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Purpose: Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant
obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by
simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates
the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal
reduction in scan time and activation statistics in fMRI studies.
Materials and methods: When the combined k-space array is inverse Fourier reconstructed, the resulting
aliased image is separated into the un-aliased slices through a least squares estimator. Without the
additional spatial information from a phased array of receiver coils, slice separation in SPECS is
accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach
of incorporating reference calibration images in an orthogonal Hadamard pattern.
Result: The aliased slices are effectively separated with minimal expense to the spatial and temporal
resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is

increased, in a bilateral finger tapping fMRI experiment.
Conclusion: The SPECS model incorporates calibration reference images together with coefficients of
orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no
residual artifacts and functional activation detection in separated images.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In functional MRI (fMRI), fluctuations in the BOLD signal are
observed in different regions of the brain through a discrete time
series of images. Traditionally, each slice of the volume is excited
individually, with enough data to reconstruct an image for that slice
measured in a single k-space readout. To improve the temporal
resolution of fMRI data, parallel MRI (pMRI) models [1–3] perform
an in-plane acceleration within each slice by omitting rows of the
spatial frequency measurements. As these methods offer a reduction
in scan time, this process is still time consuming; it is possible to
simultaneously magnetize multiple slices at once, measuring
sufficient data in a single k-space readout to be reconstructed into
a single aliased image that represents a combination of the slices.
When acquired with multiple coils, such an aliased image can be
separated using coil sensitivity profiles for spatial localization, but
themethod outlined in this manuscript enables separation of a single
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aliased image acquired by a quadrature coil into multiple complex-
valued fully acquired images.

Significant interest has grown in the simultaneous acquisition of
multiple slices in a volume through simultaneous multi-slice (SMS)
imaging techniques. Initial SMS studies presented a means of
separating two slices that were simultaneously acquired by a single
coil [4,5]; these studies were later extended to separate multiple
slices simultaneously acquired by multiple coils [6–14]. At high
acceleration factors, coil sensitivities do not have sufficient informa-
tion to determine in which of the un-aliased voxels a BOLD signal
increase occurred, and thus inter-slice signal leakage could spread
the activation to the previously aliased voxels. Efforts have been
made to characterize and alleviate inter-slice signal leakage in
separated slices in the context of multi-coil SMS models [15–17].
With a single channel quadrature coil, magnitude-only models for
separating simultaneously encoded slices have been investigated,
although these models are constrained to only separating two slices
[14,18–21]. These magnitude-only SMS reconstruction techniques
are conceptually similar to phase constrained in-plane acceleration
methods [22,23], but it has been well documented that the judicious
use of appropriately characterized magnetization phase can vastly
improve the un-aliasing process in parallel imaging [22–24].
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Additionally, a recent line of research has illustrated that utilizing
images in a time series with both magnitude and phase offers
improved fMRI activation statistics [25–28] over those achieved
through the gold standard magnitude-only models.

The un-aliasing technique outlined in this manuscript performs a
Separation of Parallel Encoded Complex-valued Slices (SPECS)
simultaneously excited by a single channel quadrature coil [29].
The SPECSmodel first addresses the inter-slice signal leakage in fMRI
data by simultaneously separating multiple acquisitions of aliased
slices in which the phase of the various slices is systematically
shifted as done with the blipped-CAIPI model [30]. With a single
channel quadrature coil model, implementing a shifted FOV in the
aliased time-series acquisition scheme improves slice separation
from the greater variability among signal in the aliased voxels.
Secondly, the SPECS reconstruction technique reduces inter-slice
signal leakage from the un-aliasing process by incorporating boot-
strap-sampled calibration images in the time-series separation
algorithm. The shifted FOV acquisitionwith the SPECS reconstruction
allows for multiple acquisitions with unique aliasing patterns, and
for the separation of more than two simultaneously encoded slices
acquired with a single quadrature coil. The SPECS approach increases
the rate of observing brain function, while minimizing inter-slice
signal leakage and placing functional activation in fMRI data.

2. Theory

To outline the SPECS model, the orthogonal separating matrix is
presented for a single aliasing pattern in which no shift has been
applied during acquisition. The model is then expanded to
simultaneously separate multiple slices with unique phase shifts,
such that various aliasing patterns exist for each voxel. The statistical
reasoning behind the mechanism of reducing inter-slice signal
leakage in SPECS through incorporating a bootstrapmean calibration
image is also presented.

