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Abstract
The functional connectivity blood oxygenation dependent signal in magnetic

resonance imaging is measured by calculating the correlation of voxel time series. As
this signal is small, non-negligible processing steps are applied to the acquired data.
Some previous studies have developed empirical measures of the effects of such pro-
cessing steps. In this work, we examine the effects of the processing steps through
an exact, analytical framework. We parameterize the process of reconstruction as a
linear process on a real-valued isomorphism of the acquired complex valued data. We
then develop linear operators to perform standard image processing steps, including:
echo planar data censoring, echo planar data reordering, Nyquist ghost elimination,
partial Fourier reconstruction, intra-acquisition decay and decay correction, magnetic
field inhomogeneity effects and magnetic field inhomogeneity correction, frequency-
space apodization, and image-space smoothing. We further expand the linear frame-
work to include processes which are applied to the acquired time series, including:
the extension of image processing operations to temporal image processing opera-
tions, dynamic magnetic field correction, dynamic intra-acquisition decay correction,
slice timing correction, motion correction, and temporal filtering. In each case of
spatial and temporal processing, we analytically demonstrate the effects caused by
applying the operators both individually and in groups and illustrate the results in
acquired phantom data. The results of the analytical framework correspond well to
the empirical results described by others. Finally, we motivate the implementation of
the developed operators in experimental functional magnetic resonance imaging and
functional connectivity magnetic resonance imaging data.

xi



Chapter 1

Introduction

Over the past several years, our work has focused upon two central themes in func-

tional and functional connectivity magnetic resonance imaging (fMRI and fcMRI): (1)

obtaining more information from traditionally acquired data, and (2) understanding

the implications which arise from unmodeled physical processes and unmodeled data

processing. We have found these themes to be inherently interconnected and the

following work is a subset of the advances we have made in our research endeavours.

This dissertation is organized in six chapters. The first chapter provides an in-

troduction to our work, and highlights the background upon which it is based. The

second chapter describes our initial attempt to use the traditionally discarded phase

data in fMRI to identify the vascular source of observed signal contrast. That work,

while providing insight to the performance of different phase-sensitive data analysis

techniques, highlighted the enhanced need for processing complex-valued data. The

following two chapters develop a linear framework for analytically considering the

effects of spatial and temporal processing in fMRI and fcMRI. The results of those

1
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chapters further confirm the importance of processing complex-valued data, and the

described framework offers a method for including data processing in considered sta-

tistical models. We have since applied the particularly important process of dynamic

magnetic field correction to both fMRI and fcMRI data, and our considerations of

the latter are presented in the fifth chapter. The final chapter summarizes the results

of the work presented in this dissertation and offers opinions as to where this line of

research may lead in the future.

1.1 BOLD contrast

The blood oxygenation level dependent (BOLD) contrast mechanism is responsi-

ble for contrast with task in functional magnetic resonance imaging (fMRI) and is

the cause of contrast in functional connectivity magnetic resonance imaging (fcMRI).

Blood flow to the cortex increases with cortical activity. This activity may include

specific task-related activity [Ogawa et al., 1993] or “spontaneous” activity [Biswal

et al., 1995]. With the increase in blood flow, the concentration of deoxyhemoglobin

decreases in the active capillaries and down stream veins. The functional contrast

is a result of the blood flow increase outpacing the increase of the metabolic rate of

oxygen consumption in the area of active cortex [Villringer, 2000]. The lower concen-

tration of deoxyhemoglobin decreases the apparent magnetic susceptibility, causing it

to become more diamagnetic. Thus, the susceptibility of the blood becomes closer to

the susceptibility of the surrounding tissue, leading to more homogeneous magnetic

fields at the vascular level. More homogeneous magnetic fields result in less dephasing

of the precessing spin isochromats within an imaging voxel, and therefore increased

signal intensity [Sprenger, 1994]. If the magnetic field perturbation of the altered
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blood susceptibility is on the order of the size of the voxel, the signal change may be

dominated by the accrual of a different net phase in response to the different magnetic

field, rather than isochromat dephasing [Menon, 2002, Zhao et al., 2007, Feng et al.,

2009].

BOLD MRI contrast has become the standard imaging contrast utilized for neuro-

science and psychological study of the brain. A simple PubMed search of the literature

from 2007 yields 20,254 results for functional MRI and 233 results for functional con-

nectivity MRI. As shown in Fig. 1.1(a), these publications are part of a large and

expanding area of research. Additionally, the use of functional connectivity MRI in

research is growing rapidly as seen in Fig. 1.1(b). As functional connectivity is a

rapidly expanding field of research, our work has aimed to address factors which may

confound computed voxel correlations. Specifically, we have developed a theoretical

framework to quantify correlations associated with some reconstruction and tempo-

ral preprocessing, and compared methods for separating global correlations caused

by systemic physiologic processes that cause global magnetic field shifts, including

respiration, from regional correlations associated with interesting physiology.

1.2 The ubiquity of data preprocessing

It is common to process fMRI and fcMRI data prior to statistical analysis. Such

preprocessing arises from both necessities in image reconstruction and from yielding

favorable results on computed activations.
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(a)

(b)

Figure 1.1: PubMed entries for functional MRI and functional connectivity MRI over
the past ten years illustrate the increasing use of the methods in biomedical research.
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Reconstruction preprocessing

In magnetic resonance imaging, the Fourier transform of the object being imaged

is generally acquired. This acquisition technique only approximates the mathemat-

ical ideal of Fourier imaging. The Fourier transform requires an infinite continuous

support. However, only a subset of the basis is acquired. Thus, only a small portion

of the possible spatial frequencies are collected, with spatial frequencies above the

observed frequencies assumed to be periodic copies of the acquired data. This results

in the effective repetition of the Fourier reconstructed image with the Fourier trans-

form of the acquired k-space. Therefore, with higher frequencies not observed and

a periodicity assumed on the k-space data, step discontinuities in the reconstructed

image are not effectively resolved. The Fourier reconstructed image is effectively

smoothed with a sinc function defined by the observed window of k-space under ideal

circumstances.

The physical process of transverse spin relaxation unavoidably occurs over the time

in which a k-space acquisition is made. This spin relaxation causes the attenuation of

the acquired signal over the period of acquisition, causing symmetric k-space points

to be weighted differently by the signal decay. The temporal signal decay over the

course of image acquisition causes blurring of reconstructed images [Haacke et al.,

1999]. In echo planar imaging, the observation bandwidth is about one hundred

times greater in the frequency encoding direction than in the phase encoding direction.

The high bandwidth in the frequency encoding direction minimizes intra-acquisition

decay associated blurring in that direction, while the low bandwidth in the phase

encoding direction exacerbates such blurring in the phase encoding direction. Thus,
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a non-isotropic point spread function exists in echo planar imaging because of the

intra-acquisition decay.

Beyond such effects from the acquisition process, data processing often occurs in

image reconstruction. Physical processes and limitations result in imperfections in

the Fourier encoding of the acquired image. Gradient timing errors and eddy current

effects can lead to alternating k-space lines being shifted from each other [Haacke

et al., 1999]. This error in encoding results in an artifact in the representation of

the lowest spatial frequency in the direction of phase encoding. This artifact is often

called the Nyquist ghost, or the N/2 ghost, as it includes a low intensity duplicate

of the desired image offset by one half of the field of view in the phase encoding

direction [Bernstein et al., 2004]. To address this artifact, the offset of the alternating

k-space lines may be calculated, and the lines shifted to correct it [Jesmanowicz

et al., 1993, 1995, Nencka et al., 2008]. This preprocessing may correct the artifact,

although it includes interpolation of the acquired k-space data to implement the shift.

This interpolation may induce correlations in the acquired k-space data. As Fourier

reconstruction is a linear process, correlations in k-space are necessarily associated

with correlations in image-space.

In addition to timing and eddy current errors, concomitant static field errors may

cause imperfections in the Fourier encoding of the acquired image. Such errors include

the temporally varying image-space phase of the acquired image over the duration

of the image acquisition. Such an error leads to the spatial warping of the acquired

image [Jezzard and Balaban, 1995]. With the spatial warping, an interpolation pro-

cess occurs in image space. Such warping may cause neighboring voxels to become
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correlated.

Physical limitations of the scanner equipment may also cause imperfections in the

acquisition of a time series of data. Rapidly switching, strong gradients associated

with fast echo planar pulse sequences require high currents to be run through the gra-

dient coils. This causes the coils to heat, thereby altering their resistivity. The altered

resistivity results in a systematic error as a voltage applied to drive the gradient coils

will lead to a magnetic field which is dependent upon the temperature of the gradient

coils. This may lead to a temporal drift in the phase of the reconstructed images,

or, in the case of extreme gradient heating, a bulk shift of the images in the phase

encoding direction caused by the resulting resonance frequency offset [Jesmanowicz

et al., 1995]. Image registration [Jenkinson et al., 2002] or ω0 correction [Jesmanowicz

et al., 1995, Nencka et al., 2008] are often performed to correct this artifact.

Beyond physical imperfections in the encoding process, there is a fundamental

limitation to the observation process. That is, only a finite number of k-space points

may be observed after the excitation of the spins. With only a limited number of

points acquired, the assumption is made that only a limited region of k-space about

its origin need be sampled. This under sampling of k-space makes it impossible to

resolve step-like discontinuities of image-space contrast. Left unprocessed, such a

discontinuity leads to the artifact of Gibbs ringing [Gonzalez and Woods, 1992]. To

attenuate the effects of Gibbs ringing, the k-space observations may be apodized

[Bernstein et al., 2004]. In such a process, the k-space values near the center of

k-space are multiplied by unity, while observations near the edge of the acquisition

are attenuated so that there is a smooth transition between the assumed periodic
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values outside of the observed k-space values and the observed k-space values. This

results in an image-space convolution of the acquired image with the inverse Fourier

transform of the apodization mask, thereby smoothing out the Gibbs ringing caused

by the discontinuity while also inducing spatial correlations in the reconstructed data.

In addition to apodization, some reconstruction software will add zeros to the

edges of the k-space. This is required by older fast Fourier transform algorithms

which require the input to be a power of two [Gonzalez and Woods, 1992]. This zero

padding is equivalent to interpolating the image-space voxels with a two dimensional

sinc wave, and may, therefore, induce correlations in the data.

Data analysis preprocessing

Distinct from the physical processes which occur during image acquisition and the

associated preprocessing performed in reconstruction to correct artifacts induced by

such processes, preprocessing may additionally be performed to yield more favorable

results when statistically analyzing the acquired data.

Subject motion over the course of the time series acquisition may result in the

change of imaged material within a voxel over time. Thus, a voxel which starts a time

series completely containing active grey matter may finish the time series containing

a combination of active gray matter, white matter and cerebrospinal fluid. This may

lead to the voxel’s intensity varying over the course of the experiment based upon

the alteration of partial volume effects rather than functional activity. As the image

shifts over the experimental run, voxels with similar compositions will be correlated

as partial volume effects change. For this reason, some perform image registration

over the course of the time series [Jenkinson et al., 2002]. This improves the stability
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of functional time series by reducing the contribution from voxel composition varying

over the course of the experiment. Of course, the image shifting which is associated

with registration utilizes image interpolation procedures which may induce image

correlations. Additionally, uncorrected residual motion will likely cause image-space

correlations.

In addition to registration, many studies perform image smoothing. Smoothing

is performed to highlight large regions of relatively weak activation while reducing

activation contributions from significant but small regions [Skudlarski et al., 1999].

Smoothing may be performed by means of point-wise multiplying k-space observations

with a windowing function, or equivalently by convolving with a smoothing kernel

in image space. It is obvious that such a process will cause correlations between

neighboring image-space voxels.

Beyond the purely spatial processing like smoothing, and the spatial and temporal

processing like image registration, purely temporal processes may be implemented on

the acquired data. Often multiple slices of a volume of interest are acquired over a

repetition period. To make each slice represent the same time point of the acquisi-

tion, slice time series can be temporally shifted through interpolation so that each

volume is effectively considered at the same time. This temporal process is called slice

timing correction. Additionally, some temporal frequencies, like that of respiration,

are known to contribute signal which is not of interest. Thus, temporal filtering may

additionally be applied to the time series data. These temporal processing methods

can lead to modifications of the temporal mean, covariance and correlation of the

considered data.
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The problem with preprocessing

Most cortical statistical activations are determined either through the fit of a gen-

eral linear model [Friston et al., 1995] or through computing correlation coefficients

between time series [Bandettini et al., 1993, Biswal et al., 1995]. Such methods are

used to create statistical parameter maps which are in turn thresholded to produce

maps of statistically significant activation or connectivity [Logan and Rowe, 2004, Lo-

gan et al., 2008]. Many thresholding processes require that each voxel time series is

independent. Other thresholding techniques, including permutation resampling, have

been implemented to control the family wise error (FWE) and false discovery rate

(FDR) thereby relaxing the assumption of no spatial correlation [Logan and Rowe,

2004]. Additionally, many methods assume that the voxel observations are corrupted

independent and identically distributed noise. Once again, more complicated statisti-

cal methods which allow for temporal correlation in the data including autoregressive

models have been implemented to relax the necessary assumptions [Lou and Nichols,

2003].

Furthermore, differences exist between vendors in their reconstruction procedures.

A prime example of such differences is the apodization process. The apodization pro-

cess causes image smoothing. This smoothing affects local voxel time series correla-

tions [Gretton et al., 2006]. The use of different apodization procedures by different

vendors requires that images be processed to yield comparable smoothness for direct

comparisons to be made, even if scan acquisition parameters are identical [Friedman

et al., 2006].
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1.3 Physiologic noise in functional connectivity magnetic res-

onance imaging

The functional connectivity magnetic resonance imaging experiment traditionally

relies upon BOLD contrast in a time series of T ∗
2 weighted echo planar images. As

a result of the required pulse sequence parameters, the T ∗
2 weighted images include

contrast which arises from undesirable sources. This includes global changes in blood

susceptibility as well as changes in magnetic field homogeneity.

Global changes of blood susceptibility are known to occur over the time scales

used in functional connectivity magnetic resonance imaging studies. Such changes of

susceptibility may occur through several mechanisms. Global changes in vasodilation

or vasoconstriction alter the rate of blood flow to the brain. Such changes in blood

flow alter the concentration of deoxyhemoglobin in the vasculature, thereby altering

the blood susceptibility. This BOLD signal is not desirable as it is global in nature.

Thus, it may confound local BOLD signals associated with cortical regions which are

functionally connected.

Additionally, variations in blood pressure [Guyton and Hall, 2000] and respiratory

depth [Birn et al., 2006] over the time series of the acquisition may alter the blood

signal. As with vasoconstriction and vasodilation, changes in blood pressure may

alter cerebral blood flow. These changes in flow may give rise to global BOLD effects.

Respiratory depth alters the level of oxygenation of arterial blood. Such changes in

oxygenation alter global blood oxygenation and global blood flow, thereby providing

BOLD contrast.
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Beyond physiologic BOLD contrast changes from global processes which are not of

interest in functional connectivity studies, magnetic field alterations may be correlated

to physiologic processes. Respiration includes the motion of the chest wall outside of

the imaging plane but within the imager bore. This motion of magnetically susceptible

material within the chest in the strong magnetic field of the imager yields magnetic

field fluctuations [Raj et al., 2000]. Such magnetic field fluctuations may cause sub-

voxel image shifts which alter voxel partial volume compositions, and thus cause voxel

time series variance and covariance.

Other physiologic motion is related to the pulsatile flow of blood. The blood

pulsations in the arteries of the brain cause a pulsation which is transmitted through

the brain [Guyton and Hall, 2000]. Such brain pulsations associated with the cardiac

cycle cause the brain to deform on the sub-voxel scale in functional studies, thereby

altering voxel partial volume compositions. Such sub-voxel shifts can cause voxel time

series variance and covariance.

1.4 Correcting physiologic noise in functional magnetic res-

onance imaging

Several methods have been developed to reduce the contributions from cardiac

and respiratory effects. Some such methods are described below.

Respiratory effect correction

The effect of respiratory related out of field of view motion on images acquired with

echo planar techniques has been described above. The underlying problem with out

of field of view motion is that it modulates the magnetic field at the imaging plane.
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Therefore, several techniques have been described to dynamically account for such

magnetic field variations.

Most simplistically, the magnetic field offset associated with out of field of view

motion may be considered as a uniform magnetic field shift at the imaging plane.

Thus the resonant frequency of the acquired slice is shifted by∆ ω = γ∆B, where

ω is the resonant frequency, γ is the gyromagnetic ratio, and B is the magnetic

field. The offset of the resonant frequency may be considered through the use of

navigator echoes [Jesmanowicz et al., 1995, Pfeuffer et al., 2002]. With the resonant

frequency offset known, the acquired data may be appropriately corrected with k-

space multiplication with e−iγ∆Bt, where t is the time at which the k-space point is

acquired.

In image-space, the artifact associated with a resonance frequency offset is an

image shift in the phase encoding direction. Thus, an alternative to such resonance

frequency offset corrections is simply rigid body image registration. Such a correction

may not only account for global resonance shifts caused by out of field of view motion,

but also shifts of the imaged object over the course of the time series acquisition. The

weakness of this method, as with all global resonant frequency correction methods,

is that it will not address effects caused by local resonant frequency shifts within the

imaging plane.

Other methods consider spatially varying magnetic field offsets caused by out of

field of view motion. If the magnetic field offset is known, the shim coils responsible

for the magnetic field homogeneity of the region being imaged may have their cur-

rents adjusted to correct for the magnetic field error. This has been proposed by van
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Gelderen et al. [2007]. Magnetic field maps are first generated for a subject at several

time points within the respiratory cycle. Then, when the imaging experiment is per-

formed, the sim coil currents are adjusted to account for the magnetic field associated

with the current phase of the respiratory cycle. While such a method allows for the

correction of both in plane and through plane magnetic field inhomogeneities, any

variations of the magnetic field with varied breathing patterns are not considered.

Other methods have been developed to retrospectively map and correct the mag-

netic field at the time the image was acquired. The moving race track trajectory

may be used to acquire a second, low resolution image at a slightly offset echo time

during and acquisition so that a low resolution magnetic field map may be calculated

as B = (∆φ)/(γ∆TE) [Roopchansingh et al., 2003]. The spiral-in/spiral-out method

acquires two images with different echo times as well to compute the magnetic field

dynamically [Sutton et al., 2004]. With the magnetic field map known, it may be cor-

rected with either time segmented [Noll et al., 1991] or frequency segmented methods

[Noll et al., 1992], or variations thereof.

Other methods have been developed to consider changes in the magnetic field

between two images acquired at the same echo time as∆ B = (∆φ)/(γTE) [Lam-

berton et al., 2007, Hahn et al., 2008]. These methods are unable to compute the

net magnetic field, although they allow for the consideration of dynamic magnetic

field changes over the course of an experiment, without modification of the standard

echo planar imaging pulse sequence. Minor alterations to the sequence may be im-

plemented to also acquire a static magnetic field map to correct bulk image warping.

