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8.1 Introduction

In the world we live in with all of our technological advances, we still have a relatively poor
understanding of how the healthy human brain works, let alone how it is disfunctioning
due to disease or injury. Our brain is one of the most complicated systems in the universe,
which is exactly what makes it one of the last but most exciting scientific frontiers. Magnetic
resonance imaging (MRI), for which Drs. Paul Lauterbur and Peter Mansfield won the 2003
Nobel Prize, is an ideal noninvasive imaging technique to see inside the human brain.

Structural or anatomical MRI has been an invaluable tool for the diagnosis and monitor-
ing of human neurological ailments. Functional MRI (fMRI) is a lesser known type of MRI
that allows us to observe the cognitively active brain in action. In 1992 there were three
fMRI publications in close succession: the first by Bandettini (1), the second by Kwong (2)
and the third by Ogawa (3). These three papers established fMRI with the blood-oxygen-
level-dependent (BOLD) signal, which is a neural correlate and does not require exogenous
contrast.
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In MRI and fMRI, the measurements taken by the scanner are not voxel values. The
actual measurements taken by the scanner are to a good approximation, complex-valued
(real and imaginary) spatial frequencies. Small magnetic field gradients are, changed in
time that result in changing location in spatial frequency space. While changing spatial fre-
quency location, complex-valued spatial frequency measurements are taken. This Chapter
aims to provide the reader with the necessary technical abilities and conceptual understand-
ings to perform and understand fMRI image reconstruction and processing. The outline of
the chapter is as follows. Section 8.2 describes the discrete Fourier transform, which is
absolutely invaluable for understanding fMRI measurements. Section 8.3 describes Fourier
encoding and complex-valued fMRI measurements that are discrete inverse Fourier trans-
form reconstructed into a complex-valued image. Section 8.4 presents the discrete inverse
Fourier image reconstruction process with an isomorphism representation so that signal and
image processing steps can be described and their effects quantified. Section 8.5 summarizes
the additional related topic of complex-valued time series activation models and a discus-
sion reviewing the covered topics and future areas. In this chapter, the magnetic resonance
(MR) physics will not be described, but the basic measurement and image reconstruction
processes will be discussed. The discussion here will be limited to Cartesian k-space spatial
frequency sampling.

8.2 The Fourier Transform

As previously noted, the measurements taken by the MRI scanner are, to a good approxi-
mation, complex-valued spatial frequencies. That is, the measurements taken by the scanner
are ideally the Fourier transform (4) of the object being imaged. In this section, the one-
dimensional discrete Fourier transform and discrete inverse Fourier transform will be de-
scribed then extended to the two-dimensional discrete Fourier transform and inverse Fourier
transform. What we will see is that regardless of whether we have a one-dimensional or
two-dimensional signal, the Fourier transform selects out the constituent cosine and sine
frequencies that make up the signal. In Section 8.3 we will see that the MRI scanner mea-
sures (to a good approximation) the constituent cosine and sine frequencies in an image
and we inverse Fourier transform these frequencies in order to reconstruct an image.

8.2.1 One-Dimensional Fourier Transform

The mathematics for the one-dimensional discrete Fourier transform will be described then
an example involving a time series of measurements will be presented. The one-dimensional
discrete Fourier transform F (q∆ν) of a time series y(t) sampled at N times ∆t apart is
defined as in Equation 8.1 below

f(q∆ν) =

N∑
p=1

y(p∆t)e−i2π(p−1)(q−1)/N (8.1)

for p, q = 1, . . . , N . The difference in temporal frequency ∆ν between f(q∆ν) and f((q +
1)∆ν) is ∆ν = 1/(N∆t) with i =

√
−1 being the imaginary unit. The one-dimensional

discrete Fourier transform f(q∆ν) at a given frequency q∆ν in general consists of both
a real and an imaginary part. In order to satisfy the very important Shannon–Nyquist
sampling criteria (5, 6), which allows the resolution of temporal frequencies, the time series
must be sampled at twice its highest constituent temporal frequency. The highest temporal
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frequency that can be resolved and hence the bounds on the horizontal frequency axis is
νmax = 1/(2∆t). If the time series being discrete Fourier transformed is completely real-
valued, then the discrete temporal frequencies have Hermitian symmetry where the bottom
half is the conjugate transpose of the top half.

With the zero frequency of the frequency spectrum centered, the one-dimensional dis-
crete inverse Fourier transform of f(q∆ν) is defined as in Equation 8.2 below

y(p∆t) =
1

N

N/2−1∑
q=−N/2

f(q∆ν)e+i2πpq/N (8.2)

for p, q = −N/2, . . . , N/2 − 1. The time series will be ordered from the first time point to
the last. This definition of the one-dimensional discrete inverse Fourier transform will be
utilized because MRI and fMRI measurements have the zero frequency centered and there is
generally an even number of measurements. The discrete inverse Fourier transform y(p∆t)
at a given time point p in general consists of both a real and an imaginary part, but this
imaginary part may be zero.

The one-dimensional forward discrete Fourier transformation procedure described in
Equation 8.1 can be equivalently written as

(fR + ifI) =
(
Ω̄R + iΩ̄I

)
(yR + iyI) (8.3)

where yR = (yR(1∆t), . . . , yR(N∆t))′ and yI = (yI(1∆t), . . . , yI(N∆t))′, are the real and
imaginary parts of the measured time series while fR = (fR(1∆ν), . . . , fR(N∆ν))′ and
fI = (fI(1∆ν), . . . , fI(N∆ν))′ are the real and imaginary parts of the one-dimensional
discrete Fourier transform of the time series (temporal frequencies). The Fourier matrix
Ω̄ = (Ω̄R + iΩ̄I) in Equation 8.3 is given by

Ω̄ =


1 1 · · · 1
1 W WN

...
...

. . .
...

W (N−1)N

1 WN WN∗N

 (8.4)

where W = e−
i2π
N is an a priori known quantity from the sampling plan. The jkth element

(row j and column k) of Ω̄R and Ω̄I are cos(2π(j−1)(k−1)/N) and sin(2π(j−1)(k−1)/N)
where j, k = 1, . . . , N .

Similarly, the one-dimensional discrete inverse Fourier transformation procedure de-
scribed in Equation 8.2 can be equivalently written as

(yR + iyI) = (ΩR + iΩI) (fR + ifI) (8.5)

where variables are as previously defined. The inverse Fourier matrix Ω = (ΩR + iΩI) in
Equation 8.5 is given by

Ω =


W (−N2 )(−N2 ) W (−N2 )(−N2 +1) · · · W (−N2 )(N2 −1)

W (−N2 +1)(−N2 ) W (−N2 +1)(−N2 +1) W (−N2 +1)(N2 −1)

. . .
...

