
THE USE OF MATLAB TO INTRODUCE HIGH SCHOOL STUDENTS
TO COMPUTER PROGRAMMING AND

PROBLEM SOLVING

by

Kiersten Purves

An Essay submitted to the Faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

Milwaukee, Wisconsin

May 2012

1

Introduction

In this time of a down economy, falling national ranking in test scores for math and

science, and an ever increasing dropout rate of American students from degrees in the fields of

mathematics, engineering, and computer science, there is an overwhelming movement to

restructure the way in which STEM (Science, Technology, Engineering, and Mathematics)

courses are taught. The purpose of this paper is to outline ways in which MATLAB (matrix

laboratory, a programming language primarily used for numerical computing) can be integrated

into the high school mathematics classroom through a selection of suggested activities. (Note:

The activities outlined in this paper are mere suggestions and are not fully developed lessons.

Please refer to the Activities Appendix for in depth examples of how to use the suggested

activities to support mathematical thinking, STEM learning and the Core Standards for

Mathematical Practice). The intention is to introduce a wider scope of students to some basic

components of computer programming, identify ways in which mathematics and computer

programming are interdisciplinary and can be applied to real world problems, and strengthen

students’ problem solving skills through the study of the underlying algorithm of a program. In

preparation for my proposed restructuring at a personal classroom level, this paper looks at some

current movements in STEM and computer science education and the reasons behind them.

Additionally, this paper will discuss the state of STEM education and computer science at the

high school in which I teach, and reasons for integrating programming into the mathematics

classroom, specifically the choice of MATLAB.

In September of 2010, as a component of his campaign “Educate to Innovate” , President

Obama unveiled Change the Equation, a non-profit organization of business leaders and CEO’S

motivated to improve STEM education through efforts such as increasing student opportunities

2

in engineering and robotics competitions, and professional development for teachers in math and

the sciences. During his announcement of Change the Equation, President Obama made the

following statement (Sabochik, 2010):

“We’re here for a simple reason: Everybody in this room understands that our

nation’s success depends on strengthening America’s role as the world’s engine

of discovery and innovation. And all the CEOs who are here today understand

that their company’s future depends on their ability to harness the creativity and

dynamism and insight of a new generation. And that leadership tomorrow

depends on how we educate our students today -- especially in science,

technology, engineering and math.”

This statement clearly outlines a current concern and movement in today’s education system.

This sentiment was echoed in the December, 2011 release of Building a Science, Technology,

Engineering, and Math Education Agenda by the National Governors Association (Thomasian,

2011). This agenda, similar to Obama’s Change the Equation, focuses on strengthening STEM

education, and encouraged actions for improvement such as increasing the rigor in STEM

courses, and expanding math and science learning beyond the classroom.

The high school in which I teach is currently experiencing a dichotomy in its efforts to

strengthen STEM education. On one hand, the school promotes STEM education through its

involvement with Project Lead the Way (PLTW), offering four (4) rigorous courses in varying

engineering fields, and striving to connect the students and teachers in these courses with

community members who work in STEM fields. This attempt to create connections between

students, teachers, community members and local businesses models Change the Equation’s

effort to have American companies take a stake in the education of their future leaders. On the

other hand, the school has limited offerings in the computer sciences and has cut all instructor

led computer programming courses for the next year. The only opportunity a student has to be

http://www.nga.org/files/live/sites/NGA/files/pdf/1112STEMGUIDE.PDF
http://www.nga.org/files/live/sites/NGA/files/pdf/1112STEMGUIDE.PDF

3

exposed to computer programming is through an online course offered through the eAchieve

Academy – Wisconsin Online Opportunities. As an educator of mathematics, engineering and

life sciences, I feel it is important to offer cross-curricular opportunities in which students have

the chance to experience what computer programming is and how it can be applied to problem

solving in mathematics, science, and engineering.

 The choice of implementing programming in the high school mathematics classroom may

serve to kill two birds with one stone. First, it can offer an explanation to the age old

mathematics question of “who uses this stuff?” and garner interest through hands on learning by

allowing students a glimpse into the ways in which mathematics can be applied to different

disciplines through the use of computers. Secondly, it allows for a wide portion of the student

body to be introduced to some of the basics of computer science and computer programming. In

the 2009 Program for International Student Assessment, fifteen year olds from the United States

ranked 25
th

 out of 34 countries in their mathematics scores (Hechinger, 2010). Similar to

mathematics, the United States has fallen behind in producing students that are prepared to enter

and persist in computer science programs at the college level. In The New Educational

Imperative, (Stephenson, 2006, p.20) the CSTA (Computer Science Teachers Association) noted

the unsuccessful efforts of the U.S education system to implement a standardized study of

computer science:

“While other countries have designed and implemented national computer

science education programs in order to better prepare their students for the

increasingly competitive global economy, attempts to bring coherent computer

science education into U.S. high schools failed to address the need to instill a

fluent understanding of algorithmic thinking and problem solving, and to provide

exposure to software development using programing skills in U.S. students.”