With dynamic magnetic field maps calculated, the magnetic field alterations may be
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corrected.

A further method to correct magnetic field alterations is the phase regressor

method described by Menon [2002]. This method requires that, for each voxel time

series, magnitude is regressed as a linear function of phase. This fit is then used

to estimate a magnitude value for each time point based upon the observed phase.

The estimated magnitude is subtracted from the observed magnitude, yielding a cor-

rected magnitude time series. The multi-step process is described by the equations

Mc = Mo − Me, Me = αφ + δ, where Mc is the corrected magnitude time series,

Mo is the original magnitude time series, Me is the estimated magnitude time series,

φ is the temporally unwrapped phase time series, and α and δ are fit parameters.

The fit parameters are estimated using a regression model assuming normal errors in

both magnitude and phase observations. The corrected magnitude time series is then

analyzed. This method has been demonstrated to reduce activation contributions

from voxels with draining veins and correct voxels contaminated by motion artifacts

[Menon, 2002, Martin et al., 2004, Barry et al., 2008].



Chapter 2

Functional Activations in Complex Data

We begin the substantive portion of this dissertation by both illustrating a po-

tential use of the complex-valued data which is generally acquired but not analyzed,

and illustrating the need for appropriate image processing. In this chapter we de-

scribe the use of phase to identify contributions from macrovascular sources in fMRI.

We characterize the performance of two previously published statistical methods to

reduce macrovascular contributions to computed cortical activations, the phase re-

gressor method and the complex constant phase method, through simulation and

we apply the methods to a small group of experimental data. Through the simula-

tion, we find fundamental differences in the performance of the different statistical

methods which lead to varying performance in the acquired experimental data. Fur-

thermore, we find that the considered statistical methods are sensitive to non-task

related phase fluctuations. We conclude that the complex constant phase method

exhibits more favorable characteristics than the phase regressor method in both the

simulated and experimental data. We further conclude that additional processing of

16
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the complex-valued data is necessary to improve the robustness of complex-valued

functional image analysis.

2.1 Introduction

The measured signal in MRI can be encoded to represent the complex-valued

Fourier transform (FT) of the object being imaged. The image is generally recon-

structed by performing an inverse Fourier transform (IFT) on the collected data [Rowe

et al., 2007b]. The object is physical, and is thus real-valued. Therefore, under ideal

conditions, the FT of the object would result in observed complex-valued data and

the IFT of this data would result in the reconstruction of the unaltered, real-valued

image of the object. However, small scale inhomogeneities in the magnetic field and

measurement noise lead to complications in this mathematical treatment of the data

[Haacke et al., 1999]. The reconstructed image is thus complex-valued, and can be

visualized through a unique representation in real and imaginary images.

Functional MRI (fMRI) traditionally relies upon the statistical analysis of time

series of magnitude-only images using blood oxygen level dependent (BOLD) contrast

to determine areas of cortical activation [Ogawa et al., 1993, Bandettini et al., 1993,

Cox et al., 1995]. Because popular methods of determining brain activation through

fMRI only utilize magnitude images over the experimental time course, they discard

information about small scale magnetic field disturbances contained in the complex-

valued data, or phase image time course [Rowe and Logan, 2004]. This phase data

is often corrupted by physiologic processes, slight subject motion and other noise

[Pfeuffer et al., 2002]. In spite of the noise in this data, some have proposed using

the information in this data to improve the detection power of activation methods
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[Lai and Glover, 1997, Nan and Nowak, 1999]. Others have directly used the phase

information alone to detect activations [Rowe et al., 2007a]. This phase data, related

to local magnetic field changes, may hold a great deal of information about the source

of the BOLD signal.

The BOLD signal arises from changes in blood oxygenation, and is thus sensitive to

the capillaries where the oxygenation change occurs and down stream draining veins.

With activation the concentration of oxyhemoglobin in the active capillaries and

veins increases, effectively altering the blood’s susceptibility. This leads to a change

in the magnetic field within active vessels which correlates with the activity. Thus,

the magnetization within these active vessels will acquire a different net phase with

activation than with rest. If the active vessels within a voxel are large well oriented

draining veins which contribute strongly to the observed signal, they will contribute

a task related phase change [Menon, 2002]. Smaller venules and capillaries located in

the parenchymal tissue, which are more randomly oriented, more densely packed, and

carry a smaller volume of blood, lead to random de-phasing without a preferential

direction. Therefore, because of these randomly oriented phase alterations within a

voxel in the parenchyma, the signal will decay but will not exhibit a coherent phase

change. The orientation of the vessels with respect to the magnetic field, and many

other variables, will obviously affect the strength of the task related phase change

(TRPC), as it will be minimized, for instance, with the vein at the “magic angle.”

Thus voxels with TRPCs will most likely be contaminated by the macrovasculature

while it is not certain that voxels without TRPCs are free from draining veins [Klassen

and Menon, 2005].
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Because it is believed that the most relevant cortical activations detected through

BOLD contrast are those which are tied to the microvasculature where the blood oxy-

genation change occurs, many attempts have been made to reduce the contributions

from the macrovasculature, or large draining veins, to the BOLD computed cortical

activations. In standard resolution fMRI, activations from draining veins are gener-

ally not of concern as such veins are co-localized in voxels with active parenchyma.

Further down stream, the venous blood is diluted resulting in less signal change. It

has been shown that with an active cortex area of 100 mm2 such dilution is observable

about 4 mm down stream from the active cortex, with only 1/4 of the oxygenation

change of active cortex up to 25 mm away [Turner, 2002]. In higher resolution fMRI,

however, this draining vein signal becomes more problematic. Draining vein contri-

butions are less consistently co-localized in voxels with active parenchyma and they

may be several voxels away from the active cortex. Furthermore, smaller voxel volume

leads to attenuated partial volume effects and intra-voxel dephasing, allowing drain-

ing veins to have a greater influence in the signal of down stream voxels. Thus, the

delocalization of activations from draining veins becomes problematic when higher

resolution fMRI is used.

It is the goal of this paper to explore two recently proposed post-processing meth-

ods which utilize the magnitude and phase components of the complex-valued signal

to determine BOLD cortical activations. It has been suggested that the complex

phase regressor method localizes computed activations to the parenchyma by reduc-

ing draining vein contributions [Menon, 2002]. Likewise, Rowe and Logan’s method of

magnitude activation in complex data assuming constant phase has been claimed to
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both localize activations to the parenchyma and reduce the draining vein component

of activations [Rowe and Logan, 2004, Rowe, 2005c, Nencka and Rowe, 2005]. In this

study, we compare the ability of the two statistical techniques to bias against voxels

which exhibit task related phase changes under ideal simulated conditions. We also

discuss the application of these techniques to preliminary experimental data and sev-

eral confounding factors which must be resolved for such phase-based draining vein

identification to be practically implemented.

2.2 Statistical Methods

We first briefly outline the parameterization of the advanced statistical activa-

tion detection techniques and offer illustrative simulated voxel time series. Both the

phase regressor and complex constant phase methods employ the use of general linear

models. Simple general linear models are well developed in the literature. Further de-

scriptions of the implementations of the phase regressor and complex constant phase

models are given in Appendices A and B.

The phase regressor method (Menon, 2002) assumes normally distributed noise on

the magnitude and phase data. The model also assumes that task related magnitude

changes associated with draining veins are linearly related to the task related phase

changes of those veins. Assuming errors in both variables, the magnitude values for

a time series are regressed as a function of the corresponding phase values for a given

voxel. Based upon each phase time point value, an estimated magnitude is determined

using the computed regression. This phase-estimated magnitude is then subtracted

from the observed magnitude to discount the phase associated magnitude component

in a “phase corrected” magnitude time series. The common magnitude-only general
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linear model is then used to analyze the corrected magnitude time series.

Examples of this method are illustrated through simulated voxel time series shown

in Fig. 2.1. The simulated data were created using the complex-valued general linear

model as described by Rowe [2005a]:

Yt = [(β0 + β1t + β2x2t) cos(γ0 + γ1t + γ2x2t) + ηRt]

+i[(β0 + β1t + β2x2t) sin(γ0 + γ1t + γ2x2t) + ηIt]. (2.1)

In all cases, no linear trend was modeled in phase, γ1 = 0, and β2, γ2, and β0 were

set to determine the contrast-to-noise ratio (CNR = β2/σ), task related phase change

(TRPC = γ2 ∗ 180/π), and signal-to-noise ratio (SNR = β0/σ). In Figs. 2.1(a)

and 2.1(d) the ideal magnitude time series (red), noise corrupted time series (green),

phase corrected magnitude time series (blue) and phase regressor model fit (black)

are shown. Figs. 2.1(b) and 2.1(e) depict the corresponding ideal and simulated

phase time series. In Figs. 2.1(c) and 2.1(f) scatter plots of magnitude (vertical axis,

arbitrary units) and phase (horizontal axis, degrees) are shown for time points during

the active (star) and inactive (circle) periods. The regression for magnitude as a

function of phase, accounting for errors in both variables, is shown by the solid black

line.

The first row of Fig. 2.1 is for a time series with a very strong task related

magnitude changes (CNR = 1) and no task related phase changes (TRPC = 0◦),

as would be expected in a voxel containing only parenchyma. It can be seen that

the phase regressor method preserves the statistically significant block design in the
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corrected magnitude time series with reduced magnitude.

The second row of Fig. 2.1 depicts a time series with a moderate task related

magnitude change (CNR = 0.78) and moderate task related phase change (TRPC =

2◦), as could be expected in a voxel containing a draining vein. In this case, error in

the fit of the magnitude as a function of the phase leads to a statistically insignificant

over-correction of the magnitude data in the phase corrected magnitude data. Thus,

while the original magnitude-only time series exhibits a statistically significant block

design, the corrected time series does not as the phase regressor method subtracts

larger magnitude estimates from the observed magnitude time series during active

blocks, reducing the statistical significance of the activation statistic.

The complex constant phase method [Rowe and Logan, 2004] aims to bias against

time series which exhibit phase changes through an entirely different mechanism than

the phase regressor model. The complex constant phase method models the entire

complex-valued voxel time series in a general linear model. This statistical model

assumes normally distributed noise on the complex-valued data and assumes that the

phase is temporally fixed on a voxel-wise basis. Thus, the model simultaneously fits

a block design to the magnitude data and a constant phase to the phase data. When

a time series exhibits phase changes, the fit of the constant phase to the incorrectly

modeled temporally varying phase leads to an increase in the variance of the residuals

from the fit model. As it is shown in Appendix B, an increase in the variance of

the residuals from the fit model will lower the computed activation statistic. Thus,

the bias against voxels with phase changes in the complex constant phase statistical

method is achieved through the increase of the variance of the residuals from the
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Figure 2.1: Simulation Time Series for CNR=1, TRPC=0◦ (row 1) and CNR=0.78,
TRPC=2◦ (row 2). Figures (a) and (d) illustrate the ideal magnitude time series
(red), simulated magnitude time series (green), phase corrected magnitude time series
(blue) and fit phase regressor model (black). Figures (b) and (e) illustrate the ideal
phase time series (red) and simulated phase time series (green). Figures (c) and (f)
show scatter plots of the active (star) and inactive (circle) time points with phase (in
degrees) on the horizontal axis and magnitude (arbitrary units) on the vertical axis.
The fit of magnitude as a function of phase for the phase regressor method is shown
as a solid line and the mean phase angle and mean magnitude value are shown as
dotted vertical and horizontal lines respectively.
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model in voxels with phase changes. This is opposed to the empirical modeling of the

mangitude-phase relationship determined in the phase-regressor model. Instead of

modeling the draining vein response, the complex constant phase method relies upon

a reduced statistical fit of the model in expected draining veins. This identification

of veins based upon a reduced fit of the model, rather than directly modeling the

venous response, can be a criticism of the complex constant phase statistical model.

Example time series for the constant phase method are shown in Fig. 2.2. The

first row shows an active voxel with a strong magnitude change (CNR=1) and no task

related phase change (TRPC=0◦). This data is the same as presented in Figs. 2.1(a),

2.1(b), and 2.1(c). The magnitude fit is in good correspondence to the data and is seen

that the errors from the phase time series fit result only from the phase noise. The

residual variance from this fit is identical to that of the magnitude-only fit. The second

row includes a time series from a simulated voxel with a moderate magnitude change

(CNR=0.35) and large task related phase change (TRPC=4◦). These parameters

differ from those in Figs. 2.1(d), 2.1(e) and 2.1(f) as the models exhibit favorable vein

reducing characteristics with different CNR/TRPC combinations, as will be discussed

in the next section. As in the previous case, the magnitude fit from the constant phase

method is good, nearly corresponding to the ideal simulated data. However, the

residuals of the phase model are inflated through the addition of the structured phase

change in addition to the random phase noise. This leads to an increase in the variance

of the fit model’s residuals and a corresponding decrease in the associated activation

statistic. Thus, the constant phase method biases against voxels with temporally

non-constant phase, including voxels with task related phase changes because of the
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reduced model fit to the data.

2.3 Computer Simulation Study

2.3.1 Methods

To examine the properties of these statistical activation detection methods under

known conditions a simulation was performed in MATLAB (The Mathworks, Natick,

MA, USA). In the simulation, time courses for each pixel of a 128 × 128 array

were first created using the complex-valued general linear model defined in Eqn.

2.1. In all cases, there was no linear trend in the phase (γ1 = 0). All pixels were

made active so that a non-zero contribution was made by the reference function

to the magnitude and/or phase data (β2 = 0 to σ and γ2 = 0 to 5π/180). The

strengths of the magnitude contributions were determined by setting the temporal

contrast-to-noise ratios (CNR= β2/σ), and the strengths of the phase changes were

determined by setting γ2s, and thus the number of degrees in the task related phase

changes (TRPCs). In all of the 128× 128 pixels, the complex-valued simulated data

was corrupted with randomly generated, normally distributed noise in the real and

imaginary components with a temporal signal-to-noise ratio (SNR= β0/σ) of 20. This

temporal SNR approximately corresponds to the SNR measured in the human data

presented later, as determined by the β0 and σ terms in the magnitude-only general

linear model regression. Each pixel of the 128 × 128 array was assigned a different

CNR-TRPC combination, for a total of 16384 separate combinations. One thousand

iterations of computing activations on different generated data sets were performed to

determine powers of the various method for declaring pixels active above an α = 0.05
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Figure 2.2: Simulation Time Series for CNR=1, TRPC=0◦ (row 1) and CNR=0.35,
TRPC=4◦ (row 2). Figures (a) and (c) illustrate the ideal magnitude time series (red),
simulated magnitude time series (green), and constant phase fit (blue). Figures (b)
and (d) illustrate the ideal phase time series (red), simulated phase time series (green),
and constant phase regression fit (blue). The constant phase regression of the phase
is coincident with the ideal phase time series in (b).
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Bonferroni adjusted threshold in each iteration of this simulation [Logan and Rowe,

2004]. The activation power for a method was defined to be the percentage of times

in the one thousand data sets that a pixel was declared active by that method.

2.3.2 Results

The results of the simulation are shown in Fig. 2.3. The horizontal axis represents

the CNR, as it changes from 0 on the left hand side to 1 on the right hand side in

128 equal steps, and the vertical axis represents the TRPC as it changes from 0◦ on

the top to 5◦ on the bottom in 128 equal steps. Each subfigure depicts a surface

indicating the power of each post-processing method for detecting activations with

the varying CNR-TRPC combinations.

As shown in Figs. 2.3(a) and 2.3(b), both the magnitude-only and phase-only

statistical methods are dependent upon only the CNR and the TRPC respectively.

However, the complex constant phase and complex phase regressor analysis methods

show obvious dependencies upon both the CNR and TRPC. As seen in Fig. 2.3(c),

with small TRPCs, just like the magnitude-only method, the complex constant phase

statistical method declares all voxels with significant CNRs active with high power.

Such TRPC-CNR combinations are observed in parenchymal voxels. However, as

TRPCs increase, this similarity between the magnitude-only and complex constant

phase statistical methods diminishes, as also shown in an abstract by Nencka and

Rowe [2006]. When larger TRPCs are present in the time series, the constant phase

method requires a higher CNR to declare voxels active. In the brain, such voxels with

moderate CNRs and larger TRPCs include voxels which contain draining veins. Thus,

this simulation suggests that the complex constant phase method may bias against
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Figure 2.3: Simulation z-Statistic Activation Power Surfaces. The magnitude-only
(MO, a), phase-only (PO, b) and constant phase (CP, c) methods positive z-statistic
power surfaces are identical to the shown unsigned surfaces. The MO and PO methods
are dependent upon only CNR and task related phase change (TRPC) respectively.
The CP method biases against larger TRPCs. The phase regressor method (PR, d)
includes positive and negative statistics. Positive z-statistic PR method (e) exhibits
a sharp bias against TRPCs and fails if a voxel exhibits a small CNR. When large
TRPCs are observed in voxels, the negative PR method (f) over-corrects for phase-
related magnitude changes.
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such voxels which may contain draining veins. However, if a voxel contains both a

large TRPC and CNR, the constant phase method declares the voxel active with the

same power as the magnitude-only method. These TRPC-CNR combinations can

result from large draining veins which exhibit extraordinarily large CNRs. In such

cases, the constant phase method does not bias against the contaminated voxels. This

suggests that the complex constant phase method may bias against some voxels with

TRPCs while not removing all of them.

As shown in Figs. 2.3(d), 2.3(e) and 2.3(f), the phase regressor method yields

more complicated results than the other methods which are more easily understood

with the analysis of individual time series in Figs. 2.1 and 2.4. In the situations

shown in Fig. 2.1, the phase regressor statistical method performs as expected when

there are small TRPCs and large CNRs by biasing against time series with TRPCs.

However, errors can be introduced into the analysis through errors in the regression

of magnitude as a function of phase. Examples of such errors are shown in Fig. 2.4 as

two simulated time series with identical parameters but different seed values for the

random noise yield different phase regressor statistics. Slight errors in the estimation

of the phase or magnitude variance needed for the fit assuming errors in both variables

can lead to large variation in the fit. With small CNRs this leads to occasional over

and under-correction of the magnitude signal. In Fig. 2.3(e) this is responsible for

the band of moderate power with small CNRs. With larger CNRs, the errors in the

fit from either over-estimating the phase variance or under estimating the magnitude

variance dominate as the magnitude time series are systematically over-corrected. In

Fig. 2.3(f) this is responsible for the large region of determined negative correlation,
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although no negative correlation was simulated.

In the region where the phase regressor method performs as expected, it exhibits

a bias against smaller TRPCs which is sharper than the complex constant phase

method. Additionally the phase regressor method exhibits a bias against smaller

CNRs with no TRPCs that the complex constant phase method does not exhibit.

This simulation on ideal data suggests that the complex constant phase method

may exhibit a more conservative region of activations, possibly including some drain-

ing vein activations with large TRPCs. The phase regressor method may exhibit a

more aggressive bias against draining veins under ideal conditions, but it also may

include many false positives from slight errors in the regression of magnitude as a

function of phase. Additionally, the constant phase statistical method retains the

power of the magnitude-only method at low CNRs when no TRPCs are present while

the phase regressor method requires a higher CNR to find activations.