W (N2 −2)(N2 −1)

W (N2 −1)(−N2 ) W (N2 −1)(N2 −1)

 (8.6)
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FIGURE 8.1
Discrete constituent parts and their sum for the one-dimensional function.

where W = e
i2π
N . The jkth element of ΩR and ΩI are cos(2π(j−N/2− 1)(k−N/2− 1)/N)

and sin(2π(j −N/2− 1)(k −N/2− 1)/N).
The one-dimensional discrete Fourier transform can be illustrated with an example. A

continuous one-dimensional signal y(t) as in Equation 8.7 below

y(t) = 10 cos

(
2π

0

240
t

)
+ cos

(
2π

4

240
t

)
+ 3 sin

(
2π

8

240
t

)
+ sin

(
2π

32

240
t

)
(8.7)

is sampled at time t = (p− 1)∆t for p = 1, . . . , N , N = 96, and ∆t = 2.5 s (seconds) for a
total of 240 s. The four discrete functions composing y(p∆t) are presented in Figures 8.1a–d
with their sum y(p∆t) being in Figure 8.1e. The units for the horizontal axis in Figure 8.1
is seconds.

The one-dimensional discrete Fourier transform of y(p∆t) for p = 1, . . . , N is given in
Figure 8.2. After the one-dimensional discrete Fourier transform, the frequency spectrum
was shifted so that the zero frequency is centered. What can be seen in Figure 8.2 is that the
one-dimensional discrete Fourier transformation process selects out the constituent temporal
frequencies. The units for the horizontal axes in Figure 8.2 is 1/s (cycles per second or Hz).
In Figure 8.2 there are points (that have been connected) at the temporal frequencies that
make up the time series. The real part of the temporal frequency spectrum in Figure 8.2a
contains the cosine frequencies and the imaginary part in Figure 8.2b contains the sine
frequencies. The magnitude in Figure 8.2c is a typical way of representing all the constituent
frequencies with phase between the frequency parts in Figure 8.2d. There is a peak in the
middle of Figure 8.2a (where the full vertical scale is limited to 96), corresponding to the
zero cosine frequency (constant or baseline term) and at 4/240 ≈ 0.0167 Hz. We can also see
points in Figure 8.2b are the 8/240 ≈ 0.0333 Hz and 32/240 ≈ 0.1333 Hz sine frequencies.
The heights of the points are NAν/2, where Aν is the amplitude of the sinusoid at frequency
ν except for the zero frequency, which has a height of NA0. Also note that the real part is
symmetric while the imaginary part is anti-symmetric.

A pictorial depiction of the one-dimensional discrete Fourier transform can be seen by
displaying the time series as an image as in Figure 8.3. Again, after the discrete Fourier
transform, the frequency spectrum was shifted so that the zero frequency is centered. In
Figure 8.3c are the real (left) and imaginary (right) parts of the time series (intensity limited
from 5 to 15), in Figure 8.3b are the real (left) and imaginary (right) parts of the Fourier
matrix (intensity limited from −1 to 1), and in Figure 8.3a are the real (left) and imaginary
(right) parts of the frequency spectrum (intensity limited from 0 to 96). The units for
the vertical axis in Figure 8.3a is Hertz and for Figure 8.3c seconds. In this chapter, the
greyscale for all images will use the convention that black will depict lower values and white,
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FIGURE 8.2
Fourier transform of the time series.

higher values. Note that the intensity values of the horizontal stripes in Figure 8.3c (left)
are brighter for higher values and depict the time series in Figure 8.1e.

Again, we can see that the one-dimensional discrete Fourier transform selects out the
constituent temporal frequencies of the time series. The cosine frequencies are represented
in Figure 8.3a (left) and the sines in Figure 8.3a (right).

In the same fashion, the inverse Fourier transform can be depicted as in Figure 8.4. The
units for the axes in Figure 8.4a is seconds and Figure 8.4c Hertz. In Figure 8.4c are the
real (left) and imaginary (right) parts to the frequency spectrum, in Figure 8.4b are the real

FIGURE 8.3
Matrix representation of one-dimensional discrete Fourier transform.
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FIGURE 8.4
Matrix representation of one-dimensional discrete inverse Fourier transform.

(left) and imaginary (right) parts of the one-dimensional discrete inverse Fourier transform
matrix (intensity limited from −1/96 to 1/96), and in Figure 8.4a are the real (left) and
imaginary (right) parts of the time series as originally specified.

We can see that when we have measured the constituent complex-valued frequencies, we
can inverse Fourier transform reconstruct them into the measured time series. Although the
one-dimensional discrete Fourier transform and discrete inverse Fourier transforms in Equa-
tion 8.3 and Equation 8.5 have a great conceptual interpretation, the implementations in
Equation 8.1 and Equation 8.2 are computationally faster and generally how the transforms
are performed. In Section 8.4, the discrete Fourier transform and discrete inverse Fourier
transforms will be represented with an isomorphism that has an even better conceptual
interpretation that is useful for statistical purposes. In MRI and fMRI, the measurements
taken by the scanner are, to a good approximation, discrete complex-valued spatial frequen-
cies and we reconstruct them into a discrete complex-valued image via the discrete inverse
Fourier transform. The discrete Fourier transform and discrete inverse Fourier transform are
reverse operations, meaning that you can one-dimensional discrete forward Fourier trans-
form a time series to get temporal frequencies and then one-dimensional discrete inverse
Fourier transform the temporal frequencies to get back the original time series. The discrete
complex-valued frequencies can be obtained from the discrete complex-valued time series
and vice versa provided there is no loss of data.

8.2.2 Two-Dimensional Fourier Transform

The mathematics for the two-dimensional discrete Fourier transform will be described sim-
ilar to the way that it was done for the one-dimensional discrete Fourier transform, then
an example involving an illustrative sample image will be presented. The two-dimensional
discrete Fourier transform F (qx∆kx, qx∆kx) of an image Y sampled at Nx horizontal and
Ny vertical locations ∆x and ∆y distances apart is defined as in Equation 8.8 below

F (qx∆kx, qy∆ky) =

Ny∑
py=1

Nx∑
px=1

Y (px∆x, py∆y)e
−i2π(

(px−1)(qx−1)
Nx

+
(py−1)(qy−1)

Ny
)

(8.8)

for px, qx = 1, . . . , Nx and py, qy = 1, . . . , Ny. The differences in spatial frequencies between
successive values ∆kx and ∆ky are ∆kx = 1/(Nx∆x) and ∆ky = 1/(Ny∆y). In order to
satisfy the very important Shannon–Nyquist sampling criteria that allows the resolution
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of spatial frequencies, the image must be sampled at twice the highest constituent spatial
frequency in each dimension. The highest spatial frequencies that can be resolved and hence
the bounds on the two frequency axes are kx,max = 1/(2∆x) and ky,max = 1/(2∆y). If the
image being discrete Fourier transformed is completely real-valued, then the discrete spatial
frequencies have Hermitian symmetry where the bottom half is the conjugate transpose of
the top half. Hermitian symmetry is generally not achieved in experimentally measured
fMRI spatial frequencies. The two-dimensional discrete Fourier transform F (qx∆kx, qy∆ky)
at a given frequency pair (qx∆kx, qy∆ky) in general consists of both a real and an imaginary
part.