2.1. Image aliasing

For an acceleration factor of A = NS, NS slices are acquired
simultaneously in a single aliased image using a single coil. Consider
a single voxel in the same spatial location across NS slices. The voxel
value in the zth slice is complex-valued, and the true noiseless voxel
value is denoted by yz = βRz + iβIz, where βRz and βIz are the true
real and imaginary components. Each complex-valued aliased voxel,
is described as the sum of the real and imaginary components with
added complex-valued measurement error,

aR
aI

� �
¼ 1;…;1 0

0 1;…;1

� �
βR1;…;βRNS

;βI1;…;βINS

� �T þ εR
εI

� �
:ð1Þ

Eq. (1) may also be written as a = (I2⊗XA)β + ε, where a is 2 × 1
vector representing the observed real and imaginary aliased image
voxel values, I2 is the 2 × 2 identity matrix, XA is a 1 × NS vector of
ones, and β is a 2NS × 1 vector representing the real and imaginary
true fully acquired voxel values for the NS images. The measurement
error, ε, is a 2 × 1 vector with a zero mean, E(εR,εI)T = 0, and a
covariance of cov(εR,εI)T = σ2I2.

To separate the NS aliased slices, a least squares estimation results
in a solution of the form β̂=(I2⊗XA

−1)a. However, since the aliasing
matrix in Eq. (1), (I2⊗XA), represents a system of two equations with
2NS unknowns, it is neither square nor invertible, and thus a unique
solution for β cannot generally be found. One proposed solution
[11,14] is the pseudo-inverse [31], which provides a unique solution
in the least squares sense, but not necessarily the correct solution. In
this manuscript, we present a novel means of improving the rank of
the designmatrix in Eq. (1) by incorporating orthogonal polynomials
with XA, such that the resulting system of equations is invertible and
can be used to separate two or more aliased slices acquired with a
single coil.

2.2. Artificial aliasing of the calibration reference images

As with all pMRI and SMS reconstruction models, the separation
of aliased voxels is performed using additional calibration measure-
ments. In most pMRI studies, additional localized spatial information
is drawn from these measurements to determine coil sensitivity
profiles. For a least squares separation in these models, the number
of coils must exceed the number of aliased voxels to achieve a full
rank unaliasing matrix. In SPECS, this constraint is relaxed with a
single channel quadrature coil, since the additionally acquired
calibration measurements are used for both spatial localization in
the separation process and improving the rank of XA.

Consider a time series of length m fully sampled calibration
images for the NS slices. At time point t, a single voxel in slice z of the
calibration images is denoted by νzt = (μRz + iμIz) + (ηRz,t + iηIz,t),
where μRz and μIz, are the true real and imaginary components, while
ηRz,t and ηIz,t denote the real and imaginary components of the
measurement error, with a mean of E(ηRtT ,ηItT)T = 0 and a covariance
of cov(ηRtT ,ηItT)T = σ2INS. The mean of the m calibration images for a
voxel values in the same location across NS slices is written into a
sum of two real-valued vectors,

v ¼ vR
vI

� �
¼ vR;1;…; vR;NS

; vI1;…; vI;NS

� �T
; ð2Þ

where vR and vI denote NS × 1 vectors with the mean real and
imaginary component of the NS voxel values. The mean calibration
vector, v , is incorporated into the SPECS model with an artificial
Hadamard aliasing scheme.

The aliasing process outlined in Eq. (1) represents an under-
determined systemof two equations and 2NS unknowns. Tomake the
aliasing matrix, (I2⊗XA), in Eq. (1) square and invertible, (NS − 1)
rows are added to both XA and a. The SPECS approach constructs an
(NS − 1) × NS artificial aliasingmatrix, C, in a Hadamard pattern. The
artificial aliasing matrix, C, represents (NS − 1) orthogonal ways the
true voxel values in the NS slices could be aliased, and is combined
with XA to form a new aliasing matrix (I2⊗[XA

T,CT]T). The vector a, in
Eq. (1), is converted from the 2 × 1 vector of observed aliased voxel
values to a 2NS × 1 vector, y. Now, both observed aliased voxel values
and artificially aliased voxel values drawn from the mean calibration
vector, v, in Eq. (2) are represented by
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In Eq. (3), the added error vector is the measurement error of the
observed aliased voxels, ε = (εR,εI)T, and the artificially aliased
mean calibration images, η = (CηRT, CηRT)T. However, since the
artificially aliased voxels, CνR and CνI , in the vector y are obtained
from mean calibration images, the terms CηR and CηI in Eq. (3) are
replaced by (NS − 1) × 1 vectors of zeros.

