+εR  and yI  =ρsinθ+εI  where yR  
and yI  are the measurements for the real and imaginary parts, εR  and εI  are the error terms for the 
real and imaginary parts, while ρ  and θ  are the population magnitude and phase. Assuming that εR  
and εI  are normally distributed with a mean of 0 and variance σ2  [2], the joint probability distribution 
of the bivariate voxel observation (yR  ,yI  ) can be found then converted to polar coordinates to find 
the joint distribution of the observed magnitude and phase (m,φ) [3]. We would like to determine if 
the observed magnitude and phase in a voxel are signal or if they are noise. Given measurements 
(m1  ,φ1  ),…,(mn  ,φn  ) from p(m,φ) the  likelihood can be determined. Each voxel and its 8 neighbors 
(n=9) is used to estimate its magnitude  and phase with image wrap around. This voxel separation 
procedure can be achieved by testing H0  : ρ=0, θ=0 vs. H1  : ρ>0, θ≠0 with a likelihood ratio test. 
Under H0  and H1  the MLEs  are

and

. 

A formal statistic can be derived from the likelihood ratio and a statistical hypothesis test performed 
on the population magnitude and phase.
Applying this procedure here, the test statistic is F=(x1  /2)/(x2  /2n) where x1  =n[(   )2+(   )2]/σ2  and x2= 
[ΣyRi  +ΣyIi  ]/σ2. Further, one can show that x1  and x2  are χ2  distributed with 2 and 2n  degrees of 
freedom. The test statistic denoted by F  is found by dividing these by their degrees of freedom and 
taking ratio. Since x1  and x2  are χ2  distributed, E(x1  )=2, E(x2  )=2n, var(x1  )=4, var(x2  )=4n. The 
covariance can be found as cov(x1  ,x2  )= E(x1  ·x2  )-E(x1  )E(x2  ), where E(x1  ·x2  )=4n+4. The correlation 
between x1  and x2  is now cor(x1  ,x2  )= cov(x1  ,x2  )/(var(x1  )var(x2  ))½, which is 1/√n. This correlation tends 
to zero in large samples, the F  statistic becomes F distributed and F critical values can be used.  
However, critical values for small n can be achieved by way of Monte Carlo simulation.
Susceptibility weighted imaging (SWI) MRI data [4] is used to test the noise removal procedure 
both in magnitude and phase. A SWI brain volume was acquired on a 3 T Siemens Trio with a 
matrix size of 352×512, FOV of 176 mm ×  256 mm, an in-plane resolution of 0.5×0.5 mm2, TR=26 
ms, TE= 15 ms, and flip angle (FA) = 11o  [5].

Daniel B. Rowe1*  and E. Mark Haacke2

1Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
2The MRI Institute for Biomedical Research, Detroit, Michigan, USA

Results
A map of these F  statistics is in Fig. 1 and a histogram is in Fig. 2. Table 1 contains significance 
values α  and critical values Fα  for n=9. Intermediate values can be interpolated. The F  statistic map 
in Fig. 1 is thresholded for α  = 0.05 and α  =  0.05/512/352 from Table 2. A zero/one mask from 
thresholded F  statistics is applied to the original magnitude and phase images. Thresholded original 
images are presented in Fig. 3. The magnitude and phase of thresholded voxels are set to zero (for 
display they are set to –π). The first two images of Fig. 3 are thresholded at F=2.8102 while the 
second two are thresholded at F=7.5869. A vertical line is drawn in Fig. 2 for these threshold 
values. In Fig. 2, it is obvious that there are F  statistics from two different distributions. The first 
distribution is for large F  statistic values that tapers for smaller F  statistic values. The second 
distribution is for smaller F  statistic values that tapers for larger F  statistic values.

Fig. 1: F  statistic map.   Fig. 2: F  statistic histogram.             Table 1: Significance & critical  values.
Magnitude α=0.05.          Phase α=0.05.                Magnitude α=0.05 Bonf.  Phase α=0.05 Bonf.

Figure 3: Thresholded magnitude and phase images.
Note in Fig. 3 that as the false positive rate decreases, the number of voxels outside of the head 
decreases and more voxels within the head are also eliminated. This is due to the Type I and Type 
II error rates. It is apparent that the magnitude α=0.05 Bonferroni  image in Fig. 3 shows similar 
anatomy to the phase α=0.05 Bonferroni  image in Fig. 3 indicating similar biological information.
Discussion
A magnitude and phase statistical thresholding procedure based upon a likelihood ratio test was 
presented. It was shown through Monte Carlo simulation that this  method operates according to its 
theoretical statistical properties in terms of both false positives and false negatives. This statistical 
thresholding method was successfully applied to real human SWI data and shown to produce 
increased image contrast by eliminating false positives. It can also be seen that this new approach 
is more robust to variations in phase caused by unwanted field inhomogeneity  effects.
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α Fα
0.05 2.8102
0.01 3.9377
0.001 5.1991
0.0001 6.1512
0.00001 6.8678
0.000001 7.3911
0.05/256/256 7.5627
0.05/512/352 7.5869
0.05/512/384 7.7051
0.05/512/512 7.7575
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