With the zero frequency of the frequency spectrum centered, the two-dimensional dis-
crete inverse Fourier transform of F (qx∆kx, qy∆ky) is defined as in Equation 8.9 below

Y (px∆x, py∆y) =
1

NxNy

Ny/2−1∑
qy=−Ny/2

Ny/2−1∑
qx=−Nx/2

F (qx∆kx, qy∆ky)e
+i2π( pxqxNx

+
pyqy
Ny

)
(8.9)

for px, qx = −Nx/2, . . . , Nx/2 − 1 and py, qy = −Ny/2, . . . , Ny/2 − 1. It should be noted
that it is not necessarily the case that Nx = Ny or that ∆x = ∆y. The image will be
ordered from the first pixel or voxel to the last in both dimensions. This definition of the
two-dimensional discrete inverse Fourier transform will be utilized because MRI and fMRI
measurements have the zero frequency centered and generally an even array size in each
dimension is measured. The two-dimensional discrete inverse Fourier transform of the image
Y (px∆x, py∆y), at a given voxel (px∆x, py∆y) in general consists of both a real and an
imaginary part, but this imaginary part may be zero.

The two-dimensional forward discrete Fourier transformation procedure described in
Equation 8.8 can be equivalently written as

(FR + iFI) =
(
Ω̄yR + iΩ̄yI

)
(YR + iYI)

(
Ω̄xR + iΩ̄xI

)T (8.10)

where T denotes the transpose, YR and YI are the real and imaginary parts of the measured
image, and FR and FI are the real and imaginary parts of the Fourier transform of the image
(spatial frequencies). If we have a real-valued image, then the imaginary part of the image YI
is zero. The two-dimensional discrete Fourier matrices Ω̄x and Ω̄y in Equation 8.10 are the
same as in the one-dimensional discrete Fourier transform in Equation 8.4 with appropriate
dimensions.

The two-dimensional discrete inverse Fourier transformation procedure described in
Equation 8.9 can be equivalently written as

(YR + iYI) =
(
ΩyR + iΩyI

)
(FR + iFI) (ΩxR + iΩxI)

T (8.11)

where variables are all as previously defined. The discrete inverse Fourier matrices Ωx and Ωy
in Equation 8.11 are the same as in the one-dimensional discrete inverse Fourier transform
in Equation 8.6 with appropriate dimensions.

Similar to the one-dimensional discrete Fourier transform, the two-dimensional discrete
Fourier transform can be illustrated with an example. A continuous two-dimensional image
Y (x, y) as in Equation 8.12 below

Y (x, y) = 10 cos

(
2π

0

240
x

)
+

3

2
cos

(
2π

8

240
x

)
+ sin

(
2π

24

240
y

)
+ cos

(
2π

16

240
x+ 2π

16

240
y

)
(8.12)

is sampled at position x = (px−1)∆x and y = (py−1)∆y for px = 1, . . . , Nx, py = 1, . . . , Ny,
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FIGURE 8.5
Discrete constituent parts and their sum for the two-dimensional image.

Nx = 96, Ny = 96, and ∆x = ∆y = 2.5 mm (millimeters) corresponding to a 240-mm field of
view. The four discrete functions composing Y (px∆x, py∆y) are presented in Figures 8.5a–d
with their sum Y (px∆x, py∆y) being in Figure 8.5e. The units for the axes in Figure 8.5
are millimeters.

What can be seen in Figure 8.6 is that the two-dimensional discrete Fourier transforma-
tion process again selects out the constituent spatial frequencies. After the two-dimensional
discrete Fourier transform, the frequency spectrum was shifted so that the zero frequency
is centered. In Figure 8.6c are the real (top) and imaginary (bottom) parts of the image
(intensity limited from −15 to 15), in Figures 8.6b and d are the real (top) and imaginary
(bottom) parts of the Fourier matrices (intensity limited from −1 to 1), and in Figure 8.6a
are the real (top) and imaginary (bottom) parts of the frequency spectrum (intensity limited
from 0 to 962). The units for the image in Figure 8.6c are millimeters and spatial frequencies
in 8.6a are mm−1 (wave number). The transpose of Ω̄x is displayed in Figure 8.6d.

There are points at the spatial frequencies that make up the image. The real part of the
spatial frequency spectrum contains the cosine frequencies and the imaginary part contains
the sine frequencies. There is a peak in the middle of Figure 8.6a (top) corresponding
to the zero cosine frequency (constant or baseline term), at the 8/240 ≈ 0.0333 mm−1

x spatial frequency, and at the 24/240 = 0.1000 mm−1 both x and y spatial frequency.
Also, we can see points in Figure 8.6a (bottom) at the 16/240 ≈ 0.0667 mm−1 spatial
frequency. The heights of the points are NxNyAkx,ky/4, where Akx,ky is the amplitude of
the planar sinusoid at frequency (kx, ky) except for the zero frequency, which has a height
of NxNyA0,0. It is important to note that the real part is symmetric while the imaginary
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FIGURE 8.6
Matrix representation of two-dimensional discrete Fourier transform.

part is anti-symmetric, but for display purposes the intensities of the imaginary part were
made completely positive.

In the same fashion, the inverse Fourier transform can be depicted as in Figure 8.7. In
Figure 8.7c are the real (top) and imaginary (bottom) parts of the frequency spectrum,
in Figure 8.7b and Figure 8.7d are the real (top) and imaginary (bottom) parts of the
two-dimensional discrete inverse Fourier transform matrices (intensity limited from −1/96
to 1/96 for Figure 8.7b and from −1/96 to 1/96 for Figure 8.7d). Note the difference
in appearance between Figure 8.6b and Figure 8.7b. In Figure 8.7a are the real (top) and
imaginary (bottom) parts of the two-dimensional discrete inverse Fourier transformed image.
The image being presented in Figure 8.7d is the transpose of Ωx.

We can see that when we have measured the constituent complex-valued frequencies of
an image, we can reconstruct them into the measured image. Although the discrete Fourier
transform and discrete inverse Fourier transforms in Equation 8.10 and Equation 8.11 have
a great conceptual interpretation, the implementations in Equation 8.8 and Equation 8.9 are
computationally faster and most often how performed. In Section 8.4, the discrete Fourier
transform and discrete inverse Fourier transforms will be represented with an isomorphism
that has an even better conceptual interpretation and is useful for statistical analysis. In
MRI and fMRI, the measurements taken by the scanner are, to a good approximation,
complex-valued spatial frequencies and we reconstruct them into a complex-valued image
via the discrete inverse Fourier transform.

The discrete Fourier transform and discrete inverse Fourier transform are reverse oper-
ations, meaning that you can two-dimensional discrete forward Fourier transform an image
to get spatial frequencies then two-dimensional discrete inverse Fourier transform the spa-
tial frequencies to get back the original image. The discrete complex-valued frequencies can
be obtained from the discrete complex-valued time series and vice versa provided there is
no loss of data. The discrete Fourier transform and discrete inverse Fourier transform are
reverse operations provided there is no loss of data such as discarding phase images as is
common in fMRI.
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FIGURE 8.7
Matrix representation of two-dimensional discrete inverse Fourier transform.