2.3. Complex-valued image separation model

Since the matrix X = [XA
T,CT]T is orthogonal and full rank, the

complex-valued images of the NS aliased slices can be separated by
the least squares estimate β̂=(XTX)−1XTy, or

β̂ ¼ I2⊗ XA
TXA þ CTC

� �−1
XA

T
;CT

� �� �
y: ð4Þ



Fig. 1. Aliasing NS = 4 slices (a) without applying any FOV shift, and (b) applying a FOV shift of (j − 1)FOV/NS to slice j = [1,..,NS = 4] prior to aliasing.
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Note, the term CTC acts as a regularizer for a matrix inverse, and
the expected value of the least squares estimate is derived in
Appendix A. Alternatively one can view this as a Bayesian procedure
where the separated images are a weighted combination of prior and
likelihood means.

The covariance of the measurement error in Eq. (1), cov(εR,εI)T =
σ2I2, assumes no covariance between aR and aI with a constant
variance of σ2 for both aR and aI. If the same artificially aliased
calibration voxels, CνR and CνI , are used to separate each aliased
image in the time-series, then there is no variability and the
covariance of the measurements in the vector y is of the form

Γ ¼ cov yð Þ ¼ I2⊗

σ2 0 ⋯ 0
0 τ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ τ2

2
664

3
775 ð5Þ

where τ2 = 0. When the estimator in Eq. (4) is calculated using
Eq. (5) with τ2 = 0, the covariance of β̂ is

cov β̂
� �

¼ X−1
� �

Γ X−1
� �T ¼ σ2

N2
S

I2⊗ JNS

� �
: ð6Þ

where JNS is a NS × NS matrix of ones [32]. When the covariance
structure in Eq. (6) is converted to a correlation matrix, it becomes

corr β̂
� �

¼ I2⊗ JNS
: ð7Þ

The result in Eq. (7) indicates that the real and imaginary values in β̂
are perfectly correlated with themselves, and there is no correlation
between the real and imaginary values in β̂.

The artificial correlation induced in β̂ with Eq. (7) can be
eliminated through a bootstrapping adaptation. So if NS calibration
images are aliased with the artificial aliasing matrix, C, then the
artificially aliased measurements will have a variance of σ2, rather
than 0, scaled by the sum of squares of the rows in C, as described in
Appendix B. If an NS × NS Hadamard coefficient matrix is chosen for
X, where the matrix C is comprised of the lower NS − 1 rows of X,
then the sum of squares for each row in C will be NS. For a
bootstrapping approach with Hadamard coefficients, one can
therefore average NS randomly selected calibration images in v to
obtain τ2 = σ2, such that the covariance in Eq. (5) becomes

Γ ¼ cov yCð Þ ¼ σ2I2NS
: ð8Þ

As the covariance of the SPECS model with a bootstrapping approach
in Eq. (8) is strictly diagonal, the correlation structure induced in β̂
becomes an identity matrix. Thus, no correlation is induced from the
separation process, and inter-slice signal leakage is minimized.

3. Methods and materials

To illustrate an application of the SPECS model, a simulation was
performed in which Nz = 8 slices of size 96 × 96 of a human brain
phantom and experimental data, were aliased together with a single
quadrature coil (assuming a homogeneous B1-field).

For a data set with no acceleration, A = 1, a single un-shifted
acquisition of each slice was simulated. For A = 2, the Nz = 8 slices
are acquired in Np = 2 packets each containing Ns = 4 slices in
Nacq = 2 acquisitions. For A = 4 the Nz = 8 slices are acquired in
Np = 1 packet containing Ns = 8 slices in Nacq = 2 acquisitions. The
term packets refers to the number of aliased slice groups, i.e. Np = 2
and Nz = 8 correspond to two packets with four slices in each
packet. The details of incorporating multiple acquisitions with
unique FOV shifting patterns in the SPECS model are described in
Appendix B. For acquisitions acq = 1,…,Nacq, slices j = 1,…, Ns were
shifted by (acq − 1)(j − 1)Δ in the PE dimension, where Δ = 96/
Ns voxels. This scheme places no FOV shift on the first acquisition
while the remaining Nacq − 1 acquisitions are subject to different
shifting schemes similar to those presented in Fig. 1.