4

This same report went on to outline guiding principles that are essential to high school computer

science. Of these principles, the following could be addressed by the process of introducing

basic programming in the high school mathematics classroom. These principles are as follows:

general capabilities and skills, problem solving and algorithmic thinking, integrative and

interdisciplinary knowledge, comprehensive programming, and gender differences and minority

issues. More specifically, the CSTA has defined general capabilities and skills to be the

development of practical skills independent of specific technology that foster lifelong learning

and adaptation, including written and oral communication. This principle could be addressed by

the inclusion of write-ups and/or presentations accompanying a student’s program, as well as the

student-to-student discussions had in the development of an algorithm for a program. The

algorithmic nature of mathematics lends itself to an algorithmic approach to programming,

which is also the focus of comprehensive programming where the emphasis is not only on the

coding, but on the underlying algorithm and its efficiency. The integration of programming as a

means to apply mathematics to different disciplines gives student an interdisciplinary view of

mathematics as well as programming, and since three years of math are required for graduation,

classes tend to be mixed in terms of gender and ethnicity as opposed to predominantly white

males.

 In order to offer opportunities for programming, a programming language must be

chosen. In the case of this paper the language of choice is MATLAB. One reason for this is that

there are multiple easily accessible ways to get help with MATLAB. MathWorks

(mathworks.com) is an excellent online source for help and tutorials, and the doc command in

MATLAB itself can be very helpful. Secondly MATLAB can easily interface with other main

programming languages such as Java and C++. It is widely used in academia, research and

5

industry, including the colleges and universities most often attended by students from this high

school. Lastly, MATLAB is frequently used in engineering courses and fields, so for a school

that strives to prepare students for college degrees in various engineering fields through PLTW,

it seems to be the programming language of choice.

MATLAB Activities for the High School Classroom

 The first section of activities is meant to accompany a junior level high school course in

advanced algebra and is comprised of two main divisions. The first division includes topics on

systems of linear equations, matrices, coded messages and transformations/translations and ways

in which these mathematical ideas can be explored by introducing the plot function and basic

matrix functions in MATLAB. The second division covers the natural number e and the golden

ratio, . These sections include a bit of historical background as it is likely that students are

unfamiliar with both and , and then use these topics to introduce the programming concept

of loops. The second section of activities is geared toward a course in AP Calculus offering a

programming challenge to students in approximations of derivatives and integrals. The final

section is a brief discussion of activities from Cleve Moler’s online text Experiments with

MATLAB which integrate mathematics and programming with the life sciences, and engineering.

Systems of Equations:

The plot function could be included in any unit at any time and may be an excellent way

to introduce students to MATLAB since plotting data points and graphing functions are concrete

topics that most high school juniors are familiar with and MATLAB outputs easy to understand

visual data. The early portion of a junior year algebra course covers review topics from

freshman algebra such as linear functions and solving systems of linear equations. In addition to

6

having students solve systems of linear equations algebraically and graphically by hand, the plot

function in MATLAB could be introduced and used to reinforce graphical solutions. As students

become familiar with the plot function and how to plot multiple functions on the same graph,

they could be introduced to various commands that can be used to enhance their plots such as

how to turn the grid on, add a title, change colors of individual lines, and adjust the axes of the

plot to obtain a better approximation of an intersection point.

The examples below use the following equations:

Through choice pairing we can demonstrate an independent system (), an inconsistent

system (), and a dependent system () with these equations. Notice that all

figures below demonstrate the use of the title command and selective coloring of individual

functions, while figure (1) also makes use of a grid and a scaling of the axes in order to pinpoint

the solution () (please see MATLAB Code Appendix (1) for matching code).

7

Figure (1)

Figure (2)

8

Figure (3)

Matrices:

 Another way to solve systems of linear equations is through the use of matrices.

Typically, most juniors in high school have had limited prior experience with matrices. At most

they may have learned that a matrix is a rectangular array of elements, where those elements

have been numerical values and some may have had some experience with adding and

subtracting matrices, but their familiarity usually ends there. Since MATLAB was originally

developed as a matrix calculator it can be a good format for students to explore basic properties

of matrices such as addition, subtraction, scalar multiplication and matrix multiplication.

Explorations might involve questioning what must be true of matrices that can be added or

9

subtracted, how to add or subtract matrices, when can two matrices be multiplied together, and

what matrix operations are commutative.

 For example, given the matrices listed below, students could be asked to perform various

calculations in MATLAB to discover answers to the above explorations.

 [

] [

] [

] [

]

 To discover that matrices need to be of the same dimension in order to perform addition and

subtraction, and that the process is performed element wise, students could be asked to use

MATLAB to add and subtract different combinations of the above matrices.

% Enter Given Matrices
A=[1 2;3 4];
B=[6 7;8 9;1 2];
C=[0 3;4 2];
D=[3 1 1;-1 2 3];

% Explore Addition/Subtraction
ac=A+C
ad=A+D

When is calculated, students should be able to see that matrix addition is element

wise. Likewise, when is attempted, students will be given the following warning

from MATLAB. “??? Error using ==> plus Matrix dimensions must agree.” This should lead

them to discover that in order to be able to perform matrix addition (as well as subtraction) the

dimensions of the matrices must match. Similar explorations could be done to answer the other

questions posed above (please see MATLAB Code Appendix (2) for additional code regarding

other explorations). It is important to note that there is a distinction in MATLAB coding

between and . This may be another area to have students explore. The first coding is

for traditional matrix multiplication

10

 [

]

While the second coding performs element wise multiplication

 [

]

 Once students have mastered a basic understanding of matrices and matrix operations,

matrices can then be used to solve systems of linear equations. Previously graphing calculators

such as the TI-83 or 84 have been used to aid in solving matrix equations. In addition to, or

perhaps in place of the graphing calculator, MATLAB could now be used. Taking the same four

linear equations used in the system of equations section above the following code and discussion

outlines ways in which MATLAB can be used.