2.4 Preliminary Human Experimental Study

2.4.1 Methods

A preliminary human study was performed that consisted of a blocked design bi-

lateral finger tapping experiment to yield activation in the primary motor cortex and

an angiogram was obtained to identify large veins. The task consisted of resting

20 seconds, followed by 8 epochs of 16 seconds of tapping and 16 seconds of rest.

Each subject (N=5) performed the task while being imaged using a gradient recalled

echo EPI pulse sequence. Scanning used a GE Signa LX 3T scanner with a quadra-

ture receive coil, where 10 axial slices of 96× 96 were acquired in the motor cortex.
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Figure 2.4: Simulation Time Series for CNR=0 and TRPC=5◦. The first row shows
a time series with the complex data corrupted by normal noise and the second row
shows the same time series with the random noise generated by a different seed
value. Figures (a) and (d) illustrate the ideal magnitude time series (red), simulated
magnitude time series (green), phase corrected magnitude time series (blue) and fit
phase regressor model (black). Figures (b) and (e) illustrate the ideal phase time
series (red) and simulated phase time series (green). Figures (c) and (f) show scatter
plots of the active (star) and inactive (circle) time points with phase on the horizontal
axis and magnitude on the vertical axis. The fit of magnitude as a function of phase
for the phase regressor method is shown as a solid line and the mean phase angle and
mean magnitude value are shown as dashed vertical and horizontal lines respectively.
The expected fit of the magnitude as a function of phase corresponds to the horizontal
dotted line at the mean magnitude value.



2.4 32

Slices demonstrating activation in the primary motor cortex as well as superior slices

containing draining large veins as identified in the angiogram were examined in this

study. The scanning parameters for the EPI acquisitions included a minimum full

k-space TE of 50 ms, TR of 2000 ms, flip angle of 80◦, field of view of 19.2 cm, slice

thickness of 2 mm, and 138 time points. This resulted in 2 mm isotropic voxels. Data

was pre-processed to correct for minor k-space offsets in alternating lines caused by

eddy currents. A time of flight spoiled gradient recalled echo pulse sequence was used

to acquire an angiogram. Parameters for this sequence included an acquisition matrix

of 256 × 256, TE of 5.1 ms, TR of 40 ms, flip angle of 40◦, field of view of 24.0 cm,

and slice thickness of 1.4 mm. This sequence saturates the stationary tissue signal,

allowing the unsaturated in-flowing blood to be imaged as a hyper-intense.

Algorithms developed in MATLAB (The Mathworks, Natick, MA, USA) were

used to compute activations in the functional data. Before computing activations, an

ideal 0/1 frequency filter [Gonzalez and Woods, 1992] was used to remove respiration

and extremely low frequency noise from signal drift in the voxel time courses [Smith

et al., 1999]. Also, the first three time points were removed from analysis to adjust for

signal stabilization. Activation statistics were then computed using the magnitude-

only statistical method, unwrapped phase-only statistical method, phase regressor

statistical method as described in Appendix A [Menon, 2002], and complex constant

phase statistical method as described in Appendix B [Rowe and Logan, 2004]. The

resulting z-statistic activation maps were thresholded using a Bonferroni adjusted

α = 0.05 threshold on a per-slice basis [Logan and Rowe, 2004]. No clustering tech-

niques were considered to show the raw results of applying the statistical methods
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and because the methods were originally presented assuming no spatial correlation

in activations. Each thresholded activation map was overlaid on the first slice of the

functional time series for anatomical reference. Additionally, the corresponding slices

from the angiograms were examined to determine the localization of large draining

veins.

In all subjects eight axial slices were considered, with four through the active

parenchyma and four through superior slices as pial veins draining the motor cortex

run superiorly to the sagittal sinus. The slices with active parenchyma were chosen

as the slices with the highest number of voxels with magnitude-only activation z-

statistics above a slice-wise α = 0.05 Bonferroni adjusted threshold in the motor

cortex. The superior slices with draining pial vein contributions were selected as

slices at least 4 mm superior to the previously described slices and exhibited phase-

only activations [Rowe et al., 2007a] along the cortical surface. These activations

were near the central sulcus and coincided with the anatomical locations of pial

veins in the angiogram. Furthermore, signal loss due to venous dephasing was also

observed in the regions of the expected draining veins. EPI slices were not registered

to the corresponding angiogram slices because small scale B-field inhomogeneities

caused minor warping in the EPI images preventing accurate alignment with the

small structures observed in the angiogram.

2.4.2 Preliminary Results

Representative activation maps shown in Fig. 2.5 . The anatomical underlays for

these parenchymal and venous slices are shown in Figs. 2.6(a) and 2.6(c), respectively,

with the angiograms shown in Figs. 2.6(b) and 2.6(d). Note that the activations in
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the parenchymal slice (Fig. 2.5(a)) do not correspond with hyper-intense signal in the

angiograms while the activations in the venous slice (Fig. 2.5(e)) are well localized

with the hyper-intense vascular signal in the venous slice. Furthermore, stronger

negative activation statistics are found with the phase-only statistical method in the

regions of the active veins in Fig. 2.5(f), while very few phase-only activations are

found in the parenchymal slice in Fig. 2.5(b). Other less significant phase activations

are seen in Fig. 2.5(f), as likely the result of task related, out of field of view motion.

The parenchymal slice constant phase activations in Fig. 2.5(c) are a subset of the

activations found through the magnitude-only method in Fig. 2.5(a). The constant

phase activations in the parenchymal slice are a small subset of the magnitude-only

activations, although the voxels do not exhibit statistically significant TPRCs. The

reduction of constant phase activations is only partially explained by sub-threshold

TRPCs. At this time, the data is not of sufficient quality to produce the stable phase

time series required for the complex constant phase statistical model. The constant

phase model is vulnerable to instabilities in the phase time series, not only phase

instabilities which correlate with the task. In the real data, phase instabilities which

are off the task frequency exist. Thus, in the parenchymal slice, both sub-threshold

TRPCs and other temporal phase instabilities lead to lowering the statistical signif-

icance of the suspected constant phase parenchymal activations. As discussed later,

modified acquisition techniques may improve the phase stability of the time series

and thus improve the results of the constant phase model.

The results of the constant phase method in the venous slice (Fig. 2.5(g)) are

also a small subset of the magnitude-only activations (Fig. 2.5(e)). As apparent
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(a) Parenchymal Slice Anatomical (b) Parenchymal Slice Angiogram

(c) Venous Slice Anatomical (d) Venous Slice Angiogram

Figure 2.6: The anatomical underlays for the representative parenchymal and venous
slices shown in Fig. 2.5 are shown here in (a) and (c). The corresponding time of flight
angiograms from those slices are shown in (b) and (d). The vasculature is imaged as
hyper-intense in the angiogram, and it is apparent that the venous slice activations
are co-localized with the imaged vasculature while the parenchymal slice activations
are not. The locations of probable active veins are circled in (c) and (d).
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in Fig. 2.5(f), significant TRPCs are observed in the MO active voxels with large

TRPCs in the suspected draining veins. The constant phase method thus biases

against the voxels with TRPCs as shown in the simulation. Voxels with large TRPCs

coupled with large CNRs are found to be active while voxels with smaller CNRs are

eliminated. This bias is likely the result of the observed TRPCs from the draining

veins and, as in the parenchymal case, other unmodeled temporal phase variation.

The phase regressor activations in the parenchymal slice are shown in Fig. 2.5(d).

These activations correlate quite well with the magnitude-only activations in the

parenchymal slice. This is consistent with an ideal method designed to reduce drain-

ing vein contributions as the parenchymal slice activations are not eliminated. The

statistical significance of the parenchymal slice activations is generally lower than

found with the magnitude-only method, likely because of the sub-threshold TRPCs

observed in these voxels. Thus, with sub-threshold TRPCs, the phase regressor acti-

vations in real parenchymal data are consistent with the simulated activations.

Venous slice activations found with the phase regressor method are shown in Fig.

2.5(h). These activations include several unexpectedly located activations which are

not present in the magnitude-only or complex constant phase activations. These

several unexpectedly located phase regressor activations throughout the brain result

from errors in the regression of the magnitude as a function of phase when significant

TRPCs are present. This is also seen in the simulation in Fig. 2.3(f) where the phase

regressor method over compensates for the positive correlation with task in the phase

data in several voxels to yield unexpected negative phase regressor activations. In this

experimental data, many voxels with negatively correlated task related phase changes
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% Voxels also MO Active
All Slices Parenchymal Slices Venous Slices

CP 85.6% 86.8% 88.8%
PR 31.7% 36.8% 37.8%

% Voxels also PO Active
All Slices Parenchymal Slices Venous Slices

CP 15.7% 14.8% 20.4%
PR 42.6% 34.3% 40.1%

Table 2.1: Percentage of constant phase and phase regressor activations which are
also magnitude only and phase only activations.

are found to have positive phase regressor activations as the simulation predicts. Thus,

the confounding factors in the phase data which lead to unexpectedly located phase-

only activations propagate into the phase regressor activations. This is clearly not

a property which an ideal method for eliminating draining vein activations would

exhibit.

The trends illustrated in the above representative data set extend through all

subjects as shown in Table 2.1 which consolidates the data from all subjects. It is

apparent that most of the constant phase activations are also magnitude-only acti-

vations. Fewer of the phase regressor activations are also magnitude-only activations

as the problem of false positives arising from the problematic fit of magnitude as a

function of phase. As both methods are argued to reduce magnitude-only activations

by biasing against voxels with task related phase changes, the constant phase method

favorably finds a subset of the magnitude-only activations to be above threshold,

while the phase regressor method appears to have an increased rate of false positives.

Further illustrating the problem of the phase regressor statistical method failing

when significant TRPCs are present, the median phase-only activation statistic for
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the phase regressor active voxels is 4.62. This is significant with a relatively strong

Bonferroni adjusted α = 0.10 threshold. The complex constant phase statistical

model, which consistently exhibits a bias against voxels with large TRPCs in both

the simulated and real data, however, has a median phase-only activation statistic of

1.95 in its active voxels. This is not significant with a weak, uncorrected α = 0.05

threshold. Based only upon this, the complex constant phase statistical method

appears more favorable.

However, the complex constant phase method is relatively conservative and finds

a small subset of the magnitude-only activations to be active. Only 18.1% of the

magnitude-only activations in all slices are also constant phase activations (14.5%

in parenchymal slices and 22.7% in venous slices). In all cases, significant non-task

related phase changes in the real data challenge the complex constant phase model’s

assumption of constant phase, leading to reduced activation statistics. Only when

large CNRs are present does the complex constant phase method find activations.

Such CNRs are present in highly active cortex and delocalized veins with large TR-

PCs. As shown in the simulation, voxels with large TRPCs and large CNRs are not

eliminated by the complex constant phase statistical method. It is the coupling of

large TRPCs with large CNRs that leads to the increase of correspondence between

the magnitude-only and complex constant phase activations in the venous slices.

The phase regressor method finds a higher percentage of the magnitude-only acti-

vations. In all slices, 56.1% of the magnitude-only activations are also phase regressor

activations. In parenchymal slices 59.9% of the magnitude-only activations are found,

while 55.7% of the venous slice magnitude-only activations are active through the
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phase regressor method. This, of course, is tempered by the tremendous number of

phase regressor activations which are not also magnitude-only activations.

2.5 Discussion and Conclusion

The data presented in this chapter raises challenges to the applicability of statistical

activation methods which reduce draining vein contributions to real data. Simulations

have revealed the vulnerability of the phase regressor statistical method to slight errors

in the estimates of the baseline magnitude and phase variance in the regression of

magnitude as a function of phase. This leads to over correction of the magnitude

data when large task related phase changes are present in the data. This problem

was illustrated in both simulated and real data with the presence of apparent false

positives.

A current challenge of the complex constant phase method was also illustrated

in the presented experimental data. As the method relies upon a reduced fit of

the data to the constant phase model to eliminate draining vein activations, the

complex constant phase statistical method also biases against voxels with non-task

related phase instabilities in current real data and unshown simulations. This problem

was illustrated in the real data in this chapter with the reduction of activations in

parenchymal data with sub-threshold task related phase changes.

Modifications to the implementations or data collection methods for both the

phase regressor statistical method and the complex constant phase statistical method

might need to be made for either to reliably bias only against voxels with task related

phase changes. Because the variance in the magnitude data is generally expected to

be far greater than the variance in the phase data, an implementation of the phase
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regressor method assuming error only in the magnitude values is reasonable. Such

unpublished implementations exist and preliminary investigations show that they

reduce the false positives observed in this study. Further work needs to be done to

evaluate different methods for computing the regression of magnitude as a function

of phase in an attempt to reduce the vulnerability to over corrections.

The complex constant phase statistical method relies upon data with a relatively

temporally constant phase, and further work needs to be done to ensure the temporal

stability of the global phase signal. This includes either filtering the acquired phase

signal to remove non-task related temporal variations, or collecting data with more

temporally stable phase time series. The latter includes the acquisition of dynamic

B-field maps with each TR to correct for global phase changes [Roopchansingh et al.,

2003], the acquisition of smaller voxels where less dephasing can occur, and the re-

duction of TE to reduce the time for disparate phases to accrue. Furthermore, a

complex data model which directly models both the magnitude and phase, with a

phase reference function accounting for global B-field changes, such as that presented

by Rowe [2005a], may yield improved results without the limitations of the constant

phase restriction.

Once these models and data acquisition methods are improved to reliably bias

against draining veins in simple quadrature-detected data, they could be generalized

for use with multi-coil methods which are growing in popularity. Such receive coils

can yield different phases for the same spatial locations in the reconstructed images

from each channel. These different phases from each of the channels will clearly

lead to complications in these statistical methods which utilize phase. Appropriate
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consideration for the phase in such multi-channel acquisitions should be examined so

that these methods may be expanded to accommodate such data sets.

We have found that data, as traditionally acquired and processed for standard

magnitude only fMRI studies contains many phase instabilities which much be ad-

dressed for complex data analysis methods to be robustly implemented. These insta-

bilities lead to the generally decreased power of the complex constant phase method.

These instabilities may be addressed through the processing of the complex-valued

data. Methods must be developed to both process the data to improve the quality

of the complex-valued data and evaluate the effects of such processing on computed

statistical results.



Chapter 3

Image processing

With the need for processing complex-valued data illustrated in the previous chap-

ter, specifically the need for temporally processing the phase signal to remove global,

non-task related phase fluctuations, we have developed a linear framework to both

process complex-valued data and include the effects of processing complex-valued

data in applied statistical models. This chapter and the following chapter define the

mathematical framework and offer analytical and experimental results to verify the

framework. In this chapter, we specifically consider spatial processing of the data.

The assumption is made that identical spatial processes will be applied to every image

in an acquired time series. We develop linear operators for processes to censor and re-

order acquired echo planar imaging (EPI) data, apply corrections for artifacts which

cause Nyquist ghosts, calculate the effects of intra-acquisition decay and magnetic

field inhomogeneity, apply shifts and rotations to acquired images, apodize k-space

data, perform Fourier reconstruction, and apply image-space convolution. With the

developed operators, we computationally determine the effects of the processes on

43
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the mean, covariance, and correlation structure of ideal, uncorrelated data. Some

processes are shown to introduce spatial correlation into ideally uncorrelated data.

Furthermore, multiple serial processes are shown to alter spatial covariance and cor-

relation in ways that are not the simple summation of the effects of each process. The

developed framework also provides the opportunity to consider acquisition parame-

ters which would yield optimal covariances in acquired data when given reasonable

approximations for the physical properties of the system being imaged.

3.1 Introduction

Magnetic field gradients can be used in magnetic resonance imaging to encode the

measured signal as a linear transformation of the object being imaged. An inverse

transform is then applied to the acquired signal to reconstruct an image of the object.

As the encoding and reconstruction are linear transformations, they can be considered

through the constructs of linear algebra as multiplications of matrices upon vectors

representing either the physical object or the acquired signal. Rowe et al. [2007b]

have recently published a description of this mathematical formalism, using Fourier

encoding and reconstruction as a specific example. In the case of Fourier encoding,

the acquired data is in the spatial frequency space, k-space, and it is reconstructed

through the inverse Fourier transform to image-space. In addition to describing the

mathematical formalism of image reconstruction, the work also illustrated that, be-

cause of the linear properties of the reconstruction, correlated observations in k-space

lead to correlated volume elements, or voxels, in the reconstructed image.

Correlated voxels, which necessarily arise from correlated k-space measurements,

are the basis of functional connectivity studies [Biswal et al., 1995]. These connectivity
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studies determine voxels to be connected if their time series exhibit high correlations.

Common techniques, including cross correlation analysis, principle component analy-

sis (PCA), and independent component analysis (ICA), have been used to determine

regions with high correlations in their time series [Biswal et al., 1995, Friston et al.,

1993, van de Ven et al., 2004]. Regardless of the analysis method, voxel correlation,

and thus k-space correlation, affect the measured voxel connectivity.

The low temporal frequency physiologic processes upon which functional connec-

tivity studies rely are clearly not the only sources of voxel correlation. Global signal

fluctuation may arise from physiologic processes [Glover et al., 2000, Pfeuffer et al.,

2002, Birn et al., 2006, Shmueli et al., 2007]. As described by Rowe et al. [2007b],

temporal autocorrelation in the acquired signal also may lead to image-space voxel

correlation. Artifactual time series correlations have also been observed in inanimate

phantom studies [Kriegeskorte et al., In Press]. Additionally, as this chapter de-

scribes, operations on k-space data before reconstruction and image space data after

reconstruction can produce correlations in voxels. Sequences of spatially correlated

images lead to temporally correlated time series. Clearly one must be mindful of

the effects of such operations when drawing conclusions from functional connectivity

(fcMRI) and functional (fMRI) data.

In this chapter we consider several operations. These include: Fourier encoding

anomalies, k-space observation censoring, k-space line shifting, symmetric k-space

generation, and smoothing through k-space windowing, zero filling, and image-space

convolution. We first develop linear operators for the mentioned operations and show

toy examples of each using an 8 × 8 data set. We then utilize the operators to
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theoretically examine image-space correlations associated with the operators under

more relevant parametrizations, including 96×96 data acquisition arrays. Finally we

illustrate the results of the operations in acquired 96× 96 phantom data.

3.2 Theory

3.2.1 Operator Development

In this section we extend the mathematical formalism of image reconstruction

presented by Rowe et al. [2007b] to a more general case. We describe Cartesian Fourier

reconstruction for the sake of demonstration, although the mathematics hold true for

any linear reconstruction operator. Other linear operators may include regridding

operators for non-Cartesian k-space sampling methods. First we further extend the

previously published statistical model to include the data as it is ideally collected.