Fig. 2. A diagram outlining the data acquisition and processing pipeline to implement the SPECS model in four main steps.
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3.1. Phantom data example

A simulated fMRI phantom data set was generated with task in a
block designwith an initial 16 s rest followed by 22 epochs of 16 s on
and 16 s off using MATLAB (The Mathworks, Natick, MA, USA) to
mimic a single channel quadrature head coil. The data were
generated with eight axial slices that are 96 × 96 in dimension. A
noiseless time series was generated for each slice with a theoretical
T2⁎ weighted phantom similar to [33]. The initial T2⁎ weighted
phantom has values between 0 and 1, and was generated with the
echo time (TE) and effective echo spacing (EESP) used during the
acquisition of the experimental data. A signal-to-noise ratio (SNR) of
13 and contrast-to-noise ratio (CNR) of 0.25 values were used for
this simulation, which were also based upon the experimental
human data. The magnitude of the phantom was scaled to 13 in the
grey matter, and the phase in each slice was set to a constant value
within the brain phantom that varied from zero to π from slice eight
to slice one.

A block-design of task activity was simulated in one unique
4 × 4 voxel square region of interest (ROI) rotating clockwise for
each of slice. The magnitude within the ROI is increased by 0.25 for
16 TRs and then returns to baseline for the following 16 TRs. A main
goal of the SPECS model is faster observation of brain function; to
illustrate this mechanism time-series of 180, 360, and 720 time
repetitions (TRs) are generated for the accelerations, A = 1, A = 2,
and A = 4, respectively. A time series of 16 calibration images, with
no simulated task, was generated for each slice. For each of the Nacq

acquisitions, the true noiseless time series of each slice was
appropriately shifted in the PE dimension before the slices were all
aliased together. Standard Gaussian noise was added to the real and



Fig. 3. Aliased phantom acquisitions for A = 2; the Nz = 8 slices are acquired in Np = 2 packets, (a) the magnitude and phase for packet 1, and (b) the magnitude and phase fo
packet 2, each containing Ns = 4 slices in Nacq = 2 acquisitions.
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imaginary parts of each TR of the aliased images and the calibration
images. The aliased images were then separated using the SPECS
model with Hadamard coefficients for the matrix C in Eqs. (4) and
(B.1). The separated images were smoothed with a full-
width-at-half-max (FWHM) of two voxels. Finally, fMRI activation
was calculated in each separated voxel using the complex-valued
fMRI model in [25].

3.2. Experimental data example

An experimental fMRI human data set was acquiredwith bilateral
finger tapping in a block design with an initial 16 s rest followed by
22 epochs of 16 s on and 16 s off using a 3.0 T Discovery MR750 MRI
scanner (General Electric, Milwaukee, WI) with a GE single channel
quadrature head coil. The data were acquired with ten interleaved
axial slices that are 96 × 96 in dimension and 4 mm thick. The two
most inferior slices were omitted so that there were eight utilized.
The imaging parameters included a 24.0 cm FOV, a TR/TE of 1000/
39 ms, a flip angle of 25°, an acquisition bandwidth of 111 kHz, and
an effective echo spacing of 0.672 ms. The phase encoding direction
was oriented as posterior to anterior (bottom to top in images). In
image reconstruction, images were Nyquist ghost corrected using
the three navigator echoes method [34] and dynamic B0 field
corrected using the TOAST single echo technique [33,35]. The phase
images were further corrected by subtracting a local second order
polynomial fit to their difference from the mean. The acquisition and
processing pipeline for experimental data is described in Fig. 8.

Over the course of 22 epochs, bilateral finger tapping was
performed in a block-design to elicit functional activation in the
sensorimotor area. It was found that the SNR in activated regions
was about 13 and CNR was about 0.25, which were utilized for the
previous simulation. For each of the Nacq acquisitions, the measured
time series of each slice was appropriately shifted in the PE
dimension before the slices were all aliased together. A main goal
of the SPECS model is faster observation of brain function, to
illustrate this mechanism time-series of 180, 360, and 720 TRs are
used for the accelerations, A = 1, A = 2, and A = 4, respectively.
The first 16 images of the time series, when no task is performed,
were used as the calibration images. The aliased images were then
separated using the SPECS model with Hadamard coefficients for the
matrix C in Eq. (4) and (B.1). The separated images were smoothed
r

with a FWHM of two voxels. Finally, fMRI activation was calculated
in each separated voxel using the complex-valued fMRI model in
[25]. The data acquisition and processing pipeline to implement the
SPECS model is outlined in the diagram in Fig. 2.