 The first system was the independent system

Written as the matrix equation , we find [

] [

] [

]. Entering this into

MATLAB we can solve this equation in a number of ways, two are illustrated below. The first

uses the idea of finding the inverse of a matrix A, often written as , and defined in MATLAB

as inv(A). The inverse of a square matrix A is a matrix such that where is

the identity matrix, a matrix compromised of zeros with the exception of ones (1) down the main

diagonal. Students can investigate this property, , in MATLAB and see the

outcome of . In the activity below, Coded Messages, students will again be asked

to use this idea of solving a matrix equation using inverses, this time finding the inverse of a

11

two-by-two matrix by hand. This model, although computationally less efficient, matches

concepts discussed in Algebra and Trigonometry regarding inverses and identities, and could

lead to a more correct understanding of a way in which matrix equations can be solved. The

second method, which can be computationally more efficient, may lead to the misconception that

matrix equations behave in the same manner as a linear equation and can be solved by dividing

both sides of the equation by matrix A in order to find x.

A=[2 1;3 -1]
b=[9;16]

% Find the Inverse of A
A1 = inv(A)

% Check A * inv(A) = inv(A)*A = I
A*inv (A)
inv(A)*A

% Solve Ax=b using inv(A)
x=inv(A)*b

% Solve Ax=b using matrix left division (A\b)
xx=A\b

Both equations lead to the solution () as seen earlier when this system was solved

graphically. The problem arises when attempting to solve inconsistent or dependent systems in

these ways. Both situations lead to the MATLAB warning “Warning: Matrix is singular to

working precision.” In much the same way the TI-83/84 outputs “ERR: Singular Mat” in both

cases. Either way, students will be left to determine if the system has no solution, or infinitely

many. Perhaps this is when they can rely on their earlier experiences with the plot function to

determine which case is which.

12

Coded Messages: Steganography:

 To close out a study of matrices, an interesting activity that can be done with matrices is

to code messages into the pixels of a picture, a process known as steganography. Texas

Instruments has created a number of mathematical activities that accompany episodes of the

television show NUMB3RS. The activity Coded Messages (Flynn, 2009) accompanies the

episode “The Mole.” In this activity students are introduced to steganography by learning how

to use a matrix to encrypt a message, and its inverse to decode a message. As a final project,

they are asked to create a picture of their own and encrypt it. Then they are asked to send the

encrypted matrix to another student to decode. An example of how this works can be seen by

completing the practice exercise number 5 from the activity. Here we are given the following

intercepted message B and the encryption key K:

29 28 32 37 25 29 20

44 58 47 62 45 44 25

B = 34 38 42 47 35 39 25

44 58 47 62 45 44 25

29 28 32 37 25 29 20

0 1 2 0 0 1 1

1 2 0 1 1 0 1

1 0 1 1 0 0 1

K = 1 0 0 1 1 1 0

1 0 2 1 0 1 2

2 4 1 3 2 1 0

0 0 2 1 1 2 0

Decoding the message with the following code (Message = B * inv(K))and using the given

color values for each number (4 Dark Blue, 9 Orange-Red) we find the following:

13

 4.0000 4.0000 4.0000 9.0000 4.0000 4.0000 4.0000

 4.0000 9.0000 4.0000 9.0000 4.0000 9.0000 9.0000

 4.0000 9.0000 4.0000 9.0000 4.0000 4.0000 9.0000

 4.0000 9.0000 4.0000 9.0000 4.0000 9.0000 9.0000

 4.0000 4.0000 4.0000 9.0000 4.0000 4.0000 4.0000

Lastly, coloring in a grid to represent each pixel, we would obtain a picture similar to the one

seen below that shows the letters OE.

4.0000 4.0000 4.0000 9.0000 4.0000 4.0000 4.0000

4.0000 9.0000 4.0000 9.0000 4.0000 9.0000 9.0000

4.0000 9.0000 4.0000 9.0000 4.0000 4.0000 4.0000

4.0000 9.0000 4.0000 9.0000 4.0000 9.0000 9.0000

4.0000 4.0000 4.0000 9.0000 4.0000 4.0000 4.0000

Transformations/Translations:

While the plot function may have been introduced in an earlier unit studying systems of

equations as outlined above, the study of transformations could take this idea to another level

introducing students to other plot functions such as sub plot, and ways in which to add in the x

and y axes. For the purpose of this paper transformations are explored on basic exponential

functions base e or otherwise. Figure (4) demonstrates a reflection across the y-axis by

comparing the basic exponential equation and . Figure (5) demonstrates the

vertical translations in the equations and alongside the parent

function . Lastly, figure (6) shows the use of the subplot function to compare multiple

plots, and demonstrates a way to include the x and y axes, and the grid command seen earlier

(please see the MATLAB Code Appendix).

14

Figure (4)

Figure (5)

15

Figure (6)

The Number e:

Throughout much of the 1600’s mathematicians such as the likes of Napier, Briggs and

Huygens danced around the idea of e in their studies of logarithms and rectangular hyperbola.

Jacob Bernoulli is credited with finding, in 1683, the first approximation of e through his study

of compound interest. He approximated e to lie somewhere between 2 and 3 when he searched

to find the limit of (
 ⁄)

 as approached infinity. At this time, the notation e was not in

use. Like much of the current notation used in mathematics, the ”e” notation for the number e is

attributed to Euler. It first appeared in a letter from Euler to Goldbach in 1731. A few years

later Euler published Introductio in Analysin infinitorum, a publication in which he devoted

considerable work to the number e, including revisiting Bernoulli’s earlier limit problem with

compound interest, to obtain the following approximation of e.