This includes modeling the points acquired during the phase encoding blips of echo

planar imaging (EPI), and the reversal of lines acquired with negative frequency

encoding gradients. We describe models of Fourier encoding anomalies, k-space line

shifting, symmetric k-space generation, zero filling, and multiplication of the k-space

observations with a windowing function in light of the extended statistical model.

Rowe et al. [2007b] have described complex-valued Fourier reconstruction through

a real-valued isomorphism such that a vector of the reconstructed image, y, is the

product of a Fourier reconstruction operator,Ω , with a vector of the observed k-space

observations, s:

y = Ωs. (3.1)
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In the above equation, if the reconstructed image is m rows by n columns, y is a

vector with mn real image values stacked above mn imaginary image values, Ω is a

reconstruction operator array with dimensions of 2mn×2mn, and s is a vector of mn

appropriately ordered real Cartesian k-space observations stacked above mn imagi-

nary Cartesian k-space observations. The Cartesian Fourier reconstruction operator

may be written as

Ω =




$(ΩC) −%(ΩC)

%(ΩC) $(ΩC)



 , (3.2)

where $(·) and %(·) take the real and imaginary parts of the arguments respectively,

andΩ C is the Kronecker product of two matrices,Ω x andΩ y, which Fourier transform

the columns and rows of the acquired k-space, respectively,

ΩC = Ωx ⊗ Ωy.

The Kronecker product, denoted by ⊗, multiplies each element of the first matrix by

the entire second matrix. The jkth element ofΩ x, where j and k are indices from 0

to n− 1, may be written as

(Ωx)jk = w(−n
2 +j)(−n

2 +k),

where w = 1
ne

i2π
n for the inverse Fourier transform and w = e

−i2π
n for the forward

Fourier transform. A similar matrix of dimension m exists forΩ y.

Under the formalism of Equation 3.1, if the k-space observations have a covariance

matrix of cov(s) = Γ0, the resulting reconstructed image-space values have a covari-
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ance matrix ofΩΓ 0ΩT , where T denotes transposition. Here we develop operators,

O, such that the acquired signal, S, may be processed as desired and transformed to

image-space. It is helpful to note that s represents the properly ordered k-space data

while S represents the real/imaginary k-space observation pairs acquired along the

k-space trajectory, including points acquired during echo planar imaging phase en-

coding blips. With such operators developed, the original reconstruction relationship

shown in Equation 3.1 may be more appropriately modeled as

y = OS, (3.3)

with a covariance matrix resulting from the k-space covariance matrix,Γ , calculated

as

cov(y) = OΓOT . (3.4)

In light of the new parameterization, if the originally collected k-space data, S, has

mean of S0 , the final reconstructed complex-valued image, y, has a mean of OS0 and

a covariance matrix as shown above.

The covariance structure of the square of the magnitude data may be derived from

this complex data covariance matrix. The covariance matrix for the square of the

magnitude data is considered as an analytical solution exists in the described linear

framework. The magnitude operation, being non-linear in nature, does not extend

well to the described framework. Nevertheless, it can be shown that the magnitude

squared covariance asymptotically approaches the magnitude covariance. It will be

seen that the magnitude squared correlation structure, which is asymptotically equal
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to the magnitude data correlation structure, is generally found to exhibit similar

properties to the real and imaginary correlation structures. A brief derivation of the

magnitude squared covariance matrix is included in Appendix C.

In light of this framework, the effects of several processing techniques will be con-

sidered. The mean, covariance, and correlations will be computed for each operation

on the complex and magnitude squared data. A brief description of each operator

follows, with expanded descriptions of their compositions included in the appendices.

Anomalies in Fourier Encoding

The k-space observation process is often assumed to be instantaneous at the echo

time, TE [Haacke et al., 1999]. Under that assumption, and assuming an exponen-

tial intra-acquisiton decay map of T ∗
2 (x, y) and magnetic field inhomogeneity map of

∆B(x, y), the acquired k-space signal is

s(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
ρ(x, y)e−TE/T ∗2 (x,y)eiγ∆B(x,y)TEe−i2π(kxx+kyy)dxdy, (3.5)

where γ is the proton gyromagnetic ratio and ρ is the proton spin density. The

k-space points are defined by the temporal integral of the applied magnetic field

gradients applied along the appropriate directions:

kx =
γ

2π

∫ t

0

Gx(t
′)dt′, ky =

γ

2π

∫ t

0

Gy(t
′)dt′.

Thus, the observed k-space data, encoded in time, is assumed to be the Fourier

transform of the proton spin density weighted by the intra-acquisition decay and
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with a phase determined by the magnetic field inhomogeneity. The image-space

representation may then be recovered with an inverse Fourier transform. An image of

the ideal 128× 128 Fourier,Ω , operator, described above and in Rowe et al. [2007b],

for an 8× 8 image array toy example is shown in Figure 3.1(a). Each column of this

operator corresponds to either the real or imaginary part of a voxel of the original

8× 8 image array, and each row corresponds to either the real or imaginary part of a

voxel of the processed image array. This operator is described as ideal as it does not

account for T ∗
2 or∆ B effects.

However, as the definition of k-space locations suggests, the k-space observation

process occurs over a finite duration of time, with each k-space measurement being

sampled at a unique time point. Thus, the k-space signal equation may be more

appropriately considered as

s(kx, ky|t) =

∫ ∞

−∞

∫ ∞

−∞
ρ(x, y)e−t/T ∗2 (x,y)eiγ∆B(x,y)te−i2π(kxx+kyy)dxdy, (3.6)

when the k-space point (kx, ky) is sampled at time t = t(kx, ky). With the t(kx, ky)

variable changing for each k-space measurement, image blurring from intra-acquisiton

decay and image warping from magnetic field inhomogeneities may occur [Jesman-

owicz et al., 1998, Jezzard and Balaban, 1995]. Thus, the Fourier transform operator

developed by Rowe et al. [2007b] may be modified to account for non-instantaneous

k-space observation in a modified Fourier operator,Ω a. Each row of the operator is

modified with exponential terms for T ∗
2 (x, y) and∆ B(x, y) as described in Appendix

D.

The inclusions of these parameters finely alter the structure of Ω to arrive at
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Ωa. Two examples ofΩ a are shown in Figures 3.1(b) and 3.1(c). Figure 3.1(b)

illustrates a Fourier matrix that accounts for a spatially uniform T ∗
2 decay. The

element values tend toward zero in the later portion ofΩ a because of the exponential

decay. Figure 3.1(c) illustrates a Fourier matrix that accounts for a magnetic field

gradient in the frequency encoding direction. This array is clearly different from the

ideal Fourier array in Figure 3.1(a) and the array including decay in Figure 3.1(b).

This Fourier array is essentially a skewed version of the ideal array. In both the cases

of intra-acquisition decay and magnetic field inhomogeneity, an external measure

of the perturber must be utilized. A T ∗
2 (x, y) map may be acquired through the

consideration of the magnitude of separate scans with varying echo times, and the

∆B(x, y) map may be acquired through the consideration of the phase of separate

scans with varying echo times.

Obtaining s from S

In Equation 3.1, s is assumed to include only the properly ordered k-space observa-

tions located on the Cartesian k-space grid. However, as the k-space data is acquired

in echo planar imaging (EPI), this is not true of the collected signal. Rather, the

collected k-space data, S, is observed as real-imaginary pairs throughout the k-space

traversal defined by the pulse sequence. Thus, in addition to including point-wise real-

imaginary pairs instead of a column of real observations above a column of imaginary

observations, the acquired data includes e extra points acquired during the phase

encoding blips and incorrectly ordered observations from the negative frequency en-

coding lines in echo planar imaging. If the acquired k-space point at row r and column

c on the desired k-space grid is denoted as sr,c,R/I , where the final R/I index indi-
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cates that the observation is real or imaginary, and the extra k-space points acquired

during the phase encoding blips are denoted as Er,ep,R/I , with ep indexing the extra

point number, the actually acquired data is the long vector

S = [s1,1,R, s1,1,I , . . . , s1,n,I , E1,1,R, . . . , E1,e,I , s2,n,R, s2,n,I , s2,n−1,R, . . . , Em,e,I ]
′.

However, the data required for the reconstruction in Equation 3.1 is

s = [s1,1,R, s1,2,R, . . . , sm,n,R, s1,1,I , . . . , sm,n,I ]
′.

Therefore, points in S must be censored and its component lines reordered to produce

the s required in Equation 3.1. This can be performed in the three steps of censoring

extra points, reversing alternating lines, and segregating real and imaginary observa-

tions. Censoring may be performed with a censoring matrix, C, row reversal may be

performed with a permutation matrix, R, and the separation of real and imaginary

data may be performed with another permutation matrix, PC . The construction of

these operators is discussed in Appendix E, and the operators are shown in Figures

3.1(d), 3.1(e), and 3.1(f), respectively.

Thus, the process of converting the acquired data to the required data for Equation

3.1 may be considered as

s = PCRCS. (3.7)

As the operators in Equation 3.7 are censoring and permutation matrices, considering

their effects on uncorrelated k-space observations is trivial. In the case of uncorrelated
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k-space observations, Γ= Im(n+e). The covariance between the processed k-space

observations,Γ PcRC , is

ΓPCRC = PCRCIm(n+e)C
T RT P T

C

ΓPCRC = Imn.

Thus, the processes of censoring, reversing, and permuting uncorrelated k-space ob-

servations does not yield correlated k-space values as it can be shown that CCT = I,

RRT = I and PCP T
C = I. However, if identity k-space covariance matrix Γ is not

assumed, these processes will alter the covariance.

Line Shifting

Unmodeled gradient timing errors and eddy current effects may cause alternating

k-space lines to be shifted in EPI acquisitions [Haacke et al., 1999]. This shifting

results in the N/2 or Nyquist ghost artifact associated with EPI. An offset term is

introduced in the signal equation,

s(kx, ky|t) =

∫ ∫
ρ(x, y)e−t/T ∗2 (x,y)−iγ∆B(x,y)t+i(−1)"2π∆kxxe−i2π(kxx+kyy)dxdy (3.8)

where∆ kx is the effective eddy current k-space shift and + is the frequency encoding

line number in Equation 3.8. These shifts can be estimated and corrected to reduce

such artifacts in the reconstructed images. Such shifts are often determined through

the use of navigator echoes [Jesmanowicz et al., 1993] or reference scans [Bernstein

et al., 2004]. Thus, opposite shifts are then applied to the acquired k-space lines to
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realign them. The application of these shifts involves the use of the Fourier shift the-

orem. Each line is Fourier transformed, multiplied by a complex-valued exponential,

and then inverse Fourier transformed to the shifted state. Thus, the process of shift-

ing the k-space lines can be considered in several steps: The vector s is re-ordered to

group real and imaginary observations from each line together; The lines are Fourier

transformed; The transformed lines are multiplied by a complex-valued exponential;

The phase altered lines are inverse Fourier transformed into shifted lines; The shifted

lines are re-ordered to the original ordering of s. Thus, three operators need to be

constructed: a permutation operator, PR, to convert from s with the reals for the

image stacked above the imaginaries for the image to a vector of reals stacked above

imaginaries for each row; a row Fourier transform operator,Ω row, to transform each

of the rows; and a phase shift operator,Φ , to alter the phase of the transformed

rows. Additionally, inverses of the permutation operator, trivially P−1
R = P T

R , and

Fourier transform operator,Ω −1
row, are needed. The details of these three operators

are given in Appendix F, and image representations of them are shown in Figures

3.1(g), 3.1(h), and 3.1(i).

With the permutation, Fourier transform and phase shift operators defined, shift-

ing the acquired k-space lines alternating directions to yield a corrected set of k-space

observations simply involves linear algebra:

scorrected = P−1
R Ω−1

row Φ Ωrow PR s. (3.9)

Thus, when performed on a time series of images, the reconstructed mean and co-
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variance are altered by the processes in Equation 3.9 to

E(y) = Ω P−1
R Ω−1

row Φ Ωrow PR s0 (3.10)

and

cov(y) =
(
Ω P−1

R Ω−1
row Φ Ωrow PR

)
Γ

(
P−1

R ΩT
row ΦT (Ω−1

row)T PRΩT
)
, (3.11)

where s0 = E(s) in Equation 3.10 is the mean k-space observation vector andΓ 0 =

cov(s) in Equation 3.11 is the mean k-space covariance matrix. It should be once

again noted that if Γ= I, then

(
Ω P−1

R Ω−1
row Φ Ωrow PR

) (
P T

R ΩT
row ΦT (Ω−1

row)T (P−1
R )T ΩT

)
= I (3.12)

because it can be shown that each of the operators in Equation 3.12 multiplied by their

transposes yield identity matrices. IfΓ '= I, the mean, covariance, and correlation

will be altered by the operations, leading to the correlation of a voxel with its ghost

location.

Symmetric k-space Generation

Symmetric k-space generation relies upon the symmetry of k-space about the origin

under complex conjugation when a real-valued object is imaged. This symmetric

generation has been used in partial Fourier acquisitions [Jesmanowicz et al., 1998].

In the simplest case the first m/2 + 1 lines of k-space are acquired and the final

m/2− 1 lines are generated through the symmetry relationship. The partial Fourier
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interpolation matrix, H, is described in Appendix G. A graphical representation of

H is shown in Figure 3.1(j) for the case of an 8 × 8 symmetric k-space generation

from a 5× 8 k-space acquistion.

With this partial Fourier reconstruction matrix, the omitted data is generated

using the k-space symmetry relationship with the matrix multiplication sS = H s.

In the event of a full k-space acquisition, no symmetric data need be generated and

H = I. Effects of partial Fourier processing on a data set may be considered with

the modified reconstructed mean and covariance being

E(y) =Ω Hs0

and

cov(y) =Ω HΓ0H
T ΩT . (3.13)

Note that HHT '= I when a partial k-space acquisition is made. It is seen that

partial k-space reconstruction necessarily requires k-space observations to be corre-

lated. Therefore, as the process of reconstruction is linear, image-space observations

must exhibit a correlation. Thus, the operator modifies the covariance and correla-

tion. Of course, the reconstruction of an image with fewer points in partial Fourier

reconstruction additionally yields increased variance.

Smoothing with k-space Windowing and Image-Space Convolution

Smoothing of the complex-valued data may be performed during apodization,

zero-filling, or explicit image smoothing operations. The Fourier convolution theo-

rem allows complex-valued image-space convolution to be considered with k-space
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windowing. Thus, zero-filling, k-space apodization, and image-space complex data

smoothing may be considered with operators of the same form. Because of the image-

space convolution associated with these processes, it is obvious that they have a non-

negligible effect on image-space voxel correlations. In Appendix H, we describe a zero

filling operator, F , and an apodization operator, A. The apodization operator may

include any windowing function, including the usual Fermi, Tukey, Hanning or Gaus-

sian apodization windows. In Appendix H, we also describe an operator, Sm, which

may be implemented on magnitude or magnitude squared data to yield image-space

smoothing. The zero-filling operator is shown in Figure 3.1(k), the apodization oper-

ator in Figure 3.1(l), and the image-space magnitude smoothing operator in 3.1(m).

As it is well known, convolution alters the image mean, covariance, and correlation.

Thus, even if Γ= I, the application of these operators alters the data as it will be

shown.

3.3 Operator Implementation

With the above linear operators defined, it is possible to mathematically determine

the image-space correlations resulting from applying the operators to k-space data

with a covariance matrix, cov(S) =Γ . The image space covariance, cov(y), after

applying an operator, O, to k-space data with a covariance matrix of Γ is defined in

Equation 3.4.

Without loss of generality, we describe here the case of applying the operators to

uncorrelated k-space data. Thus, Γ is assumed to be the identity matrix. Therefore,

Equation 3.4 simplifies to cov(y) = OOT . It is clear from this that if OOT = δ2I,

where δ2 = 1/(m2n2) is a scalar introduced by the inverse Fourier transform, then
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(a) Fourier,Ω (b) Uniform T ∗
2

Fourier,Ω a

(c) B0 Gradient
Fourier,Ω a

(d) Censoring,
C

(e) Row Rever-
sal, R

(f) Complex
Permutation,
PC

(g) Row Permu-
tation, PR

(h) Row
Fourier,Ω row

(i) Phase Shift,
Φ

(j) Partial
Fourier, H

(k) Zero Filling,
F

(l) Apodization,
A

(m) Magnitude
Smoothing,
Smm

Figure 3.1: Toy example operators.



3.3 59

the resulting image-space observations have scaled identity covariance matrices. With

the covariance matrix known, the correlation matrix may be exactly calculated as

cor(y) = D−1/2cov(y)D−1/2, (3.14)

where D = diag(cov(y)).

As it was mentioned in the description of the operators, the censoring of the

k-space observations, row reversal, reordering, and line shifting operators yield no

image-space correlations in uncorrelated k-space data as in each case the operator

multiplied by its transpose results in an identity matrix. If the k-space covariance ma-

trix is not the identity, the operators will modify the covariance and correlation. More

interesting results follow from the application of the operators including anomalies in

the Fourier encoding process, partial Fourier reconstruction and k-space windowing

or image-space convolution. In the following sections we consider these operators

individually and serially in the case of a 96× 96 data acquisition.

In the following calculations, physical parameters similar to those in typical fMRI

studies were considered. The maps of the physical parameters and apodizers con-

sidered are shown in Figure 3.2. The proton spin density, ρ shown in Figure 3.2(a),

was assumed to be zero outside of the phantom, and unity within the phantom.

The intra-acquisition decay, T ∗
2 shown in Figure 3.2(b), was considered as a modified

Shepp-Logan phantom which was scaled to physically relevant values from 10 to 100

ms. The B field inhomogeneity was considered as a horizontal gradient from 0 to

2.5 × 10−6 T, as shown in Figure 3.2(c). This B field inhomogeneity is significant,

but on the order of the inhomogeneity observed in the inferior frontal lobe. The



3.3 60

timing of the k-space observations is shown in Figure 3.2(d), and is representative

of a standard EPI pulse sequence with an acquisition matrix of 96 × 96, bandwidth

of 250 kHz, effective echo spacing of 0.96 ms, and echo time of 50 ms. The consid-

ered k-space apodization filter, shown in Figure 3.2(e), is a Gaussian window with an

image-space representation shown in Figure 3.2(f). The image-space representation

has a full width at half maximum of 3 pixels. Partial Fourier reconstruction was

considered with 16 overscan lines. When the processes were not considered in the fol-

lowing calculations the parameters for the unconsidered processes are equivalent to:

T ∗
2 as a uniform, infinite map;∆ B as a map of zeroes; and the apodization window

as a map of ones.

Calculations were made to examine the intra-acquisition decay, B field inhomo-

geneity, partial Fourier interpolation, and k-space apodization operators individually.