4. Results

4.1. Phantom data example

In Fig. 3, the images for the first aliased TR to be separated are
presented when A = 2. In Fig. 3(a) are the magnitude and phase as
columns for the first acquisition in the first row and the second
acquisition in the second row for packet 1. In Fig. 3(b) are the
magnitude and phase as columns for the first acquisition in the first
row and the second acquisition in the second row for packet 2. The
magnitude and phase of the separated images for the calibration
images (A = 1) and A = 2 and 4 are presented in Fig. 4. In Fig. 4(a)
the fully measured averaged calibration images are presented for all
8 slices that are used to separate the first TR of aliased images. In
Fig. 4(b) and (c) are all 8 of the separatedmagnitude and phase slices
for the first TR in the aliased time series which were separated from
the Nacq = 2 and Nacq = 1 aliased magnitude and phase images in
Fig. 3 by inserting Eq. (B.1) into Eq. (4). The slices that are initially
aliased into packet 1 and packet 2 are distinguished in Fig. 4(b) with
the white numbering scheme. There are no signs of residual aliasing
artifacts in any of the separated images. The incorporation of
artificially aliased calibration images makes the system of equations
in Eq. (3) over-determined, allowing such accelerations in data
acquired with a single coil.

After slice separation, fMRI activation was calculated in each voxel
of all separated slices using the complex-valued model in [25]. The
z-scores denoting activation statistics are presented in Fig. 5 with the
ROIs containing truly active voxels highlighted by pink squares in each
slice. The activation maps were thresholded at a z value of 3.5, and the
noise outside thephantomwasmasked. Thewhite numbering for each
slice in Fig. 5 corresponds to the packet numbers for each acceleration.
Any cluster of “active” voxels that are outside of these squares denotes
false positives resulting either from the added noise or from residual
effects of aliasing. In Fig. 5(a) are the activation maps for an
acceleration factor of A = 1, in Fig. 5(b) are the activation maps for
an acceleration factor of A = 2, while in Fig. 5(c) are the activation



Fig. 4. For the first TR, the SPECSmodel separates themagnitude and phase images acquired by a single coil, as shown in Fig. 3, (a) with themean of randomly selecting calibration
slices into eight magnitude and phase imageswith no visual residual aliasing artifacts for (b) A = 2, and (c) A = 4. Thewhite numbering scheme in (b) and (c) corresponds to the
packet the slice was initially aliased into.
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maps for an acceleration factor of A = 4. The activation statistics in
Fig. 5 show strong clusters of activation within the truly active ROIs.
This is because the upper NSNacq equations of the aliasing matrix in
Eq. (B.1) represent the aliasing structure of the acquired aliased voxel
values, in which the increase in BOLD signal strength is recorded. The
activation statistics also increase as acceleration increases, since a
higher sampling rate corresponds to a larger sample size and
strengthened statistical significance.

As such, the undetermined system of 16 equations (in the case of
A = 4 with Nacq = 2 acquisitions) and 82 unknowns is able to
separate most of the activation statistics in the separating process,
but not all of them. In Fig. 5(c), one can observe some minor areas of
false activation in the A = 4 case. The separation of activation is
improved when Nacq = 2 acquisitions are obtained in the case of
A = 2, where one can see that the additional clusters of false
positives are reduced compared to the case of A = 4. With the
exception of only a few clusters of false positives in A = 2, the
activation statistics for all 8 slices closely resemble the true structure
noted when no acceleration is performed with A = 1.