16

(

)

It is this limit that we will first use to approximate e.

Chapter 1 of Cleve Moler’s online text, Experiments with MATLAB, (Moler, 2011) looks

to introduce the concepts of an assignment statement, for and while loops, and the plot function

using the golden ratio. In a similar manner, these concepts can be introduced along with the

number e. (In a later chapter, Moler explores the exponential function through differential

equations and the power series for the exponential equation in an approach suited to higher level

mathematic students such as those in an AP Calculus course.) It is important to note that the

equal sign is an assignment operator in most programming languages. This means that it

instructs the program to compute the right hand side and store the value as the variable on the left

hand side replacing whatever the previous value of that variable was. In order to approximate

the value of e, students must be able to write a loop. A loop is a sequence of code that is

repeated for a given number of times, as in the case of a for loop, or until a certain condition is

met, as is the case with a while loop.

Using a for loop, like the one shown below, students can experiment with the accuracy of

their approximation by using different values of n such as

for n=1:10000

e=(1+1/n)^n;

end

e

For we find that which is accurate to three decimal places.

17

A while loop can add a different perspective to the question. Instead of having students

experiment with different values of n, and their effect on the approximation of e, they can be

asked to find the value of n that yields an approximation that is correct to four decimal places

(2.7182). See the example code below:

n=1;

e=0;

while e<2.7182

e=(1+1/n)^n;

n=n+1;

end

n

In this case we find that will approximate e to four decimal places.

Another way in which the value of the natural number e can be explored would be

through the use of the Maclaurin Series

 ∑

This can be calculated as both the infinite series that it is, or as a definite sum. It can be quite

interesting to compare the speed at which the Maclaurin Series converges in comparison to

Euler’s limit above. In the case of the Maclaurin Series, an approximation for e accurate to four

decimal places happens for values of , for Euler’s limit . If included, students

would need to be introduced to the code for summations and how to force MATLAB to use a

symbolic approach in its calculations. Sample code for both the summation of the infinite series

and a definite sum can be seen below.

% Definite Sum

a=0

b=10

syms n;

18

symsum(1^n/sym('n!'), n, a, b)

% Infinite Sum

a=0

b=Inf

syms n x;

symsum(x^n/sym('n!'), n, a, b)

The Golden Ratio, a Programming Challenge

Seemingly found everywhere you look, romanticized in the books you read, and

disguised by numerous names, the Golden Ratio () is a fascinating number with a

long history in many disciplines. The first undisputed definition of the Golden Ratio is attributed

to Euclid. At its onset, the Golden Ratio was known as Euclid’s “extreme and mean ratio.”

While mentioned in Book II of the Elements, the definition of the proportion commonly thought

of as the “extreme and mean ratio” with respect to a segment occurs in Book VI. Described by

Euclid (Livio, 2002, p.3) “A straight line is said to have been cut in extreme mean ratio when, as

the whole line is to the greater segment, so is the greater to the lesser.” Taking a closer look at

this statement and, with the use of the figure below, one can recreate Euclid’s “extreme and

mean ratio

19

By Euclid’s definition, segment AB cut by point C is in extreme mean ratio when the following

proportion holds:

Euclid uses this ratio in other books of the Elements to aid in the construction of a pentagon,

icosahedron, and dodecahedron.

With some algebra, it is possible to calculate the value of the Golden Ratio from Euclid’s

“extreme and mean ratio.” First, let the measure of segment CB equal 1 unit in length and

segment AC be equal to Phi () Then, using Euclid’s extreme mean ratio, substitute in the

length values for each segment to obtain the proportion below. A few basic algebra steps then

lead to the shown quadratic equation.

Lastly, using the quadratic formula the Golden Ratio is found to be equal to

(√)

 . According to Euclid’s definition is the greater of the two sections of segment AB.

By this definition , so the second solution to the quadratic equation

(√)

 is invalid.

 Perhaps one of the most intriguing things about the Golden Ratio is its relation to

Fibonacci’s sequence. Leonardo of Pisa, also known as Leonardo Fibonacci published Liber

abaci (Book of the abacus) in 1202. In it he put forth the well-known rabbit problem in which a

man starts with a pair of immature rabbits that produce a pair of offspring each month, and with

two months growth, each offspring pair also reproduces monthly (Atalay, 2004). Tracking the

20

number of adult rabbit pairs leads to the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…

where each successive term (starting with the third term) is obtained by adding the previous two

terms together. This sequence, named by Edouard Lucas (1842 – 1891) for Fibonacci himself,

can be seen in a wide variety of natural occurrences other than Liber abaci’s idyllic reproduction

of rabbits: optics of light rays, the arrangement of leaves on a stem, the scales on a pineapple, or

the flowers of an artichoke. In 1611 Johannes Kepler is credited with discovering that the ratio

of a term in the Fibonacci sequence to term immediately prior to it approached the Golden Ratio

as the number of the terms becomes larger. Mathematically, if we call the n
th

 term in the

Fibonacci sequence , Kepler discovered that

 for large values of n. Out of this

discovery comes an interesting mathematical “trick.” Picking any two numbers to start with

creates a sequence in the same way as the Fibonacci, by adding the previous two terms to obtain

the next term in the sequence. Much like Kepler’s discovery, the ratio of the

 converges to

 . For example, my birthday is July 29
th

. Starting with the values 7 and 29 the following

sequence is obtained: 7, 29, 36, 65, 101, 166, 267… 86,115, 139,337… From this sequence the