Additionally, the combination of intra-acquisition decay, partial Fourier interpolation

and k-space apodization performed serially was evaluated. Results illustrating the

processed image means are shown in Figure 3.3, and the correlations for the center

pixel in the processed images with all other pixels are shown in Figure 3.4. The first

and second columns of Figure 3.3 illustrates the mean magnitude and phase images,

while the third and fourth columns respectively illustrate the mean real and imagi-

nary images. Each row of Figure 3.3 illustrates the results on the mean image in light

of a different processing pipeline. Figure 3.4 illustrates the correlations for the center

pixel for the same processing cases. Additionally, correlation coefficients for the four

neighbors of the center pixel are shown in Table 3.1 for several processing pipelines.
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3.3.1 Fourier Anomalies

As it has previously been described, intra-acquisition decay yields an increase in

the point spread function in the phase encoding direction [Jesmanowicz et al., 1998].

The increase in the point spread function occurs preferentially in the phase encod-

ing direction because of the decreased effective bandwidth in this direction in EPI.

This can be seen through the apparent blurring of the edges of the phantom in the

magnitude and real images in Figures 3.3(a) and 3.3(c). Nevertheless, slight corre-

lation is noted between voxels in the frequency encoding direction as well in Table

3.1 due to the non-instantaneous acquisition of each k-space line. These correlations

are dramatically less in the frequency encoding direction than in the phase encod-

ing direction because of the remarkably higher bandwidth in the frequency encoding

direction. Additionally, intra-acquisition decay leads to the appearance of edges in

the mean phase and imaginary image in Figures 3.3(b) and 3.3(d). The increased

point spread function in the phase encoding direction is clear in the correlation maps

in Figures 3.4(a), 3.4(b), 3.4(c), and 3.4(d). The magnitude squared point spread

function is less than the real and imaginary point spread functions. Moderate corre-

lation between the real and imaginary data was observed along the phase encoding

direction. The observation of the reduced magnitude squared point spread function

holds true for each of the considered processing pipelines.

Also as previously described, static B field inhomogeneities lead to image warping

and phase generation [Jezzard and Balaban, 1995]. Thus, warping and a bulk shift

in the phase encoding direction is apparent in the mean images that include B field

inhomogeneities in the Fourier operators in Figures 3.3(e), 3.3(f), 3.3(g), and 3.3(h).
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More minor sub-voxel warping also occurs in the frequency encoding direction because

of the higher sampling bandwidth in that direction. The phantom appears warped but

uniform in Figure 3.3(e) as the magnitude data does not contain phase information,

while the horizontally varying phase information is apparent in the phase, real and

imaginary data in Figures 3.3(f), 3.3(g) and 3.3(h). Very small correlations are seen

from the B field inhomogeneity in Figures 3.4(e), 3.4(f), 3.4(g), and 3.4(h). In fact, as

seen in Table 3.1, higher correlation coefficients are observed in the frequency encoding

direction than in the phase encoding direction. Such an observation may corroborate

the observations of Kriegeskorte et al. [In Press] where correlations in the frequency

encoding direction appear to dominate. In this framework with uncorrelated data, B

field inhomogeneities do not significantly alter observed variances.

3.3.2 Partial Fourier Reconstruction

In the ideal calculated case, partial Fourier reconstruction does not visually alter

the mean reconstructed images in Figures 3.3(i), 3.3(j), 3.3(k), and 3.3(l). As ex-

pected with partial Fourier reconstruction, no obvious information is introduced into

the phase or imaginary data. However, as described above, partial Fourier interpola-

tion does slightly alter the mean image and correlation structure, even in this ideal

case. Negligible correlation results between the real and imaginary data as seen in Fig-

ure 3.4(l). Figures 3.4(i), 3.4(j), and 3.4(k) illustrate slight correlations in the phase

encode direction. Note that these correlations are less than those associated with

intra-acquisition decay. In fact, as previously described by Jesmanowicz et al. [1998],

when both partial Fourier reconstruction and intra-acquisition decay are considered,

reduced correlation along the phase encoding direction is observed when compared
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to full Fourier reconstruction in the presence of intra-acquisition decay. Although

Table 3.1 shows slight increases in correlation coefficients in neighboring voxels in

the phase encoding direction with partial Fourier reconstruction, the effective point

spread function in the phase encoding direction is reduced by partial Fourier recon-

struction. It should be further noted that non-zero phase, caused by magnetic field

inhomogeneities, exists in experimental data and leads to further alterations of the

reconstructed mean images. Partial Fourier reconstruction was found to increase vari-

ance in the real and magnitude data while decreasing variance in the imaginary data,

as expected.

3.3.3 k-space Windowing and Image-Space Convolution

Apodization with a Gaussian window clearly alters the reconstructed image means.

The magnitude mean image in Figure 3.3(m) illustrates that the edge of the phantom

is blurred and dilated as a result of convolution of the image-space apodization kernel.

The real mean image shows the same result in Figure 3.3(o). As there is ideally no

data in the imaginary data, apodization does not introduce significant information

into the phase and imaginary mean images in Figures 3.3(n) and 3.3(p), although

the noise appears to be smoothed. Correlations resulting from apodization, shown

in Figures 3.4(m), 3.4(n), 3.4(o) , and 3.4(p), are as expected through the Fourier

convolution theorem. Specifically, the image space-correlations resulting from k-space

apodization are related to the image-space convolution with the Fourier transform of

the k-space apodization window. As convolution with a real valued kernel does not

induce correlations between the real and imaginary data, no correlations are seen in

Figure 3.4(p). Apodization was found to decrease variance as expected with spatial
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smoothing.

3.3.4 Serial Processes

The results of serially considering intra-acquisition decay, partial Fourier recon-

struction, and k-space apodization on the mean images are shown in Figures 3.3(q),

3.3(r), 3.3(s), and 3.3(t). The effects of intra-acquisition decay and apodization ap-

pear to dominate the reconstructed mean images. However, the computed image-

space correlations, shown in Figures 3.4(q), 3.4(r), 3.4(s), and 3.4(t), are not simply

the superposition of the correlations associated with each process. In this result,

some of the utility of the theoretical framework is illustrated as the result of a series

of complicated processing steps may be easily computed. The effects of smooth-

ing from apodization were found to dominate the processed data variance as it was

reduced to the level observed with apodization alone.
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3.4 Experimental Illustration

To illustrate the performance of the operators, their application to phantom data

was considered. Two experimental data sets were considered. The data sets were

acquired on a 3.0 T General Electric Signa LX magnetic resonance imager, with a

spherical doped agar phantom with T ∗
2 = 40.0 ms as the subject. Each data set

consisted of 1024 images of a single 2.5 mm thick, 24.0 cm field of view slice, with a

96× 96 acquisition matrix, minimum full k-space echo time of 50.0 ms, effective echo

spacing of 0.96 ms, 2000.0 ms repetition time, and 250 kHz acquisition bandwidth.

The proton spins were excited with an 80 degree radio frequency pulse in one data

set, and with a zero degree radio frequency pulse in the other data set. The data set

with no excitation pulse was acquired to match the condition of pure noise considered

in some of the above theoretical computations, while the data set with an excitation

pulse more closely matches standard acquisitions.

Data were collected with a custom echo planar imaging pulse sequence, and re-

constructed with locally developed software. With control of the entire acquisition

and reconstruction pipeline, the confounds of unmodeled data processing are reduced.

Nevertheless, some temporal filtering of the k-space acquisitions is performed to sub-

sample the acquired 1 GHz samples to the collected 250 kHz samples. This processing

may result in an autocorrelation of k-space observations, although such a correlation

structure was not observed and is likely obscured by the noise in the experimental

data.

Three navigator echoes of the center line of k-space were acquired to estimate error

in the center frequency, and group delay offsets between odd and even k-space lines
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(a) Proton spin density,
ρ

(b) Intra-acquisition de-
cay, T ∗

2

(c) B-field error,∆ B

(d) k-space time, t (e) k-space apodization
window

(f) Image-space apodiza-
tion window

Figure 3.2: Parameters considered in theoretical calculations.
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(a) Magnitude
T ∗

2

(b) Phase T ∗
2 (c) Real T ∗

2 (d) Imaginary
T ∗

2

(e) Magnitude
∆B

(f) Phase∆ B (g) Real∆ B (h) Imaginary
∆B

(i) Magnitude
partial Fourier

(j) Phase partial
Fourier

(k) Real partial
Fourier

(l) Imaginary
partial Fourier

(m) Magnitude
apodized

(n) Phase
apodized

(o) Real
apodized

(p) Imaginary
apodized

(q) Magnitude
serial

(r) Phase serial (s) Real serial (t) Imaginary
serial

Figure 3.3: Reconstructed mean magnitude, phase, real and imaginary signal with
various processes included. In each case, only the listed operator was included. In
the serial case, T ∗

2 decay, partial Fourier reconstruction, and k-space apodization were
considered.
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(a) Magnitude
T ∗

2

(b) Real T ∗
2 (c) Imaginary

T ∗
2

(d) Real / imag-
inary T ∗

2

(e) Magnitude
∆B

(f) Real∆ B (g) Imaginary
∆B

(h) Real / imag-
inary∆ B

(i) Magnitude
partial Fourier

(j) Real partial
Fourier

(k) Imaginary
partial Fourier

(l) Real / imag-
inary partial
Fourier

(m) Magnitude
apodized

(n) Real
apodized

(o) Imaginary
apodized

(p) Real / imag-
inary apodized

(q) Magnitude
serial

(r) Real serial (s) Imaginary
serial

(t) Real / imag-
inary serial

Figure 3.4: Image-space correlations for the center pixel in magnitude, real, imaginary
and real/imaginary data with various processes included. In each case, only the listed
operator was included. In the serial case, T ∗

2 decay, partial Fourier reconstruction,
and k-space apodization were considered.
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[Nencka et al., 2008]. In the data acquired with an excitation pulse a group delay

of 5.6 µs (1.4 k-space points) between odd and even lines was observed. Without

correction of the group delay, severe Nyquist ghosting existed in the reconstructed

data. This resulted in correlations between image voxels and ghost voxels. Correction

of the group delay error greatly reduced the Nyquist ghost and resulting image-space

correlations. The same group delay error was assumed on the data set acquired

without an excitation pulse. No significant image-space correlations were apparent

before or after application of the group delay error correction, in agreement with

the theoretical result that the even and odd line shifts do not induce correlation in

pure noise data. The data acquired with no radio frequency excitation was found

to exhibit uncorrelated normally distributed noise in space and time with a mean of

zero. Global, temporal phase structure was corrected in the data set acquired with

radio frequency excitation to account for field shifts associated with gradient heating

and radio frequency phase variation [Hahn et al., 2008]. The data acquired with

radio frequency excitation exhibited uncorrelated noise after phase correction. Thus,

in both the no radio frequency excitation and the dynamic phase corrected data sets,

there are no apparent structured correlations above the background correlations in

the unprocessed data. Correlation coefficients in the experimental data for the four-

neighbors of the center voxel under multiple processing conditions are shown in Table

3.2.

Smoothing of the noise data yields expected results, in agreement with those

which are theoretically computed. The resulting images are shown in Figure 3.5.

The similarity between the magnitude squared, real, imaginary, and real/imaginary
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correlations in the smoothed noise data in Figures 3.5(a), 3.5(b), 3.5(c), and 3.5(d)

and the theoretical cases in Figures 3.4(m), 3.4(n), 3.4(o) , and 3.4(p) supports the

validity of the theoretical method. Some residual phase correlation manifests itself

in the correlation maps for the radio frequency excited data in Figures 3.5(e), 3.5(f),

3.5(g) and 3.5(h). Nevertheless, these results are similar to the theoretically expected

case.

3.5 Discussion

This work extends a line of research which has been briefly mentioned in a paper

[Rowe et al., 2007b], and further developed in conference proceedings [Nencka and

Rowe, 2007a, 2008]. In that work, the underlying theory for computing image-space

correlations based upon k-space processes was developed. We have extended that

work by developing multiple operators for common reconstruction processes which

are defined in the first part of this chapter. We have studied the results of those op-

erators by theoretically computing image-space correlations associated with relevant

implementations. We have examined the validity of the operators and the theoretical

image-space correlations by verifying the results in acquired phantom data.

The results presented in this chapter for individual operations may appear obvious,

as relatively simple operations were considered. However, the utility of the method is

demonstrated when multiple operations are considered at once. With this theoretical

framework, the exact image-space point spread function may be computed following

a string of processing operations on ideally uncorrelated data. This is useful as often

a string of operations are performed on a data set. If all the common processes

described here are implemented on a data set, the reconstructed image would be
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(a) Smoothed noise mag-
nitude squared correla-
tions

(b) Smoothed noise real
correlations

(c) Smoothed noise
imaginary correlations

(d) Smoothed noise
real/imaginary correla-
tions

(e) Smoothed ex-
cited dynamic B-field
corrected magnitude
squared correlations

(f) Smoothed excited dy-
namic B-field corrected
real correlations

(g) Smoothed ex-
cited dynamic B-field
corrected imaginary
correlations

(h) Smoothed excited
dynamic B-field cor-
rected real/imaginary
correlations

Figure 3.5: Image space correlations for the center voxel in the acquired phantom
data with no excitation pulse (noise) and with an excitation pulse (excited) in the
magnitude squared, real, imaginary and real/imaginary data after smoothing.
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represented as

y = SmΩaAFHP−1
R Ω−1

rowΦΩrowPRPCRCS. (3.15)

The complicated process including all the described processing steps in Equation 3.15

lends itself well to this analytic mathematical model that is based upon simple linear

algebra.

Furthermore, the alterations to an arbitrary covariance structure,Γ , may be ex-

amined. By computing the correlation structure following processing procedures on

uncorrelated data, a reasonable null hypothesis threshold for experimental correla-

tions may be considered. Thus, the theoretical method described in this chapter and

previous abstracts may be used to consider how much spatial processing is too much

when considering functional connectivity or fMRI data.

This method may be further expanded with operators for additional processing

operations. Operators for parallel acquisition image reconstruction, transmit/receive

field inhomogeneities, non-cartesian gridding, masking, and image shifting could eas-

ily be developed for the described framework. Additionally, continuing work seeks

to further extend this model to include more relevant temporal processing. A time

series of images could be considered by stacking k-space observation vectors to cre-

ate a time series observation vector, and performing Kronecker products between the

operators and identity matrices with dimensions equal to the number of time series

observations. Under such a parameterization, the effects of temporal processing may

also be examined. Operators for dynamic magnetic field correction [Hahn et al.,

2008, 2009], motion correction [Jenkinson et al., 2002], slice timing correction [Hen-

son et al., 1999], temporal band-pass and notch filtering, and temporal smoothing
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[Gonzalez and Woods, 1992] may be developed by performing the Kronecker product

with matrices other than identities. Thus, the full processing pipeline may be ap-

propriately modeled with an extension to the described framework. In light of such

a framework, statistical models may appropriately model the acquired data, rather

than modeling data which has been preprocessed. Such models may allow scientists

to statistically model the underlying physical changes associated with fcMRI and

fMRI in more natural data [Rowe and Logan, 2004, 2005, Rowe, 2005a], rather than

modeling the observed indirect magnitude signal fluctuations.

Current computational limitations prevent the full implementation of such a sta-

tistical model. For a 96× 96 k-space acquisition matrix, the described operators are

18432 × 18432. If all double precision elements are saved to an array, such an array

requires over 2.5 gigabytes of memory. In many cases, sparse matrix representations

may be considered, but in cases including the Fourier operator or a modified Fourier

operator, each element must be computed. As the matrix multiplication required to

compute the alteration of a covariance matrix based upon the operation, OΓOT =Σ,

requires three separate matrices in memory, O,Γ , andΣ , at least 7.5 gigabytes of

memory must be addressed. Thus, 64-bit computing is essential. Further, hardware

optimized matrix multiplication routines like the BLAS [Dongarra, 2002a,b] are es-

sential for timely computations. If a time series of N images were to be considered,

the memory requirements would grow by a factor of N2 and the time for calculations

would likewise grow. As the number of computing cores in personal computers con-

tinues to grow, and the availability of memory continues to increase, such calculations

for reasonable time series will likely become possible in the relatively near future.
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In spite of these technological issues, this chapter presents an exact theoretical

means of computing image-space correlations which arise from processing operations,

describes the construction of several common operators, presents theoretical results

for common image acquisition techniques, and verifies those theoretical results in ac-

quired echo planar data. The results illustrate that processing operations and physi-

cal processes affect computed voxel correlations, especially in local neighborhoods of

voxels. This has strong implications for methods which consider correlations between

nearby voxels, as the choice of processing techniques and the physical properties of

the imaging subject may substantially affect computed results.



Chapter 4

Temporal processing

This chapter extends the work of the previous chapter. In the last chapter we

described a linear framework for computing the effects of identical spatial processing

procedures on all images of a time series. In this chapter we generalize the linear

framework to include temporal processes as well as spatial processes. This allows the

consideration of common fMRI processing steps including slice timing correction and

temporal filtering. Additionally, this allows the consideration of dynamic magnetic

field correction, which can be applied to experimental data to reduce the limitations

of complex-valued analysis described in Chapter 2. In this chapter, in addition to

describing the generalized linear framework and offering examples of common op-

erators, we describe a means of including the effects of the described operators in

statistical models. Thus, this framework not only allows researchers to evaluate the

possible effects of processing decisions on acquired data, but it also allows researchers

to model the data is it is acquired while including processing procedures in the fit

model.

77
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4.1 Introduction

Data processing is ubiquitous in functional MRI (fMRI) and functional connectivity

MRI (fcMRI). Although processing yields results which are viewed to be improved,

the steps of processing may fundamentally alter the signal and noise properties of the

data and modify the distributional assumptions which can be made. Previous work

has included elaborate Monte Carlo simulations to consider the effects of preprocessing

[Della-Maggiore et al., 2002] and empirical studies to select “optimal” preprocessing

procedures [LaConte et al., 2003, Shaw et al., 2003]. Such work evaluates the effect of

preprocessing on the computed time series statistics to determine the “best” results,

while the processing is not included in the statistical model.

Ideal methods for considering the effects of preprocessing on computed statistics

should allow the processing to be included in the given statistical model. Such a

consideration allows noise assumptions to be more naturally made on the acquired

data, and allows the modification of the signal of interest through the inclusion of

preprocessing of steps. Recent work from this lab has taken a major step in this

direction [Nencka et al., 2009, Nencka and Rowe, 2007a, Rowe and Nencka, 2009].

In that work we developed a framework utilizing linear algebra to model common

image processing techniques, including: static magnetic field correction [Jezzard and

Balaban, 1995], partial Fourier reconstruction [Jesmanowicz et al., 1998], k-space

apodization, zero-filling and image-space smoothing [Bernstein et al., 2004]. Each

of these processing techniques were shown to modify the correlation structure of

observed data, even if the acquired data was uncorrelated.

In this chapter we further advance the linear algebra framework to include tem-
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poral processing of the data. Specifically we develop operators for image registration

[Jenkinson et al., 2002], dynamic magnetic field correction [Hahn et al., 2009], slice

timing correction [Huettel et al., 2004], and temporal filtering [Huettel et al., 2004].

We then demonstrate the operators with a low dimensional toy example. Finally we

illustrate the effects of one operator on an acquired data set as an example.