4.2. Experimental data example

In Fig. 6, the images for the first aliased TR to be separated are
presented when A = 2. In Fig. 6(a) are the magnitude and phase as
columns for the first acquisition in the first row and the second
acquisition in the second row for packet 1. In Fig. 6(b) are the
magnitude and phase as columns for the first acquisition in the first
row and the second acquisition in the second row for packet 2. The
magnitude and phase of the separated images for the calibration
images (A = 1) and A = 2 and 4 are presented in Fig. 7. In Fig. 7(a)
the fully measured averaged calibration images are presented for all
8 slices that are used to separate the first TR of aliased images. In



Fig. 5. With the phantom simulation, fMRI activation statistics estimated with a
complex-valued model in each voxel of each slice after separating 8 aliased slices with
the SPECS model. Activation statistics are presented for data reconstructed from (a
eight acquisitions and eight packets, A = 1, (b) two acquisitions and two packets
A = 2, and (c) two acquisitions and one packet, A = 4. Pink squares indicate region
of true functional activity in slices. The white numbering scheme corresponds to the
packet the slice was initially aliased into.
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,
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Fig. 7(b) and (c) are all 8 of the separatedmagnitude and phase slices
for the first TR in the aliased time series which were separated from
the Nacq = 2 and Nacq = 1 aliased magnitude and phase images in
Fig. 6 by inserting Eq. (B.1) into Eq. (4). The slices that are initially
aliased into packet 1 and packet 2 are distinguished in Fig. 7(b) with
the white numbering scheme. As with the phantom simulation,
there are no signs of residual aliasing artifacts in any of the separated
images. The incorporation of artificially aliased calibration images
makes the system of equations in Eq. (3) over-determined, allowing
such accelerations in data acquired with a single coil.

After slice separation, fMRI activation was calculated in each
voxel of all separated slices using the complex-valued model in [25].
The z-scores denoting activation statistics are presented in Fig. 8
with expected activation being in the sensorimotor area of slices. All
activation maps were thresholded at a z value of 3.2, and the noise
outside the brain was masked. The white numbering for each slice in
Fig. 8 corresponds to the packet numbers for each acceleration. Since
adjacent slices were always in different packets, we can see the true
activation which did not originate from the separation process. The
data have beenminimally processed to prevent induced correlations,
thus there are motion artifacts around the edges of the brain and
within the CSF apparent in the activation maps. In Fig. 8(a) are the
activation maps for an acceleration factor of A = 1, in Fig. 8(b) are
the activation maps for an acceleration factor of A = 2, while in
Fig. 8(c) are the activation maps for an acceleration factor of A = 4.
The activation statistics in Fig. 8 show strong clusters of activation
within the truly active regions of interest. This is because the upper
NSNacq equations of the aliasing matrix in Eq. (B.1) represent the
aliasing structure of the acquired aliased voxel values, in which the
increase in BOLD signal strength is recorded. As in the phantom
simulation, activation statistics also increase as acceleration in-
creases, since a higher sampling rate corresponds to a larger sample
size and strengthened statistical significance.

In the A = 1, when no acceleration is performed, activation is
observed in the motor cortex most notably in slice 2, and also seen in
slice 1 and slice 3. Additional “active” voxels that are outside of these
slices, not observed in the A = 1 case, denote false positives resulting
either from the added noise or from residual effects of aliasing. With
increased acceleration, the activation statistics in Fig. 8 show
activation within the motor cortex and several additional clusters
of “active” voxels within inferior slices to the motor cortex. In
Fig. 8(a), the activation statistics are presented for all 8 sliceswhenno
acceleration is performed with A = 1. The separation of activation is
reduced when Nacq = 2 acquisitions are obtained in the case of A =
2. Although, not as significant as observed in the phantom data, there
is an increase of activation and regions of activation, in comparison of
A = 2 in Fig. 8(b) to A = 4 in Fig. 8(c). Despite the increased
activation from A = 2 in Fig. 8(b) to A = 4 in Fig. 8(c), there is also
more residual noise outside the motor cortex in A = 4.

5. Discussion

As the 3-dimensional array of spatial frequencies used to
generate each volume of images in the time series is not acquired
instantaneously, acquisition schemes often place constraints on both
the spatial and temporal resolution of the acquired data. There is a
lack of techniques offering a true time reduction in data acquisition
while preserving the BOLD signal, for faster observation of brain
function in fMRI studies. When fMRI data are acquired with
multi-coil parallel MRI models, the number of coils is typically
required to greatly exceed the acceleration factor by which the data
are sampled in order for the inverse problem to be solved. In these
models the calibration data accurately separate the structural
images; it is challenging to separate functional activity in the
aliased images.