19
th

 and 20
th

 terms are 86,115, and 139, 337 respectively. If, like Kepler, we take the ratio of the

20
th

 term to the 19
th

 term we find the following:

 The programming challenge for the Golden Ratio is to write a program, including a for

loop, that creates the sequence for the mathematical “trick” described above to approximate phi,

each student using their own birthday. An example of this code is shown below:

% Define two numbers

a = 7

b = 29

n = 20

21

% create series (n = 20) similar to

Fibonacci

s = zeros(n,1);

s(1,1) = a;

s(2,1) = b;

for i = 3:n

 s(i) = s(i-1) + s(i-2);

end

Sequence = s

% Use Kepler's Ratio to find phi

phi = s(n)/s(n-1)

In this case we find which is accurate to four decimal places.

AP Calculus, a Programming Challenge

 Moving into a higher level of mathematics, the following programming challenges are

intended to be used in an Advanced Placement Calculus course. This first challenge is to write a

numerical approximation for differentiation, the second is to do the same thing for the integration

of a definite integral. The definition of a derivative for a function makes use of what is often

referred to as Fermat’s difference quotient. Using this we find that the derivative of is the

function such that

 ()

 () ()

From this definition students can write a program to numerically approximate the derivative of a

given differentiable function by using the slope equation and adjusting the step size of .

The example code and plots below show an approximation for the function () An

excellent way to demonstrate the effect of the limit as can be seen in the plots below.

Figure (7) shows a step size while figure (8) shows a step size For both

cases the actual value, () , is shown in blue, while the numerical approximation is

22

shown in red. It is quite clear that decreasing the step size from 0.1 to 0.01 leads to a much

closer approximation of the true value.

f='x^3'
h=0.01
xpts=(-1:h:1)'% x values from -1 to 1 increments of size h
fpts=(xpts).^3 % values for f(x) for given x

% Use the Slope Formula to Approximate the Derivative
slope=zeros(length(xpts)-1,1)
for count=1:length(xpts)-1
 slope(count,1)=...
 (fpts(count+1,1)-fpts(count,1))/(xpts(count+1,1)-xpts(count,1))
end

fprime='3*x^2'

% Plot Compares Numerical Approximation to Actual Value
figure(1)
fplot(fprime,[-1 1],'b') % Actual Value
hold on
plot(xpts(1:length(xpts)-1,1),slope,'r') % Approximation

Figure (7)

23

Figure (8)

The second programming challenge is to create a program that yields a numerical

approximation to a definite integral by approximating the area under the curve. This can be done

similar to Riemann Sums by using rectangles in a number of ways. For the purpose of

programming, the height of the rectangles could either be right or left justified, or, as in the case

of the example program below, by using the midpoints of each rectangle’s increment to

determine the height. Students could also use the trapezoidal method to find a numerical

approximation to a definite integral. In the case of the example below we once again are using

the function () . Here we want to approximate the following definite integral

∫

and compare it to its actual value

24

∫

|

The code below is for approximating the definite integral above using 100 divisions. This yields

an approximate area of 9.3675e-017 which is very close to the actual value of zero.

f='x^3'
fint='(x^4)/4'
a=-1;
b=1;
n=100; % n = number of divisions
delta=(b-a)/n % delta is delta x
xpts=(a:delta:b);

midpts=zeros(n,1);
for count=1:n
 midpts(count,1)=a+(delta/2)+(count-1)*delta; %finds midpoints
end

height=zeros(n,1);
for count=1:n
 height(count,1)=(midpts(count,1)).^3; %finds height at mdpt.
end

area=zeros(n,1);
for count=1:n
 area(count,1)=height(count,1).*delta; % finds area of rects.
end

A=sum(area) % finds the summation of all rectangles

Other Areas of Interest: Engineering and Life Sciences

 In the text Experiments with MATLAB, Moler (2011) offers some interesting connections

between mathematics, programming and other areas such as engineering and the life sciences. In

the exercises listed for Chapter 5: Linear Equations, Moler sets up systems of linear equations

that can be used to solve a truss system in static equilibrium (exercise 5.6). Truss problems are a

common part of the PLTW class Principles of Engineering (POE). This exercise uses

programming to link the use of matrices in solving linear equations learned in math class to the

truss problems faced in engineering. Likewise, exercise 5.7 uses matrices to solve an electronic

circuit. Students who have taken the PLTW course in Digital Electronic, or AP Physics have had

25

to solve many circuits by hand. Here Moler demonstrates two different ways in which the circuit

can be solved by setting up systems of linear equations in matrix form.

 Another interesting topic covered is covered in Chapter 16: Predator-Prey Models. This

chapter starts by looking at a single population and comparing the difference between

exponential growth of a population and a more realistic model, logistic growth. The more

realistic model is obtained by the introduction of carrying capacity, limiting factors on a

population such as availability of nourishment and habitat. As the chapter progresses the effect

of predators is also added to population model. At this point the math behind the program moves

outside of the realm of the high school level, and uses one of MATLAB’s ordinary differential

equation solvers, but resulting plots are quite interesting and serve to show a use for the study of

higher level mathematics.

Conclusion:

The ability to connect the study of mathematics to other disciplines and demonstrate the

power of mathematical modeling can be taken to a new level with the introduction of computer

programming to the math classroom. Through the use of MATLAB students are able to hone

their problem solving skills working through the algorithms needed to write a functional

program, and can explore uses for mathematics that extend beyond the traditional story problem.