4.2 Theory

4.2.1 Operator Covariance Modifications

Previous work has shown that the reconstruction process and k-space image pro-

cessing may be represented through linear algebra [Rowe et al., 2007b, Nencka and

Rowe, 2007a, Nencka et al., 2009]. In such cases, the vectorized observed k-space

signal for an image of p voxels, s = (s1, . . . , sp)′, may be multiplied by a reconstruc-

tion and processing operator, O. Thus, if the expected signal is defined by E(s) = s0

and the covariance matrix of the observed signal isΓ , the expected value of the data

after reconstruction and processing is Os0, and the covariance after reconstruction

and processing is OΓOT .

Here we provide an extension to the previous work to allow the consideration of

temporal processes in addition to spatial image processes. The vectorized observed k-

space time series signal may now be considered as sT = (s11, s12, . . . , s1p, s21, . . . , snp)′,

which is a stack of n k-space signal vectors, with each of the n k-space vectors rep-

resenting one time point. Spatial and temporal processes may be considered on the

vector sT with premultiplication with operator matrices, OT . New operators for OT

must thus be constructed to consider the processing of this large time series vector.
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4.2.2 Temporal Operators

In the following sections we describe the construction of an important subset of

possible operators which may be considered in this framework. The operators which

we will describe include: spatial processing of a time series of images, performing

temporally dynamic B-field corrections, performing slice timing correction, shifting

and rotating images for registration, and performing temporal filtering.

In the following sections, an ideal covariance matrix,Γ , is initially assumed, and

all operators are described to act upon the ideal acquired k-space data. Thus, the final

operators illustrated in Figure 4.1 are the product of (1) k-space processing operators,

K, (2) reconstruction operators, R, (3) image-space operators, I, and (4) time series

operators, T . As temporal and spatial domains are considered, some operators include

products with permutation matrices to reorder the data. The illustrated operators are

the product OT = TIRK. The observed k-space signal is equal to the vectorized spin

density multiplied by an encoding operator which includes intra-acquisition decay and

B-field inhomogeneities. When only one operation is considered, all other operators

are parametrized so that they may be represented by identity matrices. We will

describe a subset of the operators below, with example operators shown in Figure 4.1

that have their parameters described in Section 4.3.1. Standard Fourier reconstruction

with no other spatial or temporal processes is illustrated in 4.1(a).

Encoding Operators

Intra-acquisition decay and magnetic field inhomogeneities may be modeled as

part of a Fourier encoding matrix for standard, Cartesian MRI. A standard forward
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Fourier encoding operator has been defined by Rowe et al. [2007b]. To include the

effects of T ∗
2 decay and B-field inhomogeneities, the operator must be modified such

that each element is modulated by the appropriate real or imaginary component of

the exponential exp (t(kx, ky) (−1/T ∗
2 (x, y) + iγ∆B(x, y)/ (2π))), where t(kx, ky) rep-

resents the time at which the k-space point corresponding to the row of the Fourier

encoding matrix was acquired, and T ∗
2 (x, y) and∆ B(x, y) represent the transverse

relaxation time and B-field error corresponding to the image-space point that the

column of the Fourier encoding matrix represents [Nencka et al., 2009]. The gyro-

magnetic ratio of the proton is represented by γ. An operator including only modeled

intra-acquisition decay in the encoding matrix, E, is shown in Figure 4.1(b).

Generalization of k-space Image Operators

Previous work has shown the effects of processing individual images [Nencka and

Rowe, 2007a, Nencka et al., 2009]. In that case, a temporally unchanging image pro-

cessing operator, Ok, was considered on identical signal images. Operations included:

correcting intra-acquisition decay, correcting static B-field error, partial Fourier ex-

trapolation, k-space apodization, k-space zero filling, Fourier reconstruction, and

image-space smoothing. To apply such operators to the newly parametrized time

series data requires an operator of higher dimensionality. If the same image process-

ing steps are performed on all time points of an acquired k-space time series, the

time series image processing operator, K, may be calculated as a Kronecker product

between the previously described image processing operator and an identity matrix

with dimension matching the number of time series points, K = In⊗Ok. The symbol

⊗ represents the Kronecker product in which each element of the first matrix multi-
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plies the second matrix. If the first matrix is of a× b dimensionality and the second

matrix has dimensions of c × d, the Kronecker product has dimensions of ac × bd.

The resulting time series k-space image processing operator, K, is thus block diag-

onal with each diagonal block corresponding to an instance of the image processing

operator. An operator including only k-space apodization is shown in Figure 4.1(c).

Dynamic B-Field Correction

Dynamic B-field correction may be performed with the alteration of the inverse

Fourier reconstruction operator, R. The magnetic field to be corrected may be mea-

sured through relative field measurements [Hahn et al., 2009] or intra-acquisition

measurements [Roopchansingh et al., 2003]. With the field error known, the equiva-

lent of the time segmented B-field correction approach described by Noll et al. [1991],

with each k-space point being an individual time segment, may be performed on each

acquired k-space data set. For each k-space vector, the corresponding Fourier re-

construction matrix must be multiplied by exp(−iγ∆B(x, y)t(kx, ky)). A real-valued

isomorphism of the Fourier array as described by Rowe et al. [2007b] is constructed for

the inverse of each time point’s B-field error and placed in the diagonal position cor-

responding to the considered time series point’s vector. This is essentially the inverse

of the encoding operator which assumes a B-field error. An operator including only

dynamic B-field correction is shown in Figure 4.1(d). Likewise, an intra-acquisition

decay correction operator may be created based upon separately measured T ∗
2 prop-

erties.
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Image Registration

Image registration is performed by shifting each image based upon independently

determined motion parameters. Such motion parameters may be determined through

software [Cox, 1996, Jenkinson et al., 2002] or through external means [Tremblay

et al., 2005]. In a two dimensional case, the image registration operator may be

considered as another block diagonal matrix. A more elaborate three dimensional

registration operator may be constructed by further generalizing this operator and

utilizing three dimensional Fourier transforms. However, in this chapter, we describe

the notationally simpler case of in-plane motion correction where the registration

may be integrated into the reconstruction operator, R. Each block of the operator

multiplies the k-space data with an appropriate phase before Fourier reconstruction

to yield a correctional shift in image-space after reconstruction. For an image-space

translation of (δx, δy) and in-plane rotation of θ, the required image-space shift for

a voxel at (x, y) in image space is∆ x = δx + x(cos(θ) − 1) + ysin(θ), and∆ y =

δy + y(cos(θ)− 1)− xsin(θ). Therefore, for a single image with the above described

motion parameters, the row of the Fourier operator representing the image-space point

(x, y) must have each element multiplied by exp(−i2π(∆xkx/px + ∆yky/py)), where

kx and ky are integers representing the k-space indices of the column of the Fourier

matrix and px and py are the number of k-space points in the x and y directions

respectively. The complex-valued Fourier matrices may be converted by the real

valued isomorphism described in Rowe et al. [2007b]. Each of the n blocks of the block

diagonal matrix for the image registration and reconstruction operator can be likewise

created using the real-valued Fourier isomorphism with the appropriate (δx, δy) and
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θ for the appropriate slices. An operator including only image registration is shown

in Figure 4.1(e).

Slice Timing Correction

Slice timing correction is performed in image-space after spatial processing and

registration are performed. In this case, it is useful to perform slice timing correction

through the performance of multiple steps. First, one may reorder the vector of recon-

structed images to a vector of reconstructed voxel time series through multiplication

with a permutation matrix. Then, one may Fourier transform each time series into

the temporal frequency domain through a multiplication with a block diagonal matrix

where each block is a real-valued isomorphism of a time series Fourier matrix. Each

transformed time series may be multiplied by sines and cosines to create additional

phase for the time series shift. Inverse Fourier transforming the vectors of temporal

frequencies leads to temporally shifted time series, and multiplication with the inverse

of the original permutation matrix returns the vector of temporally shifted time series

to vector of temporally shifted images.

It should be noted that this process is mathematically identical to the line shift-

ing process described in Nencka et al. [2009] to correct Nyquist ghosts in echo planar

imaging. In that case, if uncorrelated data is assumed, it was shown that the shift-

ing of k-space lines does not induce correlations in the acquired data. Likewise, if

uncorrelated data is assumed, slice timing correction can be mathematically shown

to not modify the correlation in the acquired data, as this operator multiplied by its

inverse yields the identity matrix. An operator including only slice timing correction

is shown in Figure 4.1(f).
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Temporal Filtering

The process of temporal filtering is similar to the process of slice timing correc-

tion. Multiplication with a permutation matrix and a real-valued isomorphism of a

time series Fourier matrix can transform the image time series vector into a temporal

frequency vector. Then multiplication with a diagonal matrix with each diagonal

element representing a frequency space weighting for a temporal filter can be per-

formed. Inverse Fourier transformation and inverse permutation will then yield the

temporally filtered image time series vector. An operator including only temporal

filtering is shown in Figure 4.1(g).

4.2.3 Functional Correlations

With the ideal covariance matrix,Γ , known, one may determine the reconstructed

and processed covariance matrix,Σ , through the simple calculation Σ= OT ΓOT
T . As

described, Σ is a 2pn×2pn matrix with diagonal blocks which contain the covariance

matrices for individual images. In this section we show that the p × p voxel time

series covariance matrix,Σ ρ, can be estimated from the large, experimental covariance

matrix,Σ . It isΣ ρ which may be converted into a time series correlation matrix, ρ,

which is utilized for functional connectivity studies.

Consider the large, processed covariance matrix,Σ . The i, jth element may be

calculated as

Σxiyizitixjyjzjtj = E
(
(yxiyiziti − ȳxiyiziti)

(
yxjyjzjtj − ȳxjyjzjtj

))
,

where (xi, yi, zi, ti) are the spatial and temporal indices for the ith element of the re-
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(a) No Operations (b) T ∗
2 Decay (c) Apodization (d) B Error

(e) Motion Correction (f) Timing Correction (g) Temporal Filtering (h) All Operations

Figure 4.1: Operators for an acquisition of 8 repetitions of a 4× 4× 2 voxel region of
interest. (a) No operations. (b) Intra-acquisition decay. (c) Apodization. (d) B-field
error. (e) Motion Correction. (f) Slice timing correction. (g) Temporal band stop
filtering. (h) All operations in series.
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constructed and processed vector y, (xj, yj, zj, tj) are the spatial and temporal indices

for the vector’s jth element, and ȳxiyiziti is the mean measurement of voxel (xi, yi, zi)

at time point t in repeated acquisitions. Expanding the product, the element may be

considered as

Σxiyizitixjyjzjtj = E
(
yxiyizitiyxjyjzjtj − yxiyiziti ȳxjyjzjtj − yxjyjzjtj ȳxiyiziti + ȳxiyiziti ȳxjyjzjtj

)
.

Similarly, the voxel time series covariance matrix,Σ ρ, may be considered on an

element by element basis

Σρij = E
(
(yxiyizi − ȳxiyizi)

(
yxjyjzj − ȳxjyjzj

))
,

where ȳxiyizi is the temporal mean of the voxel (xi, yi, zi) over the course of a time

series acquisition. In a time series with n points,Σ ρ may be calculated as

Σρij =
1

n− 1

n∑

t=1

(
(yxiyizit − ȳxiyizi)

(
yxjyjzjt − ȳxjyjzj

))

=
1

n− 1

n∑

t=1

(
yxiyizityxjyjzjt − yxiyizitȳxjyjzj − yxjyjzjtȳxiyizi + ȳxiyizi ȳxjyjzj

)
.

WithΣ ρ in mind, consider the average of the diagonal blocks of the large, processed
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covariance matrix,Σ . Specifically, let

ΣRij =
1

n− 1

n∑

t=1

Σxiyizitt,xjyjzjtt

=
1

n− 1

n∑

t=1

E
(
yxiyizityxjyjzjtt − yxiyizitt ȳxjyjzjtt − yxjyjzjtt ȳxiyizitt + ȳxiyizitt ȳxjyjzjtt

)

= E

(
1

n− 1

n∑

t=1

yxiyizityxjyjzitt − yxiyizitt ȳxjyjzjtt − yxjyjzjtt ȳxiyizitt + ȳxiyizitt ȳxjyjzjtt

)
.

Assuming that the voxel mean does not change over time, as should be the case in

a resting state study of a stationary subject in a stable scanner, ȳxyzt is equal to

ȳxyz. In light of this, it is apparent that the average of the diagonal blocks of the

large, processed covariance matrix,Σ , is the expected value of the voxel time series

covariance matrix,Σ ρ

ΣRij = E

(
1

n− 1

n∑

t=1

yxiyizityxjyjzjtt − yxiyizitt ȳxjyjzj − yxjyjzjtt ȳxiyizi + ȳxiyizi ȳxjyjzj

)

ΣRij = E
(
Σρij

)
.

Thus, the voxel time series covariance matrix may be computed as the average of

the diagonal blocks of the large, processed covariance matrix.

4.2.4 Functional Activations

As stated above, with the ideal covariance matrix,Γ , known, one may calculate

the reconstructed and processed covariance matrix,Σ , through the simple calculation

Σ = OT ΓOT
T . As described, Σ is a 2pn×2pn matrix with diagonal blocks of dimension

2p× 2p which contain the covariance matrices for individual images. Thus, although
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the large covariance matrix Σ contains the components necessary to compute one

voxel’s time series covariance matrix,Σ v, Σ must be reordered. The permutation

operator described above which reorders the reconstructed data from a vector of n

vectors of p observations stacked above themselves to the reconstructed time series

vector of p vectors of n observations stacked above themselves may be used. If that

permutation matrix is P , the reordered covariance matrix is calculated as PΣP T .

The p diagonal blocks of this covariance matrix are theΣ v covariance matrices for

the p individual voxels.

With the voxel time series covariance matrices,Σ v, known, it is possible to consider

a generalized least squares approach to the complex-valued general linear model for

functional activations. Several instances of the complex-valued general linear model

have been described in previous work from this group [Rowe and Logan, 2004, 2005,

Rowe, 2005a,b].

The complex data model is:




yR

yI



 =




CXβ

SXβ



 +




ηR

ηI



 ,




ηR

ηI



 ∼ N
(
0, σ2Σv

)
,

where yR and yI are n-element vectors of the real and imaginary processed time

series, C is a diagonal matrix with the cosine of each time point’s modeled voxel

phase angle as the diagonal elements, S is a diagonal matrix with the sine of each

time point’s modeled phase angle as the diagonal elements, X is the experimental

design matrix, β is the vector of unknown magnitude regression coefficients, and ηR

and ηI are the time series of the real and imaginary noise with a correlation matrix
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which is modified by the data processing. The above parameterization extends the

originally described complex data models by allowing a non-identityΣ v [Rowe and

Logan, 2004, 2005, Rowe, 2005a]. For simplicity, the constant phase method [Rowe

and Logan, 2004] is considered in this chapter although the same methodology can

be used to consider other complex data models. In the constant phase model, each

time point voxel phase is modeled by a constant phase over the time series. Thus,

C and S are identity matrices scaled by the cosine and sine of the voxel’s constant

temporal phase.

A likelihood ratio test statistic can be computed to consider functional activations

under this model. This statistic considers the estimated variances under the null

hypothesis that there is no task related cortical activity, and under the alternative

hypothesis that there is cortical signal which may be modeled as being related to

task.

Least squares estimates of β, σ2, and θ under the unconstrained alternative hy-
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pothesis may be computed on a voxelwise basis as described in Appendix I to be:

β̂ =
(
2X ′Ĉ ′ΣAĈX + 2X ′Ŝ ′ΣCĈX + 2X ′Ĉ ′ΣBŜX + 2X ′Ŝ ′ΣDŜX

)−1

×
(
2y′RΣAĈX + y′IΣCĈX + X ′Ŝ ′ΣCyR+

y′RΣBŜX + X ′Ĉ ′ΣByI + 2yIΣDŜX
)

(4.1)

α̂ = y′RΣAyR − 2yRΣAĈXβ̂ + β̂′X ′Ĉ ′ΣAĈXβ̂ +

y′IΣCyR − y′IΣCĈXβ̂ − β̂′X ′Ŝ ′ΣCyR + β̂′X ′Ŝ ′ΣCĈXβ̂ +

y′RΣByI − y′RΣBŜXβ̂ − β̂′X ′Ĉ ′ΣByI + β̂′X ′Ĉ ′ΣBŜXβ̂ +

y′IΣDyI − 2yIΣDŜXβ̂ + β̂′X ′Ŝ ′ΣDŜXβ̂ (4.2)

σ̂2 =
α̂

2n
(4.3)

θ̂ = arctan

(
1/n

∑n
t=1 sin(θ̂t)

1/n
∑n

t=1 cos(θ̂t)

)
(4.4)

θ̂t = arctan (yIt/yRt) (4.5)

Σ−1
v =




ΣA ΣB

ΣC ΣD



 (4.6)

Σv =




Σr Σri

Σir Σi



 (4.7)

Σ−1
A =

(
Σr − ΣriΣ

−1
i Σir

)−1
(4.8)

Σ−1
B = Σ−1

r

(
−Σri

(
Σi − ΣirΣ

−1
r Σri

)−1
)

(4.9)

Σ−1
C = Σ−1

i

(
−Σir

(
Σr − ΣriΣ

−1
i Σir

)−1
)

(4.10)

Σ−1
D =

(
Σi − ΣirΣ

−1
r Σri

)−1
(4.11)
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where Ĉ = cos(θ̂)In and Ŝ = sin(θ̂)In.

Least squares estimates of β, σ2, and θ under the constrained null hypothesis

where V β = δ may be computed on a voxelwise basis as described in Appendix J to

be:

ψ̃ =

[
V

(
2X ′C̃ ′ΣAC̃X + 2X ′S̃ ′ΣCC̃X + 2X ′C̃ ′ΣBS̃X + 2X ′S̃ ′ΣDS̃X

)−1

V ′
]−1

×
[
V

(
2X ′C̃ ′ΣAC̃X + 2X ′S̃ ′ΣCC̃X + 2X ′C̃ ′ΣBS̃X + 2X ′S̃ ′ΣDS̃X

)−1

×
(
2y′RΣAC̃X + y′IΣCC̃X + X ′S̃ ′ΣCyR+

y′RΣBS̃X + X ′C̃ ′ΣByI + 2y′IΣDS̃X
)
− δ

]
(4.12)

β̃ =
(
2X ′C̃ ′ΣAC̃X + 2X ′S̃ ′ΣCC̃X + 2X ′C̃ ′ΣBS̃X + 2X ′S̃ ′ΣDS̃X

)−1

×
(
2y′RΣAC̃X + y′IΣCC̃X + X ′S̃ ′ΣCyR+

y′RΣBS̃X + X ′C̃ ′ΣByI + 2y′IΣDS̃X − ψ̃′V
)

(4.13)

α̃ = y′RΣAyR − 2yRΣAC̃Xβ̃ + β̃′X ′C̃ ′ΣAC̃Xβ̃ +

y′IΣCyR − y′IΣCC̃Xβ̃ − β̃′X ′S̃ ′ΣCyR + β̃′X ′S̃ ′ΣCC̃Xβ̃ +

y′RΣByI − y′RΣBS̃Xβ̃ − β̃′X ′C̃ ′ΣByI + β̃′X ′C̃ ′ΣBS̃Xβ̃ +

y′IΣDyI − 2yIΣDS̃Xβ̃ + β̃′X ′S̃ ′ΣDS̃Xβ̃ (4.14)

σ̃2 =
α̃ + ψ̃′

(
V β̃ − δ

)

2n
(4.15)

θ̃ = arctan

(
1/n

∑n
t=1 sin(θ̃t)

1/n
∑n

t=1 cos(θ̃t)

)
(4.16)

θ̃t = arctan (yIt/yRt) . (4.17)

In the case of a baseline, linear trend and task response being modeled, β is a three
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element vector, β = (β0, β1, β2)
′. In this vector, β0 is the baseline regression coefficient,

β1 is the linear trend regression coefficient, and β2 is the task related regression

coefficient. In the restricted case described here, V = (0, 0, 1)′, and δ = 0. In the

estimators under the null hypothesis,Σ A, ΣB, ΣC , andΣ D are the same as those

computed in Equations 4.8, 4.9, 4.10, and 4.11 under the alternative hypothesis.