Fig. 6. Aliased experimental data acquisitions for A = 2; the Nz = 8 slices Magn Reson Imagingare acquired in Np = 2 packets, (a) the magnitude and phase for packet 1, and (b)
the magnitude and phase for packet 2, each containing Ns = 4 slices in Nacq = 2 acquisitions.
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Acquiring various acquisitions of the same aliased slices in which
the different slices are shifted in the PE dimension, allows multiple
ways in which each voxel in a slice can be aliased with other voxels
of other slices. The use of multiple acquisitions in the SPECS model
therefore enables one to achieve realistic accelerations in data
acquisition by factors of up to A = 4, while simultaneously
improving the power of determining in which of the aliased slices
an increase in the BOLD signal amplitude originated. Although,
inter-slice signal leakage is visible in the reconstructed images in
A = 4, and for a single quadrature coil acquisition an acceleration of
A = 2 is recommended for the SPECS model. The model reduces
inter-slice signal leakage through eliminating correlation between
separated slices with the bootstrap sampling to uniquely unalias
each TR. As observed in Fig. 8(c), a potential weakness of themodel is
the aliasing artifacts present in separated slice images for A = 4.
While the phantom simulation only had slight inter-slice signal
leakage corresponding to activation locations from other slices, the
experimental data had motion artifacts across the separated slices.
The motor cortex was easily distinguishable despite the artifacts
with the increased acceleration. However, to achieve a higher
acceleration, incorporating a rigorousmotion correction operation in
the processing pipeline would be essential to detect activation. The
SPECS model outlined in this manuscript presents a novel means of
incorporating calibration images artificially aliased with coefficients
of orthogonal polynomials into the aliasing model, effectively
improving the rank of the aliasing matrix and enabling one to
separate multiple complex-valued images aliased together with only
a single coil.
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Appendix A

Since the separation process in Eq. (4) is not the inverse of the
aliasing process in Eq. (1), the statistical properties of the separated
images are not the same as those of the fully acquired images.
If the vector of observed and artificially aliased voxel values, y,
has an expected value of

E y½ � ¼ XAβR; CμRð ÞT ;XAβI ; Cμ Ið ÞT
� �T

; ðA:1Þ

where XAβR and XAβI are the true mean real and imaginary aliased
voxel values in the vector y, then the expected value of the voxels
separated through the estimator in Eq. (4) will be

E β̂
h i

¼ E X−1y
h i

¼ X−1E y½ �: ðA:2Þ

Since the data vector, y, in Eq. (A.1) contains both the acquired
aliased data and artificially aliased calibration data, the mean
separated voxels in Eq. (A.2) are effectively a weighted average of
the acquired and calibration measurements.

Appendix BUn-aliasing multiple FOV shifted acquisitions at once

The incorporation of calibration images into the SPECS model
enables the number of aliased then separated slices using Eq. (4) to
exceed the number of coils (in this case one) as the separatingmatrix
is now of full rank. However, should the BOLD signal amplitude
change in one or more of the voxels in y, the separation process may
not be able to determine fromwhich slice the increase originated. To
properly separate aliased slices while preserving the origin of
functional activations, it is necessary to observe multiple ways in
which each voxel can be aliased with other voxels. One way to
achieve this is to perform multiple acquisitions of aliased slices
where the phase of each slice is strategically varied in a technique
similar to the blipped-CAIPI model [30]. To illustrate this concept,
consider NS = 4 real-valued slices as in Fig. 1(a). The aliased images
in Fig. 1(a) and (b) are merely two different linear combinations of
the same voxel locations, represented by colored dots and spaced Δ
apart in the PE dimension, within each of the NS = 4 slices. Each of
the aliased voxel measurements in the figure on the left results from
a sum of the slices and can be separated using Eq. (4). Another
possible acquisition would be to apply a FOV shift of (j − 1)Δ to the
jth slice, whereΔ = FOV/NS, resulting in the aliased image illustrated
on the left of Fig. 1(b). Such a FOV shift can be performed on each



Fig. 7. For the first TR, the SPECSmodel separates themagnitude and phase images acquired by a single coil, as shown in Fig. 6, (a) with themean of randomly selecting calibration
slices into eight magnitude and phase images with no visual residual aliasing artifacts for (b) A = 2, and (c) A = 4. Thewhite numbering scheme in (b) and (c) corresponds to the
packet the slice was initially aliased into.
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slice by appropriately applying slice select gradient blips concur-
rently with the phase encoding (PE) blips in EPI [30].