8.3 FMRI Acquisition and Reconstruction

It was important to review the one and two dimensional discrete Fourier transforms along
with their inverses in Section 8.2 to prepare for measured fMRI data. In Section 8.2, it
was seen that the two-dimensional discrete complex-valued spatial frequencies could be two
dimensional discrete inverse Fourier transform reconstructed into a complex-valued image.
In MRI and fMRI, the data measured by the scanner is, to a good approximation, the
Fourier transform of the object being imaged (4). The spatial frequencies, called k-space,
are measured by the scanner and inverse Fourier transform reconstructed into a complex-
valued image. In this section, the MR signal equation is described along with a standard
fMRI gradient echo–echo planar imaging (GRE-EPI) pulse sequence and the coverage of
k-space (spatial frequencies).

8.3.1 The Signal Equation and k-Space Coverage

Without delving into the MRI physics, the continuous signal s(kx, ky) to be measured by
the scanner at time t(kx, ky) for k-space location (kx, ky) is given by the following fairly
general expression called the signal equation

s(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y)e−i2π(kxx+kyy)dxdy

kx(t(kx, ky)) =
γ

2π

∫ t(kx,ky)

0

Gx(τ)dτ (8.13)

ky(t(kx, ky)) =
γ

2π

∫ t(kx,ky)

0

Gy(τ)dτ
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FIGURE 8.8
Standard GRE-EPI pulse sequence and k-space coverage.

where

ρ(x, y) = ρ0(x, y)
(

1− eTR/T1(x,y)
)
et(kx,ky)/T∗2 (x,y)eiγ∆B(x,y)t(kx,ky) . (8.14)

In Equation 8.14, s(kx, ky) is the measured k-space signal at location (kx, ky), ρ0(x, y) is
the proton spin density at position (x, y), T1(x, y) is the longitudinal relaxation at position
(x, y), T ∗2 (x, y) is the transverse relaxation at position (x, y), ∆B(x, y) is the magnetic field
inhomogeneity at position (x, y), TR is the time to repetition for measurement of the same
slice, γ = 2.67513×108 rad s−1T−1 is the gyromagnetic ratio of the H1 nucleus, and Gx(τ)
and Gy(τ) are magnetic field gradients. We can see that ρ(x, y) is not strictly a function of
position but varies depending on the time that a k-space point is to be measured, so the
Fourier relationship is an approximate one.

This is the two-dimensional continuous Fourier encoding expression upon which the
previous discrete two-dimensional discrete inverse Fourier transform image reconstruction
in Section 8.2 was based. By changing the magnetic field gradients Gx(t) and Gy(t) through
time t, the signal that is to be measured corresponds to the different locations in k-space.

The way that k-space is traversed and complex-valued data measured is with the use of
magnetic field gradients that are in addition to but much smaller than the main magnetic
field. The changing of the Gx and Gy magnetic field gradients can be graphically described
using what is called a pulse sequence diagram. In a pulse sequence diagram, multiple gradient
waveforms are presented where the gradient strength (either positive or negative) is on the
vertical axis and time is on the horizontal axis.

A standard GRE-EPI pulse sequence diagram is presented in Figure 8.8a and corre-
sponding k-space coverage trajectory in Figure 8.8b. In Figure 8.8a, a radio frequency pulse
at the beginning of the first waveform trace is applied to tip the magnetization into the
transverse plane (called excitation) and a gradient Gz selects the slice to be imaged in the
second waveform trace. At this time, we are at the center of k-space, (kx, ky) = (0, 0). After
excitation and slice selection, gradient magnetic fields are applied as seen in the first negative
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FIGURE 8.9
Matrix representation of fMRI image reconstruction.

trapezoidal-shaped changes in the Gy and Gx gradient waveforms (third and fourth traces).
The initial negative trapezoidal Gy gradient takes us to the bottommost (most negative)
ky location while the initial negative trapezoidal Gx gradient takes us to the leftmost (most
negative) kx location. At this time, we are now at the bottom left corner of our k-space re-
gion. We apply a positive Gx gradient that takes us from left to right along the bottommost
line of k-space. When we have reached the rightmost portion of k-space, we now apply a
negative Gx gradient to take us from right to left in k-space and a positive triangular Gy
gradient that takes up a k-space line. This process repeats until all of k-space is covered and
complex-valued k-space array measurements are taken to fill in an array. The direction that
we travel along lines of k-space is called the frequency encoding direction (kx in this case)
and the direction that we step up to travel along lines is called the phase encoding direction
(ky in this case). The trajectory that just described the coverage of k-space is illustrated in
Figure 8.8b from bottom left to top left (with underlay being a lighter version of the real
k-space array in Figure 8.9c).

The complex-valued k-space data (spatial frequencies) corresponding to an experimen-
tally measured slice from a human fMRI scan (7) are displayed in Figure 8.9c. Note that
the real part (cosines) and imaginary part (sines) of the k-space array is completely filled,
unlike the simple illustrative example in Figure 8.7 of Section 8.2. The discrete inverse
Fourier transform process is applied to the measured k-space data in Figure 8.9. The mea-
sured k-space data is in Figure 8.9c, the discrete inverse Fourier transform matrices are
in Figure 8.9b and Figure 8.9d with the reconstructed (two-dimensional discrete inverse
Fourier transformed) complex-valued image in Figure 8.9a. The two-dimensional discrete
inverse Fourier transformation process as performed in Figure 8.7 of Section 8.2 reconstructs
the experimentally measured k-space data into a complex-valued image. Note that the two
discrete inverse Fourier transform matrices in Figure 8.7 are identical to those in Figure 8.9.

The reconstructed image in Figure 8.9a is in terms of real and imaginary parts. In
most fMRI studies, the reconstructed images are transformed from Cartesian coordinates
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FIGURE 8.10
Magnitude and phase of real and imaginary reconstructed image.

of real and imaginary to polar coordinates of magnitude and phase as seen in Figure 8.10.
This transformation changes the statistical properties of the images. Further, in most fMRI
studies, the phase half of the reconstructed image data as in Figure 8.10b is discarded and
only the magnitude images as in Figure 8.10a are included in statistical analysis, in addition
to processing performed on the images as will be briefly described in Section 8.4. From a
statistical perspective, we should utilize all of our measured data as will be summarized in
Section 8.5.

8.3.2 Nyquist Ghost k-Space Correction

When experimental fMRI k-space data is measured, there is a necessary processing step
called Nyquist ghost correction that is performed on it in order to turn it into the k-space
data seen in Figure 8.9c. A Nyquist ghost is a standard artifact that occurs in GRE-EPI due
to a phase discrepancy between the odd and even frequency encode direction (right-to-left
and left-to-right) lines of k-space.