As it has been previously mentioned, the maximum likelihood estimators can be

used to test for the significance of β2 utilizing a likelihood ratio statistic with a large

sample χ2 distribution under the null hypothesis:

−2 log λCP = n log
σ̂2

σ̃2
.

This statistic may be transformed into a z-statistic for standard fMRI analysis when

V has one row, as in Rowe and Logan [2004].

4.3 A Computational Example

The above described operators have been implemented and have been used to con-

sider processing induced alterations in acquired data with both an identity covariance

matrix and with a voxel-wise autocorrelated time series (AR(1) with an autocorrela-

tion factor of 0.5) covariance matrix to more closely match acquired data.

4.3.1 Methods

Several linear operators have been deployed in Matlab for their consideration on

uncorrelated and autocorrelated ideal data sets. Operators have been implemented

for: permuting the acquired real/imaginary pairs into image-wise sets of real and
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imaginary data; Fourier encoding an ideal proton spin density with aberrations from

intra-acquisition T ∗
2 decay, motion, and ∆ B-field errors; Fourier reconstructing the

encoded image; permuting the image-wise sets of real and imaginary data into voxel

time series sets of real and imaginary data; Fourier transforming the voxel time series

sets into and back from temporal frequency space, applying temporal filters to the

Fourier transformed voxel time series; and applying temporal shifts to the Fourier

transformed voxel time series. Such linear operators can be of very large dimension-

ality. However, individual k-space image processing operators have shown great effect

in only the local neighborhood of considered voxels [Nencka et al., 2009]. Thus, the

considered operators have been developed to observe alterations in the correlation

structure within a neighborhood of a considered voxel to reduce the problem’s di-

mensionality. A censoring or masking matrix consisting of an identity matrix with

rows deleted for unconsidered points mathematically describes this reduction to a re-

gion of interest. Operators were considered for a masked 4×4 voxel region of interest

in two consecutive slices in a time series of 8 repetitions. As the considered linear

operators are a real-valued isomorphism of the complex valued operations, this yields

operators which are of dimension 6400× 6400. As the series of operators shuffle the

rows and columns of the several block diagonal linear operators, it was found that

sparse matrix representations were not beneficial as compound operators including

several operations do not share the sparseness of the individual operators.

Each operator was considered individually, and all of the operators were consid-

ered in series. Assumed acquisition parameters included a repetition time of 2000.0

ms, echo time of 50.0 ms, and effective echo planar echo spacing time of 1.0 ms.
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When included, the intra-acquisition decay was modeled as exponential with T ∗
2 val-

ues defined by a modified Shepp-Logan phantom [Jain, 1989] scaled from 1 × 10−6

to 0.1 s inside the head and 1 × 106 s oustside head, where the proton spin density

was assumed to be zero, to avoid division by zero. When not explicitly included, the

intra-acquisition decay was assumed to be exponential with T ∗
2 = 1 × 106 s. When

included, the magnetic field inhomogeneity was modeled as a linear gradient, ranging

from −5×10−6 T to 5×10−6 T, along a direction which varied linearly over the time

series acquisition from being horizontal to vertical. When not included, the magnetic

field inhomogeneity was modeled as 0.0 T. Motion was modeled as a cumulative shift

of one pixel in the horizontal direction, one pixel in the vertical direction, and in-plane

rotation of 2 degrees over the course of the time series when included, and modeled as

no shift or rotation when not included. Temporal filtering was considered with a band

rejection filter, with cut off frequencies of 0.1250 Hz and 0.1875 Hz when included,

and as a full spectrum pass filter when not included. Temporal shifting was modeled

as a shift of the second slice by one half of the repetition time when included, and as

no shift when not included. Spatial smoothing was considered as Gaussian smoothing

with a kernel with an image-space full width at half maximum of three pixels, and as

convolution with a delta function when not considered.

4.3.2 Results

Figure 4.1 shows the deployed operators, and Figure 4.2 includes the calculated

correlation matrices after applying the operators to uncorrelated and autocorrelated

data. Figure 4.3 shows the resulting image series correlation matrices for the center

voxel, as described in section 4.2.3, and Figure 4.4 shows the resulting time series
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correlation matrices for one voxel as described in section 4.2.4. The correlation ma-

trices with no processing are shown in Figures 4.2(a), 4.2(i), 4.3(a), 4.3(i), 4.4(a), and

4.4(i).

We have found that a Fourier encoding operator, modified to account for intra-

acquisition decay or B-field inhomogeneities, matched with a standard Fourier recon-

struction operator yields the same results as a standard Fourier encoding operator

matched with a Fourier reconstruction operator, modified to account for the same

effects. Figures 4.2(b), 4.2(j), 4.3(b), 4.3(j), 4.4(b), and 4.4(j) illustrate the results

of intra-acquisition decay when considered in such a way. The results illustrate the

effects of the process when it is not corrected in processing. Thus, as previously de-

scribed by Jesmanowicz et al. [1998] and illustrated by the AMMUST-k method for

individual images [Nencka et al., 2009], intra-acquisition decay yields spatial correla-

tion along the phase encoding direction without altering time series autocorrelation.

The image operator of apodization, previously described as an AMMUST-k method,

also yields identical results under this AMMUST-T generalization. Specifically, as

seen in Figures 4.2(c), 4.2(k), 4.3(c), 4.3(k), 4.4(c) and 4.4(k), apodization yields

increased correlation of a voxel with its neighbors while not altering time series au-

tocorrelation.

Temporally varying B-field errors lead to image-space correlations which vary over

time. Spatial correlations associated with image warping are seen in Figures 4.3(d)

and 4.3(l). Such altered correlation matrices are used in functional connectivity stud-

ies. Thus, dynamically changing B-field errors can lead to time series correlations

which are not of interest in the acquired data. The matrices in Figures 4.3(d) and
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(a) Original
Ideal

(b) T ∗
2 Ideal (c) Apodization

Ideal
(d) B Ideal

(e) Temporal
Filtering Ideal

(f) Timing Cor-
rection Ideal

(g) Motion Cor-
rection Ideal

(h) All Opera-
tions Ideal

(i) Original
AR(1)

(j) T ∗
2 AR(1) (k) Apodization

AR(1)
(l) B AR(1)

(m) Temporal
Filtering AR(1)

(n) Timing Cor-
rection AR(1)

(o) Motion Cor-
rection AR(1)

(p) All Opera-
tions AR(1)

Figure 4.2: Correlation matrices resulting from the considered operators acting upon
uncorrelated (ideal) data (a-h) and autocorrelated (AR(1)) data (i-p). The results
of no operations (a and i), intra-acquisition decay (b and j), k-space apodization (c
and k), dynamic B-field correction (d and l), temporal band block filtering (e and
m), slice timing correction (f and n), motion correction (g and o), and all processes
in series (h and p) are shown.
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(a) Original
Ideal

(b) T ∗
2 Ideal (c) Apodization

Ideal
(d) B Ideal

(e) Temporal
Filtering Ideal

(f) Timing Cor-
rection Ideal

(g) Motion Cor-
rection Ideal

(h) All Opera-
tions Ideal

(i) Original
AR(1)

(j) T ∗
2 AR(1) (k) Apodization

AR(1)
(l) B AR(1)

(m) Temporal
Filtering AR(1)

(n) Timing Cor-
rection AR(1)

(o) Motion Cor-
rection AR(1)

(p) All Opera-
tions AR(1)

Figure 4.3: Image time series correlation matrices derived from the computed large
correlation matrices. These matrices represent correlation matricies which would be
considered in fcMRI studies. Uncorrelated (ideal, a-h) and correlated (AR(1), i-p)
original data were considered with no operations (a and i), intra-acquisition decay (b
and j), k-space apodization (c and k), dynamic B-field correction (d and l), temporal
band block filtering (e and m), slice timing correction (f and n), motion correction (g
and o), and all processes in series (h and p).
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(a) Original
Ideal

(b) T ∗
2 Ideal (c) Apodization

Ideal
(d) B Ideal

(e) Temporal
Filtering Ideal

(f) Timing Cor-
rection Ideal

(g) Motion Cor-
rection Ideal

(h) All Opera-
tions Ideal

(i) Original
AR(1)

(j) T ∗
2 AR(1) (k) Apodization

AR(1)
(l) B AR(1)

(m) Temporal
Filtering AR(1)

(n) Timing Cor-
rection AR(1)

(o) Motion Cor-
rection AR(1)

(p) All Opera-
tions AR(1)

Figure 4.4: Voxel time series correlation matrices derived from the computed large
correlation matrices. These matrices represent correlation matrices which would be
considered in fMRI studies for adjusted regression coefficient estimates. Uncorrelated
(ideal, a-h) and correlated (AR(1), i-p) original data were considered with no oper-
ations (a and i), intra-acquisition decay (b and j), k-space apodization (c and k),
dynamic B-field correction (d and l), temporal band block filtering (e and m), slice
timing correction (f and n), motion correction (g and o), and all processes in series
(h and p).
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4.3(l) are averages of the multiple time point correlation maps, represented by the

diagonal blocks of the correlation matrices shown in Figures 4.2(d) and 4.2(l). Thus,

correlations from time points with extreme B-field errors are attenuated by correla-

tions from time points with more minor B-field errors. Voxel time series correlations,

seen in Figures 4.4(d) and 4.4(l), are altered by the dynamic B-field errors only if

non-identity correlations originally exist. If non-identity correlations do exist, the

dynamic B-field errors yield altered correlations within the real and imaginary data

as well as altered correlations between the real and imaginary data, as seen in Figures

4.2(l) and 4.4(l).

Temporal filtering does not alter spatial correlations as seen in Figures 4.2(e),

4.2(m), 4.3(e) and 4.3(m). This result is expected as the process is purely temporal.

As seen in Figures 4.2(e), 4.2(m), 4.4(e) and 4.4(m), alterations arise in the voxel time

series correlation matrix structure with temporal filtering, be there initial correlation

or not. Such altered correlations arise from the convolution of the temporal filter

kernel with the voxel time series. The process alters correlations within the real and

imaginary data, but negligibly alters correlations between the real and imaginary

data.

As with temporal filtering, the temporal process of slice timing correction does

not significantly alter spatial correlations as seen in Figures 4.2(f), 4.2(n), 4.3(f) and

4.3(n). As seen in Figures 4.2(f), 4.2(n),4.4(f) and 4.4(n), the effect of the slice

timing correction process depends upon the structure of the original voxel time series

correlation matrix. If no correlation exists within the voxel time series, negligible

alterations are observed in Figures 4.2(f) and 4.4(f) from the correlation matrix with
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the time shifting process. This is analogous to line shifting to reduce Fourier ghosting,

as described in Nencka et al. [2009]. As shown in that work, if no correlation is

assumed between observations, this shifting can be mathematically shown to yield

no change in correlation. However, if a correlation does exist, the sinc interpolation

associated with the temporal shifting yields slightly altered correlation, as seen in

Figures 4.2(n) and 4.4(n).

As modeled in these calculations, motion correction yields negligible alterations

on the final correlation matrices. Figures 4.2(g), 4.2(o), 4.3(g), 4.3(o), 4.4(g), and

4.4(o) are nearly identity matrices. Off diagonal elements are zero within round off

error. This is a result of the assumption of no spatial correlation in both calculations.

If spatial correlation is assumed to be the identity matrix, the image shifting operator

multiplied by its transpose is the identity matrix.

Finally, Figures 4.2(h), 4.2(p), 4.3(h), 4.3(p), 4.4(h), and 4.4(p) illustrate the

effects of each of the described processes being considered in series. In each case,

although the final correlation structure may appear to be dominated by individual

processes, the correlation map is not a simple superposition of the individual pro-

cesses. Herein lies an advantage of the described computational method. Exact cor-

relation matrices resulting from a series of processing steps may be computationally

determined without the need of empirical simulations.

4.4 Experimental Analysis

A representative phantom acquisition is considered in light of the above described

framework.
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4.4.1 Methods

To verify the performance of the operators, their application to phantom data was

considered. Two previously published experimental data sets were considered [Nencka

et al., 2009]. The data sets were acquired for a doped agar phantom with T ∗
2 = 40.0

ms on a 3.0 T General Electric Signa LX magnetic resonance imager. One slice of

a 240 × 240 × 2.5 mm3 volume was imaged 1024 times, with a 96 × 96 acquisition

matrix, effective echo planar echo spacing of 0.96 ms, minimum full k-space echo

time of 50.0 ms, 2000.0 ms repetition time, and 250 kHz acquisition bandwidth.

An 80 degree radio frequency pulse was used for excitation in one data set, and no

excitation pulse was used in the other data set. The data set with the excitation

follows standard acquisition parameters, and, to match the condition of pure noise in

the above calculations with uncorrelated data, the data set with no excitation pulse

was acquired.

Data were collected with a custom echo planar imaging pulse sequence, and re-

constructed with locally developed software. With control of the entire acquisition

and reconstruction pipeline, the confounds of unmodeled data processing are reduced.

Nevertheless, some temporal filtering of the k-space acquisitions is performed to sub-

sample the acquired 1 GHz samples to the collected 250 kHz samples. This processing

may result in an autocorrelation of k-space observations, although such a correlation

structure was not observed and is likely obscured by the noise in the experimental

data.

Three navigator echoes of the center line of k-space were acquired to estimate error

in the center frequency, and group delay offsets between odd and even k-space lines
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[Nencka et al., 2008]. In the data acquired with an excitation pulse a group delay

of 5.6 µs (1.4 k-space points) between odd and even lines was observed. Without

correction of the group delay, severe Nyquist ghosting existed in the reconstructed

data. This resulted in correlations between image voxels and ghost voxels. Correction

of the group delay error greatly reduced the Nyquist ghost and resulting image-space

correlations. The same group delay error was assumed on the data set acquired

without an excitation pulse. No significant image-space correlations were apparent

in the noise data before or after application of the group delay error correction, as

previously described [Nencka et al., 2009]. The data acquired with no radio frequency

excitation was found to exhibit uncorrelated normally distributed noise in space and

time.

4.4.2 Results

Figure 4.5 includes the real and imaginary image-space correlations for the center

pixel in the data with no excitation in Figures 4.5(a), and 4.5(b), with an excitation

pulse in Figures 4.5(c), and 4.5(d). The results for the noise data acquired without

an excitation pulse are consistent with the assumptions of the above calculations

which included an identity correlation matrix. In the acquired data, the offdiagonal

elements of the correlation matrix are near zero, with deviations from zero resulting

from the thermal noise in the acquired data. Thus, the correlation maps for the center

voxel in the real (Figure 4.5(a)) and imaginary (Figure 4.5(b)) data acquired with no

radio frequency excitation show negligible correlations with other voxels.

The results for the data with an excitation pulse indicate correlation arising from

an encoding anomaly described above. Slight fluctuations in the shim current over
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(a) Real Noise (b) Imaginary Noise

(c) Real Excited (d) Imaginary Excited

Figure 4.5: Unprocessed correlation maps for the center voxel in the real and imag-
inary data acquired with no radio frequency excitation (a and b) and with radio
frequency excitation (c and d).
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(a) Dynamic B Corrected Excited Real (b) Dynamic B Corrected Excited Imaginary

Figure 4.6: Processed correlation maps for the center voxel in the real and imaginary
data acquired with radio frequency excitation. Artifactual global correlations ob-
served in Figures 4.5(c) and 4.5(d) are corrected with the application of the dynamic
B-field operator.
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the time series acquisition lead to global correlations in the complex-valued data as

the phase of the imaged isochromats varies in time. With the developed operators,

the inverse B-field error operator may be applied to the data. With this dynamic

B-field correction implemented, it can be seen in Figure 4.6 that the correlation may

be markedly reduced in both the real (Figure 4.6(a)) and imaginary (Figure 4.6(b))

data.

Furthermore, if the constant phase model is fit to the acquired data the effects of

the processing considerations are notable. In the above illustrated phantom data, the

complex constant phase model was fit with a baseline and linear trend for the center

voxel. Without consideration of the dynamically changing B-field, the regression

coefficients were 31493 and 0.9166, with a residual standard deviation of 3488.99.

When the dynamically changing B-field was included in the model as described above,

the regression coefficients were calculated to be 31685 and 0.0370, and the residual

standard deviation was greatly reduced to 571.436. Thus, it is clear through this

experimental data that the consideration of corrupting effects in fcMRI and fMRI data

models can yield a substantial change in computed statistical quantities. Furthermore,

these results correspond to the results which were theoretically obtained in the above

computational methods.

4.5 Discussion

In this work an analytic method has been described to model the effects of time

series processing on observed image and time series correlations. This work advances

previous work which modeled the effects of temporally constant image processing on

observed voxel correlations [Nencka et al., 2009]. Linear operators have been con-
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structed to reconstruct, spatially process, and temporally process vectors of acquired

signal measurements. As the processing operations have been described as linear

operators, their effects on means, variances, covariances and correlations of the ac-

quired measurements may be computed through linear algebra. With the ability to

calculate large covariance arrays for the acquired signal vector, we derived methods

to extract the analytically useful individual voxel time series covariance matrices and

image time series covariance matrices. Such matrices are useful for the considera-

tion of functional connectivity studies and task related functional studies. In both

cases, operators may be constructed to evaluate the effects of a physical process on

acquired data, and inverse operators may be constructed to model the correction of

the processes in the calculation of connectivity maps and regression coefficients.

Several processing operations were implemented as linear operators in light of this

framework. Operators which are simple extensions of previously described operations

[Nencka et al., 2009], including temporally constant apodization and temporally sta-

ble intra-acquisition decay, yield results which correspond to the previous findings.

Purely temporal operators, including temporal filtering and slice timing correction,

yield expected correlations in time series data. These operators have been shown to

yield varying correlations based upon the assumed original correlation. Other op-

erators which model spatial and temporal effects, including operators like dynamic

B-field correction and motion correction, also yield varying correlations based upon

the correlation structure assumed in the acquired data.