This can open a new world of interest in the classroom as students can get a truer sense of how

mathematicians, engineers, scientists and computer programmers uses computers to model and

explore data while being introduced to some of the basics of computer programming in the

process. Additionally, the use of MATLAB in a high school math class can act as an alternative

way to introduce more students to the computer sciences and computer programming as it would

26

address several principles considered important to the learning of computer science by the

CSTA: general capabilities and skills, problem solving and algorithmic thinking, integrative and

interdisciplinary knowledge, comprehensive programming, and gender differences and minority

issues. Finally, it is possible that an introduction to computer programming in high school will

make it more likely for students to successfully complete college degrees in areas like computer

science, engineering, and the sciences.

27

REFERENCES

Atalay, B. (2004). Math and the Mona Lisa: The art and science of Leonardo da Vinci.

Washington, D.C: Smithsonian Books.

Common Core State Standard Initiative: Standards for Mathematical Practice. (2011). Retrieved

 from http://www.corestandards.org/the-standards/mathematics/introduction/standards-

for-mathematical-practice/

Deek, F., Jones, J., McCowan, D., Stephenson, C., and Verno, A. (2004). A Model

Curriculum for K - 12 Computer Science: Final Report of the ACM Task Force

Curriculum Committee. Retrieved from

http://www.acm.org/education/education/curric_vols/k12final1022.pdf

Dick, T. & Hollebrands, K. (2011). Focus on High School Mathematics: Technology to Support

Reasoning and Sense Making. Retrieved from

http://www.nctm.org/catalog/product.aspx?ID=14315

Flynn, P. (2009). NUMB3RS ACTIVITY: Coded Messages. Retrieved from

 http://education.ti.com/calculators/downloads/US/Activities/Detail?id=7509

http://www.corestandards.org/the-standards/mathematics/introduction/standards-
http://www.acm.org/education/education/curric_vols/k12final1022.pdf
http://education.ti.com/calculators/downloads/US/Activities/Detail?id=7509

28

Hechinger, J. (2010). U.S. Teens Lag as China Soars on International Test. Retrieved from

http://www.bloomberg.com/news/2010-12-07/teens-in-u-s-rank-25th-on-math-test-trail-

in-science-reading.html

Livio, M. (2002). The golden ratio: The story of phi, the world's most astonishing number.

New York: Broadway Books.

Moler, C. (2011). Experiments with MATLAB. [pdf]. Retrieved from

http://www.mathworks.com/moler.

Morrison, J. (2006). TIES STEM Education Monograph Series Attributes of STEM Education

 The Student The School The Classroom. Retrieved from

 http://www.tiesteach.org/documents/Jans%20pdf%20Attributes_of_STEM_Education-

1.pdf

Sabochik, K. (2010). Changing the Equation in STEM Education [Blog post]. Retrieved from

 http:// www.whitehouse.gov/blog/2010/09/16/changing-equation-stem-education

Schollmeyer, M. (1996). Computer Programming in High School vs. College. ACM SIGCSE

 Bulletin, 28. doi:10.1145/236452.236584

ttp://www.bloomberg.com/news/2010-12-07/teens-in-u-s-rank-25th-on-math-test-trail-i
ttp://www.bloomberg.com/news/2010-12-07/teens-in-u-s-rank-25th-on-math-test-trail-i
http://www.mathworks.com/moler
http://www.tiesteach.org/documents/Jans%20pdf%20Attributes_of_STEM_Education-1.pdf
http://www.tiesteach.org/documents/Jans%20pdf%20Attributes_of_STEM_Education-1.pdf
http://www.whitehouse.gov/blog/2010/09/16/changing-equation-stem-education
http://dx.doi.org/10.1145/236452.236584

29

Stephenson, C., Gal-Ezer, J., Haberman, B., & Verno, A. (2006). The New Educational

 Imperative: Improving High School Computer Science Education. Retrieved from

 http://csta.acm.org/Communications/sub/.../White_Paper07_06.pdf

Thomasian, J. (2011). Building a Science, Technology, Engineering, and Math Education

Agenda. Retrieved from

http://www.nga.org/files/live/sites/NGA/files/pdf/1112STEMGUIDE.PDF

30

ACTIVITIES APPENDIX

 It is the purpose of this appendix to offer an example of a way in which activities outlined

in this paper could be utilized in accordance with the Common Core State Standards Initiative in

Mathematics and the attributes of a STEM education to promote student engagement,

mathematical reasoning, problem-solving, communication, and understanding. According to

Morrison (2006), a school and classroom supportive of STEM education should be “active and

student-centered” (p.5), allowing students to be responsible for their own learning through

activities that demand investigation and analysis. Additionally, there should be an emphasis on

the design process as a model way in which to approach problem-solving. Since an underlying

goal of this paper is an attempt to tie the mathematics classroom to the PLTW engineering

classroom, the design process will be discussed as parts of the 12 step PLTW design process.

