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Abstract 

Slight movements of a subject cause the function magnetic resonance imaging (fMRI) 
signal to be affected, thus causing errors in the data. This can include small head 
movements or systematic movement from respiration. However, these movements can be 
estimated and adjusted for, so that the time series is now corrected. Although the goal of 
respiration and motion correction is to improve the fMRI data, it has an ancillary effect of 
inducing correlation between voxels that is of no biological origin. In this manuscript, these 
processing operations are represented in a matrix framework. With the matrix formulation 
of the processing operations, the statistical properties including mean, variance, and 
correlation of the processed voxel data are determined. It will be shown that these 
processing operations induce correlation in previously uncorrelated voxel data. The goal is 
to first quantify these statistical properties so they can be accounted for, and identify the 
true biological signal of interest.   
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1. Background 

 
In functional magnetic resonance imaging (fMRI), the data for each image is measured 

as an array of complex-valued spatial frequencies. Images are created from these spatial 
frequencies using an image reconstruction operator. The most common operator is the two-
dimensional discrete inverse Fourier transform. After the Fourier transform is applied to a 
series of images, the result is a time series within each voxel. Contained within a voxel’s 
time series is true signal of interest and “noise.” Noise referring to random variation and to 
any systematic physiological/non-physiological signal that is not of interest, such as 
respiration or movement [1]. Any noise reduces the accuracy of the analysis of the data. 
Therefore, spatial and/or temporal operators that are applied to images are represented as 
matrix operators and their effect estimated so that it could potentially be accounted for 
before any statistical analysis takes place. 
 

These operators alter the acquired data, and potentially have a negative effect – 
specifically inducing correlations [2]. Some of these operators include, but are not limited 
to, spatial and temporal filtering processes, respiration and motion correction, global 
intensity normalization, and slice timing correction. These artificial correlations must be 
estimated so that they can be taken into consideration when performing statistical analysis. 
This study will focus on constructing a matrix representation for respiration and motion 
correction. Representing these operations in a matrix framework will help determine the 
changes in mean, variance, and any potentially induced correlation structure, with the goal 
of them being accounted for or removed in order to identify the true biological signal of 
interest. 
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1.1 Image Reconstruction 

Images are created from complex-valued spatial frequencies using an image 
reconstruction operator. The two-dimensional inverse Fourier transform has been put into 
a matrix operator [1]. The complex-valued inverse Fourier transform of frequencies Fc can 
be written as 

T
c Cy C CxY F            

where Yc is the complex-valued reconstructed image created by pre-multiplying the k-space 
spatial frequency matrix, Fc, by the inverse Fourier transform matrix in the dimension of 
y, ΩCy, and post-multiplied by the inverse Fourier transform matrix in the dimension of x, 
ΩCx. This is the usual way to represent the inverse Fourier transform of Fc. However, these 
pre- and post-multiplication of the IFT matrices can be combined into a single 
reconstruction matrix: 

R I

I R

  
   

  
   

where the components are derived through Kronecker products: 
 

   R yR xR yI xI       
 

 and    I yR xI yI xR       
 

  

The Kronecker product multiplies each element in the first matrix by the entire second 
matrix. The real-valued isomorphism by Rowe et. al. [1] makes it possible for the 
reconstructed image to be a product of the IFT operator,  , and the observed spatial 
frequencies in vector form, f, as:  
y f           

where f is formed by stacking the rows of the real frequencies on top of the rows of the 
imaginary frequencies in each image.  
 
1.2 Induced Correlation 

After the matrix operator is applied to the data vector, any changes in correlation 
structure can be observed from the covariance matrix. The spatial processing operator, Os, 
is multiplied by a real-value vector, Ωf. The resulting covariance matrix is: 
cov( ) T

s s sy O O                   (1) 
To observe the induced correlation, the covariance in Eq. (1) is utilized to obtain 

1 1
2 2cor( ) T

s sy D O O D
 

  ,              (2) 

where D is a diagonal matrix with elements that are variances and 1 2  means to square 
root and invert the nonzero elements.  
 

2. Translation Correction Operator 

 
2.1 Introduction 

Sight movements of a subject cause the fMRI signal to be affected, thus causing noise in 
the data. This can include small head movements or systematic movement from respiration. 
These movements induce signal modulations in the image time series that increase noise 
and degrade the statistical significance of activation signals. When statistical methods are 
applied to the data, it is assumed that the location of a given voxel within the brain does 
not change over time [3]. When a subject is in the scanner there is typically some degree 
of movement. Therefore, if statistical analysis takes place before correcting for motion the 
analysis could include various voxels. Once the image is reconstructed these fluctuations 
cause a spatial shift in the brain image, most noticeable near the edges of high contrast 
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areas [4]. If the transformation between the source image and the reference image only 
involves translations, a fractional shift can be used.  
 
2.2 Methods 

In two dimensions, a shift only needs two parameters, the shift in the x-direction a and 
the shift in the y-direction b. Estimating a and b can be performed by optimizing a cost 
function. A Gauss-Newton optimization algorithm can be used to estimate the spatial 
transformation parameters by optimizing the mean squared difference between the source 
and reference images. Once the shifts a and b have been found they can be applied to the 
source image with the creation of a fractional shift matrix.  
 