The raw k-space measurements from an unprocessed experimental fMRI scan are pre-
sented in Figure 8.11c and are reconstructed into an image by the same discrete inverse
Fourier transform process in Figure 8.11 and as in Figure 8.7 and Figure 8.9. Note the
prominent ghost of the brain at the top and bottom of the real and imaginary images in
Figure 8.11a. Images with the Nyquist ghost as presented are not suitable for either visual
interpretation or statistical analysis. We can compare Figure 8.11a with the Nyquist ghost
to the improved reconstructed image in Figure 8.10a, which is after a correction. Nyquist
ghost correction will be described later in this Section.

The magnitude and phase of the reconstructed raw experimental k-space data in Fig-
ure 8.11 are presented in Figure 8.12. Again, note the prominent Nyquist ghost of the brain
at the top and bottom of the magnitude image in Figure 8.12a as compared to the image
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FIGURE 8.11
Reconstructed raw k-space data with Nyquist ghost.

after Nyquist ghost correction in Figure 8.10a. Images such as those in Figure 8.11a with the
Nyquist ghost present are not suitable for either visual interpretation or statistical analysis.

Several methods have been developed to reduce such Nyquist ghosts (8, 9). Here, a
method based upon the use of three navigator echoes, which allow the estimation and
correction of the phase discrepancy (10) will be described. Before describing the three
navigator echoes correction procedure, a little more explanation of the phase discrepancy
and navigator echoes is in order. As previously noted, the Nyquist ghost occurs when there
is a phase discrepancy between the odd and even lines of k-space. This phase discrepancy
between the odd and even lines is illustrated in Figure 8.13a. Note that the array points
are not aligned in the odd versus even lines in Figure 8.8a. The goal of the Nyquist ghost
correction is to turn Figure 8.13a into Figure 8.8b.

In order to correct the phase discrepancy ∆, we first have to be able to estimate it. The
Nyquist ghost phase discrepancy is echoes with the use of navigator. A navigator echo is a
duplicate measurement of the entire ky = 0 frequency encode line of k-space. In Figure 8.13b
there are three navigator echoes presented, two from left to right and one from right to left.
These navigator echoes could be measured at the beginning of the acquisition before the
Gy phase encode gradient or in the middle of the acquisition when the center ky = 0 line is
being measured.

The process to experimentally estimate the phase discrepancy is to take each of the
complex-valued navigator echo lines, labeled nav1, nav2, and nav3, and one-dimensional
discrete Fourier transform each of them to get NAV1, NAV2, and NAV3. We also one-
dimensional discrete Fourier transform each of the k-space lines for the entire array. Then
we calculate

ω̂0 = angle(NAV3./NAV1) (8.15)

φ̂ = NAV2. ∗ exp(−i. ∗ ω̂0/2)./NAV1 (8.16)

∆̂ = angle(median(real(φ̂)) + i median(imag(φ̂))) (8.17)
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FIGURE 8.12
Magnitude and phase of reconstructed raw k-space data with Nyquist ghost.

FIGURE 8.13
Odd and even line phase discrepancy and navigator echoes.

where angle(·) indicates calculating the angle of its complex-valued argument, .∗ indicates
pointwise multiplication, ./ indicates pointwise division, median(·) returns the median if
its vector argument, real(·) returns the real part of its argument, and imag(·) returns the

imaginary part of its argument. Both ∆̂ = angle(mean((φ̂))) and ∆̂ = angle(median((φ̂)))
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have been utilized, but the median of the individual complex parts in Equation 8.17 works
best experimentally.

Once the phase discrepancy is estimated to be ∆̂ = 0.4981, the process to correct the
k-space lines in Figure 8.13a is to one-dimensional discrete Fourier transform each row
of k-space, and multiply the points in the odd lines by exp(−i∆̂) to shift them. Each of
these corrected one-dimensional discrete Fourier transformed rows are now one-dimensional
discrete inverse Fourier transformed with the result being the corrected rows of k-space
as in Figure 8.9c. The corrected rows of k-space yield the real and imaginary images in
Figure 8.9a and magnitude and phase in Figure 8.10 after image reconstruction.

As was demonstrated in this section, Nyquist ghost correction is a necessary processing
operation in the display and analysis of fMRI experimental data. There are other processing
operations performed on fMRI data that many find useful. These processing operations have
been implemented to improve the statistical analysis, but the statistical ramifications of the
processing are not well known. Any processing changes the statistical properties of the
fMRI data. The AMMUST framework (11) is described in the next section and utilized to
quantify the effect of select processing operations.

8.4 Image Processing

As was previously described, in MRI the data are Fourier encoded (4). The two-dimensional
discrete inverse Fourier transform was utilized to reconstruct a complex-valued image in
Section 8.3. In this section, the two-dimensional discrete inverse Fourier transform will be
represented as a real-valued isomorphism involving the pre-multiplication of a vector of k-
space data by a single inverse discrete Fourier transform matrix. Once this relationship is
established, image processing can be represented as matrix multiplications and the resulting
statistical properties can be quantified.

8.4.1 Reconstruction Isomorphism Representation

The discrete two-dimensional inverse Fourier transform in Equation 8.11 can be represented
in terms of a single vector of spatial frequencies and a larger two-dimensional discrete
inverse Fourier transform matrix (12). Let fR = vec(F ′R) and fI = vec(F ′I) be vectors of
real and imaginary spatial frequency parts where vec(·) is defined to be the vectorization
operator that stacks the columns of its matrix argument. The matrices FR and FI are the
real and imaginary parts of the complex-valued spatial frequency matrix as described in
Equation 8.11.

Then, we can perform a two-dimensional discrete inverse Fourier transformation as(
yR
yI

)
=

(
ΩR −ΩI
ΩI ΩR

) (
fR
fI

)
y = Ω f

(8.18)

where yR = vec(Y ′R) contains the rows of the real part of the reconstructed image, yI =
vec(Y ′I ) contains the rows of the imaginary part of the reconstructed image, and Ω is given
by

ΩR =
[(

ΩyR ⊗ ΩxR
)
−
(
ΩyI ⊗ ΩxI

)]
ΩI =

[(
ΩyR ⊗ ΩxI

)
+
(
ΩyI ⊗ ΩxR

)] , (8.19)
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FIGURE 8.14
Image and spatial frequencies for illustrative isomorphism example.

where ⊗ is the Kronecker product that multiplies every element of its first matrix argument
by its entire second matrix argument. In Equation 8.18, f and y are 2NxNy × 1 vectors
and Ω is a 2NxNy × 2NxNy matrix. The expression in Equation 8.19 was obtained by
utilizing the result that the matrix multiplications D = ABC can alternatively be expressed
as vec(D) = (CT ⊗ A)vec(B), so the two-dimensional discrete inverse Fourier transform
in Equation 8.10 after attention to real and imaginary parts yields Equation 8.18 and
Equation 8.19.