The steps are as follows: 1. Define the Problem, 2. Brainstorm, 3. Research and Generate Ideas,

4. Identify Criteria and Constraints, 5. Explore Possibilities, 6. Select an Approach, 7. Develop a

Design Proposal, 8. Model or Prototype, 9. Test and Evaluate. 10. Refine, 11. Create or Make,

12. Communicate Results.

 Morrison (2006) suggests that STEM educated students be problem-solvers, innovators,

inventors, self-reliant, logical thinkers who are technologically literate. She defines a problem

solver as “able to frame problems as puzzles and then able to apply understanding and learning

to these novel situations” (p.2). Innovators are able to use the design process to formulate an

investigation, and then, in the role of an inventor, create and implement a solution. These three

attributes reflect the PLTW design process. The problem-solver models step one by defining a

problem. The innovator uses steps 2 through 6 in which students brainstorm, research, explore

31

and select an approach to problem-solving. Lastly, the inventor works through steps 7 – 12

which include the development of a design and model, testing, refinement, and finally

communication of the solution. The idea of using MATLAB in the math classroom is to help

create an active, student-centered learning environment in which students work through a design

process taking on the roles of problem-solvers, innovators and inventers while increasing their

technological literacy.

While the process of writing a program utilizes the design process and requires an

understanding of the mathematical algorithm to be used, manipulation of a program to

investigate and test conjectures is also possible. In general, all of the suggested activities require

the use of the design process in order to create and write a desired program. For example, when

completing the activity The Golden Ratio, a Programming Challenge, students will have to work

through the design process that is central to STEM education. First, wearing the hat of a

problem-solver, they will need to define the problem and then begin to apply their prior

knowledge of MATLAB coding and Fibonacci’s sequence. At this time, they may also need to

research new MATLAB commands or Fibonacci’s sequence in order to proceed. As they move

toward the role of an inventor, students will have to develop code, test it, refine it and eventually

arrive at a solution. Having to code a program also requires a high level of communication.

First, it is imperative that the coding is precise and correctly commands the actions of the

computer. Secondly, it is customary to document code so that others can readily use and

manipulate it. The discussion of activities that follow, Systems of Equations and

Transformations/Translations, focus on the manipulation of a program to investigate and test

conjectures.

32

 The first activity, Systems of Equations, makes use of MATLAB’s plot function to

quickly produce neat and accurate graphical solutions to systems of linear equations. This ability

to quickly and accurately produce graphical representations of symbolic algebraic equations is an

advantage of the use of technology. It allows students to create many more graphical

representations than they could by hand and use these representations for investigative purposes.

In the case of programming using MATLAB, students must understand more of the underlying

functions being performed by the program to create the graphs than if they were to use a

graphing calculator such as the TI – 84. When plotting an equation in MATLAB the programmer

not only needs to determine the range and scale needed for the x and y-axes, but also the domain

of x-values over which to plot the graph. This requires more involvement in creating a graph

that highlights crucial aspects of a function than blindly zooming in and out on a graphing

calculator, and eventually losing sight of the scale of the x and y-axis. The following paragraphs

will discuss ways in which students can use MATLAB and systems of linear equations to

investigate the cognitive fidelity of a solution, and the process of solving a system of linear

equations by hand using substitution.

The NCTM (National Council of Teachers of Mathematics) in their publication, Focus on

High School Mathematics: Technology to Support Reasoning and Sense Making defines

cognitive fidelity to be “faithfulness of a machine’s representation of a mathematical object to

the individual’s perception of the mathematical object being represented” (Dick, 2011, p.63).

Some minor changes to the first equation from the Systems of Equations activity can offer an

exploration into cognitive fidelity, and making sense of computer results. Modifying the

33

equation and keeping the equation a programmer could obtain the

results seen below on the left side of figure (1). Posing the question, what would happen if the

scales of the x and y axis were changed to only show a small part of the graph of (),

students would have to make a prediction and then investigate their claim. The graph on the

right of figure (1) is also of (), but on a different scale.

Figure (1)

 Here it may be hard for a student to see that the system of equations on the right is an

independent system since the lines, at a glance, may be mistaken as parallel. This is an example

of cognitive fidelity, where the results given by the computer program do not match the true

mathematical answer. Students could be asked to justify, using explanations of slope and y-

intercept, how they would know that the given system of equations is independent, not

inconsistent as it seems to be in the right side of figure (1). As a follow up activity, students

could be asked to find a way in which an inconsistent system might be graphically mistaken for a

dependent system (zooming out by creating large scales for the x and y-axis could make parallel

line look as if they were the same line). Using the design process students would have to work

34

through the jobs of problem-solver, innovator and inventor to arrive at a solution. In addition to

supporting the design process affiliated with STEM education and making learning student -

centered through investigation, solving systems of equations meets the following common core

standards: A-REI.6., A-REI.10., A-REI.11., F-IF.7., and N-Q.1. Full definitions of all standards

mentioned in this paper are listed at the end of this appendix.

Another way in which to use the equations and programs given in the Systems of

Equations would be to use the first pairing of equations, and , and have students solve this

system by hand using substitution. Starting with linear equation students

could complete exercise 2.1 in Focus on High School Mathematics: Technology to Support

Reasoning and Sense Making (Dick, 2011, p.20). This exercise suggests having students

graphically represent each algebraic step made by hand in an attempt to link the graphical and

symbolic approach to solving linear equations, as well as their relation to the properties of

equality and the properties of number and operations. For example, figure (2) below shows the

original two functions in red and blue, and one choice for a first step in solving

 adding to both sides to obtain in black and in

green.

35

Figure (2)

Through this activity students are encouraged to make observations and conjectures about

the effect of applications of properties of equality and properties of number and operations and

make connections between the steps made in solving by hand and their graphical representations.