As an example, assume that the source image has to be translated a.α voxels in the x-
direction and b.β voxels in the y-direction, where a and b are the whole number of voxels 
translated while α and β are the fractional translation amounts. The translation of each 
voxel in the x-direction can be performed by placing α of the voxel’s value a voxels away 
and (1- α) of the voxel’s value a-1 voxels away in the x-direction. Similarly, the translation 
of each voxel in the y-direction can be performed by placing β of the voxel’s value b voxels 
away and (1- β) of the voxel’s value b-1 voxels away in the y-direction. 
 

Consider a 96×96 image being shifted over 5.25 and to down 2.75 – a is 5 and b is 2, α 
is .25 and β is .75. A [NX×NY, NX×NY ] matrix is created  by placing .25 of the voxel’s value 
in the spot 4 away and .75 of the voxel’s value would be placed 5 away both in the x-
direction. The same idea is repeated for the y-direction. The values .25 and .75 are 
multiplied by the voxels intensities and their intensities split between two voxel locations. 
This process is continued until all the voxels are accounted for. This matrix can then be 
multiplied by the data vector. Figure 1 shows the original phantom (Left), a simulated shift 
(Center), and a fixed phantom using a fractional shift matrix (Right).  

 

 
Figure 1: 
Left: simulated reference image. Center: simulated object image. Right: corrected image 
using translation matrix. 
 

  
  

2.3 Results and Discussion 

Matching the source image to the reference image using a fractional shift induced a 
correlation. Before statistical analysis can be done on the images, the correlation must be 
taken into consideration. The correlation and covariance matrices can be calculated from 
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the operator applied to the source image. Using Eq. (1) the covariance matrix is 
cov( ) Ty P P     where P is the fractional shift matrix and Γ is the observed 
covariance in the data. Here Γ is an identity matrix. The induced correlation matrix R can 

be calculated using Eq. (2). 
1 1

2 2R D D
 

  . Figure 2 shows the resulting correlation 
matrix when a fractional shift matrix is applied to the data and the induced correlation 
zoomed in. Applying a smoothing operator along with the shifting, enhances the correlation 
induced on the neighboring voxels. Figure 3 compares the induced correlation from just 
the shifting matrix and the addition of smoothing. 
 
 

   
Figure 2: Left: correlation matrix from 
shifting matrix Right: induced correlation 
from shifting matrix 

Figure 3: Induced correlation from shifting 
matrix and induced correlation with the 
addition of smoothing. 

 
 

 
3. Rigid Body Transformation 

 
3.1 Introduction 

Most times images have to be corrected for more than just translation. If a source image 
has to be rotated to match the reference image, a different transformation must be used. 
The transformation picked depends on if the scans are inter or intra-modal. When 
correcting for motion within a subjects scan, the source image can be corrected by applying 
a rigid body transformation that will rotate and translate it to match a reference image.  
 
3.2 Processor Implementation 

The goal of a rigid-body transformation is to take a source image and rotate and translate 
it to match a reference image. The reference image can be the first image in the time series 
or an average of all the scans. Two steps are involved to get two images to match: 
registration and transformation [5]. 
 
3.2.1 Registration 

Registration is the process of estimating the parameters for the best geometric alignment 
of two images [3]. The goal is to maximize the similarities between both images. To 
achieve this, a cost function that quantifies the differences between the two images is 
minimized. Intensity based cost functions are more accurate and reliable then geometric 
ones [6]. There are a variety of intensity-based cost functions to choose from. Choosing 
the right one depends on the type of registration being performed. Intramodal problems 
most often use least squares or normalized correlation cost functions, whereas intermodal 
problems use mutual information, normalized mutual information, woods and correlation 
ratio cost functions [3]. Optimizing the cost function using an optimization algorithm, such 
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as a Gauss- Newton, will find the optimal transformation parameters to match the source 
image to the reference image. The transformation (T*) that gives the minimum cost is: 

 
* argmin ( , ( ))T C Y T X ,       

  
where 1 2( , )C I I  is the cost function and T(X) is the source image after being transformed 
[6]. 

The cost function also requires an interpolation method to calculate what the intensities 
of the source image are at points in between original voxel locations. The interpolation 
method used is important because the intensities of the transformed image are used for 
statistical analysis. Interpolation methods commonly used include linear/bilinear/trilinear, 
windowed sinc, polynomial, or Fourier interpolations [5]. In motion correction, all the 
images acquired are from the same subject and have the same imaging parameters. Because 
of this, the problem can be classified as intrasubject, intramodal registration. 
 
3.2.2 Transformation 

Once the transformation parameters are found, the source image can be matched to the 
reference image. Since motion correction is an intrasubject intramodal problem, a rigid 
body transformation can be used. Rigid body transformations involve only rotations and 
translations. To map each point in the source image to the reference image in 2-dimensions, 
two translations and one rotation are used. Mapping each pixel location in the source image 
( , )i ix y to the reference image gives 

cos sin .
sin cos .

i i

i i

u x a
v y b

  

  

      
       
      

    for i = 1,…,n,                                      

where θ is the rotation degree, a.α is the translation in the x-direction and b.β is the 
translation in the y-direction. If the reference image and the source image have the same 
number of points the parameters a.α, b.β and θ can be estimated by: 

   
 

1
ˆˆ

ˆ tan ˆˆ( )

mean uy mean vx ay bx

mean ux mean vy ay bx
 

    
 
    
 

 

   ˆ ˆˆ cos sina u x y     

   ˆ ˆ ˆsin cosb v x y      

where , , , , , , ,x y u v uy vx ux vy  are the means of x, y, u, v, and uy, vx, ux, and vy points 
respectively. After the parameters are estimated, they can be applied to the source image.  
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