To illustrate the isomorphism representation of the two-dimensional discrete inverse
Fourier transform, consider a small example involving the reconstruction of an 8× 8 image
as in Figure 8.14. In Figure 8.14c is the complex-valued 8 × 8 image, while Figure 8.14b
and Figure 8.14d contain the two-dimensional discrete inverse Fourier transform matrices,
in addition to Figure 8.14a containing the spatial frequencies.

In the isomorphism image reconstruction process, the spatial frequencies in Figure 8.14a
are vectorized by stacking the rows of the real part of the frequencies on the rows of the
imaginary part of the frequencies as displayed in Figure 8.15c and described in Equa-
tion 8.18. The two-dimensional discrete inverse Fourier transform matrices in Figure 8.14b
and Figure 8.14d are utilized as in Equation 8.19 to form the single discrete inverse Fourier
transformation matrix Ω as in Figure 8.15b. The vector of spatial frequencies f in Fig-
ure 8.15c is pre-multiplied by the larger two-dimensional discrete inverse Fourier transform
matrix in Figure 8.15b to produce the vector of image voxel values y in Figure 8.15a. The
vector of image voxel values in Figure 8.15a can be unstacked into the rows of the real part
of the reconstructed image and the rows of the imaginary part of the reconstructed image
as in Figure 8.14c.

The forward two-dimensional discrete Fourier transform can be performed in a similar
fashion by multiplying the vector of stacked real and imaginary image rows by a single
discrete forward Fourier matrix to obtain a vector of spatial frequencies that contains the
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rows of the real on top of the rows of the imaginaries to form a complex-valued spatial
frequency matrix that can be unstacked into the real and imaginary frequency matrices.

This inverse Fourier matrix and vectorized array representation is useful in examining
the effects of preprocessing as we will see next.

8.4.2 Image Processing Implications

The isomorphism representation of the two-dimensional discrete inverse Fourier transform
was utilized to represent image processing as matrix multiplications in the AMMUST (A
Mathematical Model for Understanding the STatistical) effects framework (11). In the AM-
MUST framework, Equation 8.18 was extended as

y = OI Ω Ok f (8.20)

to include k-space and image processing operations as a matrix multiplication Ok and OI
or all operations performed on the original measurements as a single matrix O = OIΩOk.

It is known from multivariate statistics that if we have a vector f with mean vector
E(f) = f0 and covariance matrix cov(f) = Γ, and it is multiplied by a matrix O, then
the mean of the resulting vector y = Of has a new mean µ = Of0 and covariance matrix
Σ = OΓOT . This means that we can analytically quantify how image processing written
as a matrix multiplication changes the mean, variance, and correlation structure of our
data under ideal conditions. This change of the statistical properties of our data including
potential induced correlation is purely from image processing and reconstruction and of no
biological origin.

There are many processing operations performed on the fMRI data. A few common
processing operations are listed in Table 8.1. These processing operations are performed on

FIGURE 8.15
Image reconstruction via isomorphism representation.
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TABLE 8.1
Some k-space, reconstruction, and image processing operations.

Image Space Reconstruction k-space

Image Smoothing Inverse Fourier Nyquist Ghost
Static B0 Correction IP SENSE Non-Cartesian Gridding
Global Normalization IP GRAPPA Motion Correction
Image Registration TP SENSE Ramp Sampling

TP GRAPPA Homodyne Interpolation
Zero F illing
Apodization

the fMRI data before any statistical analysis, often without the knowledge of the person
carrying out the analysis. The processes that are italicized in Table 8.1 are examined in
more detail first, then the other processes will be elaborated upon.

Zero filling, also known as zero fill interpolation, is the process of taking the spatial
frequency array corresponding to an image and placing it at the center of a much larger
array with zeros around it. Philosophically, it is equivalent to signifying that these higher
spatial frequencies have been measured to be zero. The zero fill operator matrix Z can
be formed by taking an identity matrix and removing the columns that correspond to k-
space locations that are zero filled. Then the Kronecker product between a two-dimensional
identity matrix I2 and this column removed identity matrix is taken to form Z.

Apodization of k-space data is another common processing operation that has the goal
to mitigate ripples in images after reconstruction, called Gibbs ringing. Gibbs ringing is an
artifact from the measurement of a finite central region of frequencies that extend beyond
those measured. This is often called a spatial frequency truncation effect. One common
apodization process is to use a Tukey filter. The Tukey apodization filter in Equation 8.21

T (k) =


1 |k| < kc

cos2
(
π(|k|−kc)

2w

)
kc ≤ |k| < kc + w

0 kc + w ≤ |k|
(8.21)

is defined in k-space where k = (k2
x + k2

y)−1/2 is the distance from the center of k-space.
In this, kc is the radius below which there is no apodization, and w is the distance over
which there are no apodization transitions to complete filtering. The rows of this matrix
T are placed into a diagonal matrix to form the apodization operator A. The function
in Equation 8.21 produces a radially symmetric disk gradually decreasing to zero that is
centered at the center of k-space.

The two-dimensional discrete inverse Fourier transformation image reconstruction pro-
cess was described as an operator Ω for matrix multiplication earlier in this section. It is
a necessary processing step in the generation of images for interpretation and statistical
analysis. It therefore can’t be skipped, unlike the other processing operations (except for
Nyquist ghost correction).

Image smoothing or blurring is a procedure that many image processors and analysts
use. Its purpose is to mitigate discrepancies between subjects’ brains, increase signal within
voxels relative to noise, and help with Gaussianity (normal distribution) assumptions when
using random field theory for activation map thresholding. The Gaussian image smoothing
kernel G defined in image space is described as

G(r) = 1
2πσ2 exp

(
− r2

2σ2

)
(8.22)

where r = (x2 + y2)−1/2 is the distance from the center of the voxel of interest and
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FIGURE 8.16
AMMUST processing operators, O.

σ2 = (FWHM/2)2/(2 log 2) is the variance of a normal distribution, with FWHM denoting
the full-width-at-half-max. The function in Equation 8.22 produces a radially symmetric
Gaussian hill centered at the voxel of interest.

In order to gain some intuition into the processing and reconstruction operators, com-
binations of the four individual image processing operators Z, A, Ω, and S will be applied
to an example for a typical size. Since we will want to reconstruct an image, the image
reconstruction operator Ω will be included in all cases. The 96 × 96 k-space data in Fig-
ure 8.9c will be utilized as the mean image (f0). When zero filling is applied, the central
64× 64 portion of the k-space data in Figure 8.9c will be utilized and zero filled to 96× 96.
When apodization is applied, as in Equation 8.21, kc = 30 and w = 15. All k-space data
will be reconstructed to image space using the Ω operator as described in Equation 8.19
for 96 × 96 images. When smoothing is applied, a 2-voxel (5-mm) FWHM as described in
Equation 8.22 will be used.