For example, in the step shown above, adding to both side of the equation is a property of

equality. Students may notice that a property of equality graphically preserves the value of x and

the y-intercepts, but changes the slopes of the graph pairs. Further investigation could look at the

effect of adding or multiplying a constant to both sides again relating the graphical representation

to the ideas of slope and intercepts. This exercise coincides with the common core standards A-

REI.1 and A-REI.3

Additionally, Plot could be used explore transformations on a variety of functions and

create generalizations about the effects of different parameters on multiple functions. While the

36

example used in the body of this paper was limited to exponential functions, the programming

would be the same for other families of functions. Example 2.3 Primitive Parameter Exploration

from Focus on High School Mathematics: Technology to Support Reasoning and Sense Making

(Dick, 2011) uses this idea assigning teams of students each a different function family to

explore. Sticking to the example from the body of the paper, a team may be asked to explore the

function family () () Having been introduced to transformations earlier in

the year while studying linear and quadratic equations students may recall, for example, that the

value of moves a graph up and down. The purpose of the programming is to create a base

program in which students can easily manipulate the parameters to test conjectures and create

generalizations though the creation of multiple graphs. One way to program this is shown

below.

x=-3:.1:3;
a=1;
b=1;
c=1;
d=1;
y1=a*exp(b*x-c)+d;

figure(3)
plot(x,y1,'b')
hold on
title('y1=a*exp(b*x-c)+d')

 Students will have to use problem-solving and the design process to find ways in which

to manipulate their program to show multiple graphs in one figure. This way the effects of a

parameter can easily be seen, tested and compared. They will also need to utilize their programs

to draw generalizations and conclusions about the effects of a given parameter. Comparing and

contrasting the generalizations made by different groups for different function families can lead

to a whole class discussion linking the symbolic expressions of a function to a graphical

37

representation. This exercise meets common core standards under the heading of analyzing functions

using different representations.

Common Core State Standards Initiative in Mathematics Identified in Appendix:

A-REI.1. Explain each step in solving a simple equation as following from the equality of

numbers asserted at the previous step, starting from the assumption that the original equation has

a solution. Construct a viable argument to justify a solution method.

A-REI.3. Solve linear equations and inequalities in one variable, including equations with

coefficients represented by letters.

A-REI.6. Solve systems of linear equations exactly and approximately (e.g., with graphs),

focusing on pairs of linear equations in two variables.

A-REI.10. Understand that the graph of an equation in two variables is the set of all its solutions

plotted in the coordinate plane, often forming a curve (which could be a line).

A-REI.11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x)

and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions

approximately, e.g., using technology to graph the functions, make tables of values, or find

successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational,

absolute value, exponential, and logarithmic functions.★

38

F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in

simple cases and using technology for more complicated cases.★

N-Q.1. Use units as a way to understand problems and to guide the solution of multi-step

problems; choose and interpret units consistently in formulas; choose and interpret the scale and

the origin in graphs and data displays.

39

MATLAB CODE APPENDIX

1. Systems of Equations & Plot Function
clear all
close all
clc

%% Plot Function

x=-10:.1:10;
y1=-2*x+9;
y2=3*x-16;
y3=-2*x+3;
y4=(-4*x+18)/2;

figure(1)
plot(x,y1,'b')
hold on
plot(x,y2,'r')
title('Independent System: y1 blue v. y2 red ')
grid on
axis([2 7 -3 2])

figure(2)
plot(x,y1,'b')
hold on
plot(x,y3,'r')
title('Inconsistent System: y1 blue v. y3 red ')

figure(3)
plot(x,y1,'b')
hold on
plot(x,y4,'r')
title('Dependent System: y1 blue v. y4 red ')

2. Matrices
clear all
close all
clc

% Enter Given Matrices
A=[1 2;3 4];
B=[6 7;8 9;1 2];
C=[0 3;4 2];
D=[3 1 1;-1 2 3];

% Explore Addition/Subtraction
ac=A+C
%ad=A+D

% Explore Scalar Multiplication

40

x=3;
xa=x*A

% Explore Matrix Multiplication
ac=A*C
ca=C*A
ad=A*D
%ab=A*B

% Explore Matrix Multiplication A*C v. A.*C
AstarC=A*C
AdotstarC=A.*C

3. Transformations & Subplots
clear all
close all
clc

%% Plot Function

x=-3:.1:3;
y1=exp(x);
y2=exp(-x);

figure(1)
plot(x,y1,'b')
hold on
plot(x,y2,'r')
title('y1=exp(x) blue v. y2=exp(-x) red ')

y3=exp(x)+1;
y4=exp(x)-2;

figure(2)
plot(x,y1,'b')
hold on
plot(x,y3,'r')
hold on
plot(x,y4,'g')
title('y1=exp(x) blue, y2=exp(x)+1 red, y4=exp(x)-2 green ')

%% Graphing

figure(3)
subplot(2,2,1)
plot(x,y1,'b')
title('y1=exp(x)')
axis([-3 3 -3 3])
axis square
% An example of a way to plot x = 0 and y = 0 only.

41

grid1 = [-10:.1:10];
 xgrid = zeros([size(grid1)]);
 ygrid = zeros([size(grid1)]);
 hold on;
 plot(xgrid,grid1,'black')
 plot(grid1,ygrid,'black')

subplot(2,2,2)
plot(x,y2,'r')
title('y2=exp(-x)')
axis([-3 3 -3 3])
axis square
% An example of a plot with the grid.
grid on

subplot(2,2,3)
plot(x,y3,'r')
title('y3=exp(x)+1')
axis([-3 3 -3 3])
axis square

subplot(2,2,4)
plot(x,y4,'g')
title('y4=exp(x)-2')
axis([-3 3 -3 3])
axis square