To incorporate the FOV shift in the SPECSmodel, both the real and
imaginary components of the vector of true values, β, in Eq. (1) are
expanded to have NS = 4 sub-vectors (one for each slice) of the
NS = 4 voxel measurements equidistant spaced Δ apart within each
slice. Since NS = 4 voxel measurements are observed in each slice,
the aliasing matrix, XA1, corresponding to the first acquisition
aliasing pattern in Fig. 1(a), becomes a row-wise concatenation of
NS = 4 identity matrices of size NS × NS = 4 × 4. When applied to
the NS

2 × 1 vector β, the NS × 1 vector of aliased voxels is obtained
by a1 = XA1β + e1, where e1 is measurement error. To obtain the
vector of aliased voxels from the FOV shifted slices in Fig. 1(b), the
identity matrices that comprise X1 in Fig. 1(a) are individually
permuted in XA2 to achieve a linear combination of the true fully
acquired voxel values in β. Combining the Nacq = 2 acquisitions in
Fig. 1(a) and (b) creates a system of NSNacq = 8 equations with
NS

2 = 16 unknowns, rather than just one equation with NS = 4
unknowns. To further improve the separation, additional acquisi-
tions with the aliased slices shifted in unique patterns can be
obtained. The SPECS model builds a system of NSNacq equations and
NS

2 unknowns; increasing the Nacq sampling schemes improves the
placement of functional activations in the correct separated slice,
with an overall acceleration factor of A = NS/Nacq.

Incorporating multiple acquisitions

As the aliased voxels in vectors a1 and a2 in Fig. 1 are derived from
the NS = 4 aliased voxels spacedΔ apart in each of the NS = 4 slices,
it is necessary for the slice separation matrix in Eq. (4) to be



Fig. 8. With the experimental data simulation, fMRI activation statistics estimated
with a complex-valued model in each voxel of each slice after separating 8 aliased
slices with the SPECS model. Activation statistics are presented for data reconstructed
from (a) eight acquisitions and eight packets, A = 1, (b) two acquisitions and two
packets, A = 2, and (c) two acquisitions and one packet, A = 4. Pink squares indicate
regions of true functional activity in slices. The white numbering scheme correspond
to the packet the slice was initially aliased into.
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s

expanded to separating all NS
2 = 16 voxel values in β at once. To

generalize the model in Eq. (1) to having NS slices aliased together in
Nacq acquisitions, the vectors of aliased voxel values from each
acquisition are stacked into a single complex-valued vector, a =
[a1T,…,aNacq

T ]T, of length NSNacq. With the vector of true fully acquired
voxel values, β, comprised of NS sub-vectors of the NS voxel
measurements spaced Δ apart in the PE dimension within each
slice, a combined aliasing matrix for the Nacq acquisitions, X, can be
constructed through a column-wise concatenation of the aliasing
matrices for each acquisition in Fig. 1 into a single matrix, XA =
[XA1

T,…,XANacq
T ]T, of size NSNacq × NS

2. As shown in Fig. 1, the second
dimension of the aliasing matrices is comprised of NS permuted
identity matrices that describe which row of the NS values within a
slice is incorporated in the aliased values in a. To incorporate the
coefficients, C, from Eq. (3) into themodel withNacq N 1 acquisitions,
we denote the block of NS columns in X that correspond to slice j by
Xj, and the jth column of the matrix C by Cj. The matrix, C, in Eq. (3) is
replaced by [X1⊗C1,…,XNS⊗CNS] to create a new design matrix,

XA
C

� �
→

XA1
⋮

XANacq

X1⊗C1; ⋯ ;XNS
⊗CNS

2
664

3
775: ðB:1Þ

The matrix in Eq. (B.1) combines the aliasing patterns of the
observed measurements with the artificial aliasing patterns of the
calibration measurements, resulting in an NS

2Nacq × NS
2 aliasing

matrix. This over-determined system can therefore separate both the
anatomical structure of the aliased images and functional activation
and connectivity statistics. To complete the adaptation of Eq. (3) to
simultaneously separate Nacq N 1 acquisitions, the vectors νR and νI

are replaced by random calibration images that are shifted
retrospectively to correspond with the shifted acquisitions before
being artificially aliased with the matrix C.
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