The processing and reconstruction operators are visually presented in Figure 8.16. The
operator for only image reconstruction (O = Ω) is given in Figure 8.16a; for zero filling from
64 to 96 and image reconstruction (O = ΩZ) in Figure 8.16b; for apodization and image
reconstruction (O = ΩA) in Figure 8.16c; for image reconstruction and image smoothing
(O = SΩ) in Figure 8.16d; for zero filling, apodization, and image reconstruction (O =
ΩAZ) in Figure 8.16e; for apodization, image reconstruction, and image smoothing (O =
SΩA) in Figure 8.16f; for zero filling, image reconstruction, and smoothing (O = SΩZ) in
Figure 8.16g; and for zero filling, apodization, image reconstruction, and image smoothing
(O = SΩAZ) in Figure 8.16h. All operator images are on the same intensity scale, ±1.1×
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FIGURE 8.17
Modified mean images from processing.

10−4 with the same color bar for the operators given in Figure 8.16i. Note the differences
between the operators as some appear in the green hues while others in the purple hues.

The mean real and imaginary images, along with the magnitude and phase derived
from them, are shown Figure 8.17 for the various processing pipelines. The mean images
for reconstruction only (O = Ω) are presented in Figure 8.9 and Figure 8.10 and thus not
repeated here. The mean images for O = SΩ, O = SΩA, and O = SΩZ are also not shown
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as they are visually similar to the O = SΩAZ mean images in Figures 8.17m–p, however,
their magnitude of means are presented in Figure 8.18 as underlays.

The mean images after operator processing and reconstruction are visually presented in
Figure 8.17. When applying zero filling from 64 to 96 and image reconstruction (O = ΩZ)
was performed, it yielded the mean real image in Figure 8.17a, the mean imaginary image in
Figure 8.17b, the mean magnitude image in Figure 8.17c, and the mean phase image in Fig-
ure 8.17d. Note that the mean images after zero filling and reconstruction in Figures 8.17a–d
appear slightly blurrier than those from solely reconstruction in Figure 8.9 and Figure 8.10.
When applying apodization and image reconstruction (O = ΩA) it yielded the mean real
image in Figure 8.17e, the mean imaginary image in Figure 8.17f, the mean magnitude
image in Figure 8.17g, and the mean phase image in Figure 8.17h. The mean images in
Figures 8.17e–f appear similar but have slightly less detail than those in Figures 8.17a–d.
When applying zero filling, apodization, and image reconstruction (O = ΩAZ) it yielded
the mean real image in Figure 8.17i, the mean imaginary image in Figure 8.17j, the mean
magnitude image in Figure 8.17k, and the mean phase image in Figure 8.17l. The mean
images in Figures 8.17i–l are virtually indistinguishable from those in Figures 8.17a–d.
When all processing and reconstruction operations are applied, zero filling, apodization,
image reconstruction, and image smoothing (O = SΩAZ), it yielded the mean real image
in Figure 8.17m, the mean imaginary image in Figure 8.17n, the mean magnitude image
in Figure 8.17o, and the mean phase image in Figure 8.17p. Note that the mean images
in Figures 8.17m–p are noticeably blurrier that those from the other processing and re-
construction pipelines. All real and imaginary images are intensity limited in [−7.5, 7.5],
all magnitude images are intensity limited in [0, 7.5], while all phase images are intensity
limited in [−π, π] as seen with the greyscale color bar in Figure 8.17q.

The correlations resulting from the various processing pipelines are displayed in Fig-
ure 8.18 assuming k-space measurements are uncorrelated. For the correlations, the entire
Σ = OOT matrix was computed and then turned into a correlation matrix R. Since these
are very large matrices, it is difficult to see the detail within them. To remedy the large
matrices, the correlation between a given voxel and all others can be computed. The afore-
mentioned processing and reconstruction operations yield the same correlation between any
given voxel and all others. Therefore, the correlation between the center (49, 49) voxel and
all others will be displayed as a correlation image thresholded at TH = 0.001 and super-
imposed upon the corresponding magnitude image (intensity limited in [0, 7.5]) for visual
reference. The resulting operator-induced correlation for only image reconstruction (O = Ω)
is given in Figure 8.18a; for zero filling from 64 to 96 and image reconstruction (O = ΩZ)
in Figure 8.18b; for apodization and image reconstruction (O = ΩA) in Figure 8.18c; for
image reconstruction and image smoothing (O = SΩ) in Figure 8.18d; for zero filling,
apodization, and image reconstruction (O = ΩAZ) in Figure 8.18e; for apodization, image
reconstruction, and image smoothing (O = SΩA) in Figure 8.18f; for zero filling, image re-
construction, and smoothing (O = SΩZ) in Figure 8.18g; and for zero filling, apodization,
image reconstruction, and image smoothing (O = SΩAZ) in Figure 8.18h. All correlation
images are on the same intensity scale, ±1 with the same color bar for the correlations given
in Figure 8.18i.

Note the differences in color and pattern between the various processing-induced cor-
relations. It should be noted that ΩΩ′ = 1

NxNy I2NxNy and that only reconstruction does
not induce a correlation between voxels. When zero filling is performed, there is an ex-
tended sinc ripple correlation structure in Figures 8.18b, e, g and h. When image smooth-
ing is applied, there is a central circular region of strongly induced correlation between the
voxels. If one also thinks about what a combination of two individual operators in Fig-
ures 8.18b–d would look like, you can rationalize their combination in Figures 8.18e–g. It is
also interesting to match the operators in Figure 8.16 to these correlations in Figure 8.18
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FIGURE 8.18
Modified correlations from image processing.

to see that when the operators appear generally similar, the induced correlations are also
generally similar. The Nyquist ghost correction in Section 8.3 also does not induce a corre-
lation in and of itself.

Additional k-space operators could be or have been developed for the remaining k-
space processing operations in Table 8.1. Non-Cartesian gridding is a process where k-
space is originally not on the Cartesian grid, such as the spiral trajectory (13) or polar
sampling (14). Cartesian gridding is a linear process and a Cartesian gridding operator C
could be developed to bring this irregularly measured data to the rectangular grid. Motion
correction is a process to adjust for minor subject movement over time. In a rigid body
transformation, an individual image is translated and rotated to match another image.
Motion correction is a linear process and an operator M could be developed to examine
its statistical properties. Ramp sampling is a process where the frequency encoding lines of
k-space (horizontal in examples in this chapter) are not flat but linearly angled toward the
next line to be measured. Ramp sampling interpolation estimates the angled k-space onto
horizontal lines. It was empirically found that ramp sampling interpolation induces a local
sinc type correlation between the voxels (15) but it is linear and a matrix operator could be
developed. Homodyne interpolation is a process where the Hermitian property of k-space is
utilized. Half of the k-space array is measured plus a little bit more, called over-scan lines,
and the remaining portion is interpolated (16). It was shown that Homodyne interpolation
does not change the image mean or correlation, but does increase voxel variances (11) and
produces a purely real-valued image.

The AMMUST framework was utilized to examine the effects of in-plane (IP) k-space
subsampling and image reconstruction with the SENSE (SENSitivity Encoding) (17) and
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also the GRAPPA (GeneRalized Autocalibrating Partial Parallel Acquisition) (18) pro-
cedures. In the IP SENSE and GRAPPA reconstruction procedures, lines of k-space are
skipped, which results in aliased reconstructed images. Additional full scans are measured,
and with SENSE, the images are unaliased in image space with computed coil sensitivities
while with GRAPPA, the missing lines of k-space are interpolated using a kernel. It was
found that the use of SENSE and coil sensitivities induces a correlation between previously
overlapping voxels (19) and that the use of GRAPPA with kernel interpolation also induces
a correlation between previously overlapping voxels (20). These in-plane parallel image re-
construction procedures induce long-range correlations between the corresponding voxels
in the previously overlapping image sections and additional image processing induces local
correlation around these voxels. Care needs to be taken when interpreting these statisti-
cal results after either SENSE or GRAPPA in-plane acceleration reconstruction. Another
avenue of image reconstruction that has been increasing in prominence is the selection of
multiple slices for measurement resulting in k-space array images that are the sum of the
arrays for the multiple slices. The measurement and separation of multiple overlapping
slice images through-plane (TP) is called simultaneous multi-slice (SMS). The SENSE and
GRAPPA unaliasing procedures are being applied TP and overlapping slice images sepa-
rated. Since the same math and algorithms are being applied through-plane as in-plane, it
is strongly believed that the same type of correlations will be induced through-plane into
the separated slices and local correlations accentuated with image processing.

The effects of the remaining image space processing operations, have not been fully
explored. Static B0 correction has been examined in simulations (21) but not for spatial
statistical properties. Global normalization (22) and image registration (23) have yet to be
examined and quantified. It is suspected that global normalization and image registration
will induce a correlation between the voxels, but this has not been demonstrated. The quan-
tification of image registration and global intensity normalization will provide an immense
amount of knowledge to the field of fMRI as they are very common processing operations.

The AMMUST image processing framework was expanded (24) to stack k-space vectors
from a time series of images, have a much larger matrix K of k-space processing to include
different processing on each k-space vector, have a much larger matrix R that included
reconstruction of each of the processed k-space vectors, and a much larger matrix I for
processing on each of the reconstructed image vectors, then a matrix T that included first
a permutation matrix so that the data is ordered by voxel and not by image along with a
matrix that performs potentially different filtering of each of the time series as O = TIRK.
It was found that time series processing such as frequency filtering induces a temporal
correlation in voxel time series.

It was shown that different processing pipelines yield images with means and correlations
that are modified in various ways including induced local correlation. The null hypothesis
of no correlation between voxels is no longer valid when processing is involved. With the
statistical properties of our image data changed in a known quantifiable manner, the pro-
cessing operation matrices should be able to be incorporated into a statistical model for
improved estimation and inference.

8.5 Additional Topics and Discussion

There are many topics that naturally arise from image reconstruction and processing. In
this section, activation from complex-valued time series will be briefly described followed
by a general discussion of the chapter.
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FIGURE 8.19
Complex-valued signal changes for activation.

8.5.1 Complex-Valued fMRI Activation

Since the image reconstruction methods yield complex-valued images, the time series within
each voxel are also complex-valued. Models have been developed to detect three differential
task-related changes in complex-valued fMRI time series.

Within complex-valued time series, there are three possible nonzero signal changes as
shown in Figure 8.19. Figure 8.19a depicts a signal change only in the magnitude with a
constant phase (CP), Figure 8.19b depicts a signal change in both the magnitude and phase
(MP), and Figure 8.19c depicts a signal change only in the phase with a constant magnitude
(CM). A CP activation model has been developed to detect statistically significant changes
in the magnitude while specifying the phase is constant (25). An MP activation model has
been developed where the full complex-valued (real-imaginary) data is utilized to detect
statistically significant changes in both the magnitude and phase (26, 27).

For each voxel, the complex-valued measurement yt at time t has been described as

yt = (ρt cos θt + ηRt) + i(ρt sin θt + ηIt)

ρt = x′tβ = β0 + β1x1t + ...+ βq1xq1t

θt = u′tγ = γ0 + γ1u1t + ...+ γq2xq2t (8.23)

where t = 1, . . . , n, (ηRt, ηIt)
′ ∼ N (0,Σ), x′t is the tth row of an n× (q1 + 1) design matrix

X for the magnitude, u′t is the tth row of an n× (q2 + 1) design matrix U for the phase, and
Σ = σ2I2, while β and γ are magnitude and phase regression coefficient vectors respectively
(26). Note that a separate design matrix U for the phase has been incorporated but X and
U can be the same.

The usual fMRI activation model is a magnitude-only (MO) model where the phase
images (and hence phase time series) are discarded (1). The MO model has been shown
to be equivalent to a complex-valued activation model with unrestricted phase (28). A
phase-only (PO) activation model, where the magnitude images (and hence the magnitude
time series) are discarded, has been shown to detect statistically significant activation (12).
When the phase images are discarded for the MO model, the MO model is not able to
distinguish between CP signal changes in Figure 8.19a or MP signal changes in Figure 8.19b
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because it does not have rotational phase information. Similarly, when the magnitude images
are discarded, the PO model is not able to distinguish between CM signal changes in
Figure 8.19c or MP signal changes in Figure 8.19b because it does not have lengthening
magnitude information.

Voxel time series after image reconstruction are complex-valued. Discarding the phase
half of the data, as is generally done with the usual magnitude-only model, may not be opti-
mal in terms of statistical modeling and detection of biological processes. Future statistical
analyses should utilize the full complex-valued fMRI data, and there are many opportunities
for the discovery of biological phenomenon such as oxygenation changes in the vasculature
(29, 30) or direct detection of neuronal currents (31, 32).

8.5.2 Discussion

In this chapter, the foundations and fundamentals of image reconstruction and image pro-
cessing have been examined. In Section 8.2, the one- and two-dimensional discrete forward
and inverse transformations were discussed. Knowledge of the Fourier transform is essential
to understanding the original k-space measurements taken by the MRI scanner. In Sec-
tion 8.3, the signal equation and the traversal of k-space along a trajectory was explained
with the use of a pulse-sequence diagram so that the process of original k-space measure-
ment could be understood. Also in Section 8.3, the raw unprocessed k-space measurements
were described along with the very important Nyquist ghost correction. In Section 8.4, the
two-dimensional discrete inverse Fourier transform process for image reconstruction was
written in terms of an isomorphism so that it could be utilized to examine and quantify the
statistical effects of reconstruction and image processing. It was demonstrated that some
common fMRI processing steps induce local correlation and it was described that other
reconstruction techniques induce long-range correlations. In Section 8.5, additional related
topics of complex-valued activation for the reconstructed complex-valued images.

In summary, there are many processes performed on fMRI data before typical analysis,
generally with no knowledge retained about what the processing was. It is hoped that
knowledge of processing operations can be utilized in the statistical analysis of fMRI data.
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