The developed operators are of very high dimensionality. An operator for a stan-

dard acquisition with an acquisition matrix of 64× 64, 23 slices, and 125 repetitions
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would be of dimension 23, 552, 000 × 23, 552, 000, and the calculation of the results

from multiple operations in series would require the consideration of multiple non-

sparse matrices of this dimensionality. When considering even floating point precision,

the dimensionality of such calculations becomes prohibitive on most computers. We

have addressed this issue by focusing upon a region of interest to lower the problem’s

dimensionality. Future studies are necessary to ease this restriction through advanced

computational algorithms and memory management. In spite of the current restric-

tion, the above results illustrate the utility of the analytic method.

Acquired phantom data was considered in light of the developed operators. Cor-

relations within the reconstructed real and imaginary data were observed as a result

of slightly varying shim fields. Such correlations led to artificial voxel correlations in

functional connectivity maps in the complex-valued data, and improper regression co-

efficients and variance estimates in complex constant phase statistical modeling. By

effectively applying the inverse of the dynamic B-field error operator, we showed that

the global image correlations in the complex-valued data could be greatly reduced

and that the regression coefficients of the constant phase model could be improved

to greatly reduce residual error.

Although the above description only considered complex-valued data, the results

can be used to compute correlations observed in the traditionally considered magni-

tude data. A conversion from the complex-valued covariance matrix to a magnitude

squared covariance matrix has been previously described by Nencka et al. [2009].

The covariances in magnitude squared data asymptotically approach the covariances

of magnitude data, and an analytical solution for the conversion from complex to mag-
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nitude squared data was determined. In the previously published work, magnitude

correlations were found to have similar structure to the complex-valued correlations.

With the described linear algebra framework, researchers may analytically prospec-

tively evaluate the effects of a selected data processing pipeline. Thus, the optimal

ordering of data processing steps may be determined. Also, researchers may prospec-

tively evaluate an acceptable degree of processing based upon resulting covariance

structures. Furthermore, with the developed linear operators and external measures

of corrupting physical processes, inverse operators may be retrospectively calculated

and applied to acquired data as a part of the statistical data model. Thus the pre-

sented work provides a foundation upon which an analytical evaluation of many pro-

cessing strategies may be built.



Chapter 5

Temporal processing through dynamic B-

field correction

With the linear framework for data processing developed, we return to the realm of

processing experimental, human data. We have shown the improvement of the com-

plex constant phase model in block designed fMRI studies with dynamic magnetic

field correction processing elsewhere [Hahn et al., 2009]. In this chapter, we consider

the processing step of dynamic magnetic field correction in fcMRI. We find that this

processing technique can reduce global correlations as predicted by the developed

linear model in Chapter 4. Specifically, in simulation and illustrative experimental

human data, we show that dynamic magnetic field correction can reduce artifac-

tual correlations between unrelated cortical regions and increase correlations between

functionally related cortical regions.

110
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5.1 Introduction

Functional connectivity magnetic resonance imaging (fcMRI) identifies functionally

related cortical regions by finding regions of the brain with correlated blood oxygena-

tion level dependent (BOLD) signals [Biswal et al., 1995]. As the BOLD signal is

related to underlying neuronal activity [Logothetis, 2003], regions with temporally

correlated BOLD signal are believed to have temporally correlated underlying neu-

ronal activity. However, correlations from artefactual sources may additionally be

introduced into the data. Such artefactual correlations are likely out of phase with,

and may be at different frequencies than, the traditionally considered low frequency

fluctuations in fcMRI. Thus, artefactual correlations can serve to both decrease cor-

relations between functionally connected voxels, and increase correlations between

functionally disconnected voxels.

Much work has yielded significant advances to the field in the last several years.

External measures of periodic physiologic fluctuations have been used as nuisance

regressors. The retrospective image-based correction of physiological motion artifacts

(RETROICOR) method regresses signal correlated with respiration and cardiac mo-

tion from the data [Glover et al., 2000]. A refinement of the method additionally

regresses the respiration volume per time (RVT) from the data [Birn et al., 2006].

Further methods have regressed the pulse rate from the data [Shmueli et al., 2007],

and have dynamically shimmed the magnetic field based upon the phase of the respi-

ratory cycle [Bianciardi et al., 2009]. All of these methods have shown improvement

in the quality of the acquired data, with more localized regions of connectivity and

higher correlation coefficients between connected regions. Each of these methods re-
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lies upon the acquisition of physiologic data through external means, with data from

a respiratory bellows, pulse oxymeter, and/or electrocardiograph being required. The

use of such equipment introduces additional points of failure into the imaging system,

increases subject preparation time, decreases subject comfort, and may slightly in-

crease the risk of subject injury. Additionally, the requisite equipment is not available

at all imaging sites.

Additional work has been performed to utilize other nuisance regressors. Signals

from the global average of white matter, gray matter, and cerebrospinal fluid voxels

have been regressed from the acquired data. Additionally, the global signal has been

regressed from acquired time series. Such methods have proven empirically beneficial.

However, recent work has questioned the validity of such processing, as it may shift

the baseline of the observed correlations [Murphy et al., 2008].

The bulk of the processes which introduce artefactual correlations in fcMRI data

have been modeled to produce magnetic field changes at the imaging plane [Pfeuffer

et al., 2002]. It is based upon this assumption that we consider post-acquisition

methods to account for dynamic magnetic field changes in post-processing. In this

manuscript we examine correction of fcMRI data through phase nuisance regression

[Menon, 2002], dynamic center frequency offset correction [Jesmanowicz et al., 1993,

1995], and dynamic B-field correction through temporal off-resonance alignment of

single echo time series (TOAST)[Hahn et al., 2009]. We examine the methods through

an extensive simulation, and we illustrate the methods in an acquired human resting

state experiment.
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5.2 Theory

We will first review the effects of magnetic field inhomogeneities on echo planar

images, and then describe the considered correction methods of phase regression,

center frequency offset correction, and dynamic field correction through TOAST.

The signal equation of gradient recalled echo, echo planar imaging is

s(t) =

∫ ∫
ρ(x, y)

sin(α)

1− cos(α)e−
TR
T1

(
1− e−

TR
T1(x,y)

)
e
− t

T∗2 (x,y) eiγ∆B(x,y)t

×e−i2π(x
R t
0 Gx(t′)dt′+y

R t
0 Gy(t′)dt′)dxdy,

where s(t) is the signal acquired at time t, ρ(x, y) is the proton spin density at the

point (x, y), TR is the pulse sequence repetition time, T1(x, y) is the longitudinal

relaxation rate at the point (x, y), T ∗
2 (x, y) is the transverse relaxation rate at the

point (x, y) (assuming exponential T ∗
2 decay), γ is the gyromagnetic ratio of the

proton,∆ B(x, y) is the magnetic field error at point (x, y), Gx(t′) is the applied

imaging magnetic field gradient in the x direction at time t′, and Gy(t′) is the applied

imaging gradient in the y direction. It is apparent from this that the magnetic field

error can lead to a spatially varying phase error of γ∆B(x, y)t. Thus, each image

space point yields a slightly different k-space trajectory due to the magnetic field

inhomogeneity. As shown by Jezzard and Balaban [1995], this spatially varying k-

space trajectory leads to warping of the reconstructed image. Because of the relatively

low receiving bandwidth in the phase encoding direction of echo planar imaging, this

warping may be considered to occur exclusively in the phase encoding direction, with
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voxels being shifted by

δy = γ∆B(x, y)Nyeesp,

where δy is the shift in the phase encoding direction in units of voxels, Ny is the

number of observations in the phase encoding direction, and eesp is the effective echo

spacing of the echo planar imaging readout. Thus, changes in the magnetic field

over the course of a time series acquisition may vary the warping of the images over

time. Even if the warping is on a sub-voxel scale, this may produce significant partial

volume differences in imaged voxels and cause signal intensity variations which are

correlated with the temporally varying magnetic field error.

Beyond the warping associated with magnetic field errors, intra-voxel dephasing

may occur with strong magnetic field gradients. The signal from a voxel may be

considered as the spatial integral of the magnetization isochromats which it contains,

0Mv =

∫ ∫ ∫
0m(x, y, z)dxdydz.

As isocromats at different locations have different resonant frequencies resulting from

the spatially varying magnetic field, they may destructively interfere in the integra-

tion due to their varying phases. Substantial changes in the magnetic field over the

course of a time series acquisition may thus alter the intra-voxel dephasing, and thus

signal intensity. As with the geometric distortions associated with magnetic field

changes, the intra-voxel dephasing associated with gross magnetic field changes may

also cause temporal changes in the observed voxel signal which are correlated with

the temporally varying magnetic field.
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5.2.1 Phase Regression

Phase regression is a method which includes the acquired phase time series as a

nuisance regressor on the observed magnitude time series. This method was origi-

nally developed to attenuate the contribution of the draining vasculature to BOLD

functional studies [Menon, 2002] and has been more recently applied to attenuate the

effects of out of field of view motion [Martin et al., 2004]. Magnetic field changes

lead to alterations of the phase at an imaged location as∆ φ = γ∆B TE, assuming

a temporally constant∆ B over the course of the echo planar readout. The phase re-

gressor method models observed magnitude changes as a linear function of observed

phase changes, assuming that above described magnetic field inhomogeneity effects

on the magnitude images are linearly related to the change in phase resulting from

the change in field, as shown in this equiation

m(t) = αφ(t) + m0

where m(t) is the magnitude observation of a voxel at time t, α is the regression

coefficient of phase, φ(t) is the phase observation of a voxel at time t, and m0 is the

base magnitude of the voxel. To reduce the probability of phase wrap, the phase may

be centered so that the magnitude is modeled as a function of deviations from the

mean phase [Nencka and Rowe, 2007b],

φ(t) = arg

(
I(t)

n∑

i=1

I∗(i)

abs(I(i)n)

)
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where I(t) is the complex valued voxel observation at time point t, n is the number of

observations in a time series, arg is a function which returns the angle of a complex-

valued argument, abs is a function which returns the magnitude of a complex-valued

argument, and ∗ denotes complex conjugation. With the magnitude as a function

of phase model fit, a phase-based estimate of magnitude is subtracted from each

observed magnitude in an attempt to reduce magnetic field associated magnitude

changes in the data,

mc(t) = m(t)− αφ(t)

where mc(t) is the corrected magnitude time series. The corrected magnitude time

series is then used for the analysis of the MRI data. As this method empirically

relates magnitude fluctuations to the effects of magnetic field changes, both warping

and dephasing effects may be addressed by this method.

5.2.2 Center Frequency Offset Correction

Although the imaging volume may be corrupted by quite intricate magnetic field

inhomogeneities, barring extensive subject motion, temporal magnetic field changes

resulting from minor out of field of view motion primarily affect the bulk magnetic field

at the imaging slice. A global magnetic field shift leads to a global phase shift which

manifests itself as a shift of the image in the phase encoding direction. Thus, two

similar methods exist to correct global magnetic field shifts: rigid body registration

[Jenkinson et al., 2002], and navigator echo correction [Jesmanowicz et al., 1993,

1995].

Rigid body registration is a step of fcMRI processing which is nearly universally
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employed, as small scale physical translation and rotation of the subject’s head gen-

erally occurs over the course of a several minute time series acquisition. Registration

is performed by determining the shifts and rotations which minimize the difference

between an acquired image volume and a reference volume.

If position or global magnetic field offsets change substantially over the course

of a volume acquisition, volume-wise image registration will fail to obtain an ideal

correction. With this limitation of registration, the estimation and correction of global

field shifts utilizing navigator echoes is preferred. The negligible cost of acquiring

navigator echoes is the increase of scan readout time of one to two milliseconds. If

three navigator echoes are acquired, it can be shown that the center frequency offset

is

∆ω0 =
bw

2
arg (N3 · N∗

1 )

where∆ ω0 is the center frequency offset, bw is the receiver bandwidth, arg is a

function which returns the phase angle of the complex-valued argument, N3 is the

third navigator echo signal, and N∗
1 is the complex conjugate of the first navigator

echo signal. The∆ ω0 correction may be applied by demodulating the acquired k-

space data with the determined frequency offset [Nencka et al., 2008]. As methods to

account for global field shifts only correct image translations, signal changes associated

with intra-voxel dephasing are not addressed by these methods.

5.2.3 Dynamic Magnetic Field Correction

Recently a method for correcting dynamic alterations of the magnetic field over

the course of a time series acquisition has been developed [Hahn et al., 2009]. This
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method is a refinement of the DORK method [Pfeuffer et al., 2002] as the phase is

registered to a temporal mean of the phase images in place of a single reference image.

This improves the effective signal-to-noise ratio of the fit magnetic field offset. The

magnetic field offset may be calculated as

∆B(x, y) =
arg

(
It(x, y)

∑n
i=1

I∗i (x,y)
abs(Ii(x,y))n

)

γTE

where It(x, y) is the complex-valued image value of point (x, y) at time t, ∗ denotes

complex conjugation, abs is a function which returns the magnitude of the complex-

valued argument, and n is the number of time points in the acquired time series.

With the relative magnetic field error calculated, it may be corrected with a

time segmented correction method Noll et al. [1991]. In the implemented correction

method, each phase encoding line is treated as an individual time point acquired at

the time when the kx = 0 point is acquired. This process consists of four steps.

The initial, warped, reconstructed image, I(x, y), is point-wise multiplied with a

phase map corresponding to the phase correction associated with the considered time

segment, t,

Itemp(x, y) = I(x, y)e−iγ∆B(x,y)t.

The corrected time segment image is then Fourier transformed to k-space, Ktemp(kx, ky),

Ktemp(kx, ky) = F (Itemp(x, y)) .

The k-space line corresponding to the considered time segment is then extracted and
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placed into a corrected k-space array, Kcor,

Kcor(1 : Nkx , t) = Ktemp(1 : Nkx , t),

where Nkx is the number of frequency encoding points in the acquired data set.

Finally, the described process is repeated for each time segment and the final image

is reconstructed through a standard inverse Fourier transform to the corrected image,

Icor(x, y),

Icor(x, y) = F−1 (Kcor(kx, ky)) .

For dynamic B-field correction using the TOAST implementation, the above de-

scribed method is applied to each image in the time series, effectively registering the

phase, and thus image warping, to the time series mean image. As with the correction

of the global frequency offset, this method does not account for intra-voxel dephasing

associated with gross magnetic field changes.

5.3 Simulation

5.3.1 Methods

The above described methods were considered in a simulation. Simulated data

were generated in Matlab, utilizing a simplified MRI signal equation:

s(kx, ky|t) =

∫ ∫
ρ(x, y) exp (iγ∆B(x, y)t) exp (−i2π(kxx + kyy)) dxdy,
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where ρ(x, y) is the ideal image-space representation at the point (x, y),∆ B(x, y)

is the magnetic field error at the point (x, y), t is the time at which the k-space

point (kx, ky) is acquired, and the k-space indexes are as traditionally defined as kx =
∫ t

0 Gx(t′)dt′ and ky =
∫ t

0 Gy(t′)dt′, with Gx and Gy being the applied imaging gradients

in the x and y directions. This signal equation is simplified to incorporate intra-

acquistion decay effects and T1 effects in ρ(x, y), as these effects do not significantly

alter observed phase of the reconstructed image [Nencka et al., 2009].

The base 64×64 ρ(x, y) map was a contrast modified Shepp-Logan phantom [Jain,

1989], with low frequency fluctuations added to the leftmost regions of interest shown

in Figure 5.1. The low frequency fluctuation was modeled as a 0.02 Hz cosine wave

with a 0.1 contrast ratio to the underlying ρ(x, y) map. The low frequency fluctuation

was added to the 5 voxel ROIs 1 and 2, shown in Figure 5.1. The∆ B(x, y) field was

generated for each time point by randomly assigning values to the center 3×3 elements

of a 64 × 64 element array, and scaling the maximum value of its Fourier transform

to a B-field value of 100 nT . Three hundred time points were generated in a rest-

ing state time series for one simulation iteration. Simulated data was reconstructed

through standard Fourier reconstruction [Rowe et al., 2007b]. The complex-valued,

reconstructed simulated data was corrupted with normally distributed noise in the

real and imaginary channels such that a magnitude temporal signal to noise ratio of

10 was achieved.

The data was then processed as experimental fcMRI data sets. Four copies of

the data set were created with one left “unprocessed,” one processed through phase

nuisance regression, one processed through global center frequency correction, and
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Figure 5.1: The base ρ(x, y) map of the simulation with the considered regions of
interest. The two leftmost regions of interest were modeled to be functionally con-
nected with the inclusion of a low amplitude low frequency cosine signal. From the
top left, the regions of interest are numbered 1 to 4 in a counter-clockwise direction.
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one processed through TOAST. The processed data was written to AFNI data sets

and further processed using that software suite [Cox, 1996]. The data were motion

corrected and an ideal low frequency band pass filter was applied in temporal fre-

quency space with cutoff frequencies of 0.005 Hz and 0.10 Hz. The average signal

from each of the four regions of interest in Figure 5.1 was computed. The correlation

matrix from the four averaged signals was computed and saved. This process was re-

peated for one hundred iterations. As cases of strong negative correlations and strong

positive correlations between unconnected ROIs were found to result from simulated

B-field changes, nonparametric Wilcoxon signed rank tests were performed for the

differences of the absolute values of the correlation coefficients for each method.

5.3.2 Results

The average correlation matrices between the four regions of interest are shown in

Figure 5.2. This figure includes the average correlation coefficients on the lower tri-

angular portions. The upper triangular regions display the results of a nonparametric

Lilliefors test for normality [Lilliefors, 1967]. Regions of interest which were deter-

mined to have correlation coefficients with their absolute values normally distributed

with p < 0.05 are marked with 1, while those found to be not normally distributed

are marked with 0. The non-normality of several sets of simulated correlation coeffi-

cients illustrates the need for the nonparametric Wilcoxon test when comparing the

methods. The diagonals have the variances displayed. This data indicates that both

phase regression and dynamic B-field correction favorably return the distribution of

correlation coefficients to the normal distribution.

The mean pairwise differences of the absolute value of the correlation coefficients
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for each method are shown in Figure 5.3. Along the lower triangular regions are the

mean pairwise differences in the absolute values of the correlation coefficients for the

listed methods. As stated previously, the absolute values of the correlation coefficients

were used as a change in correlation between two simulated unconnected regions from

0.7 to 0.1 is equally beneficial as a change from -0.7 to -0.1. The upper triangular

regions include the p-values determined from Wilcoxon [Wilcoxon, 1945] and paired t-

tests [Student, 1908] for the differences between the absolute values of the correlation

coefficients from the methods. As illustrated in Figure 5.2, the normality assumption

of the t-test is violated in several ROI combinations when no processing and center

frequency offset correction are performed, while the normality assumptions hold when

phase regression and dynamic B-field correction are performed. Thus, the first listed

p-values are more reliable when considering every combination except dynamic B-field

correction and phase regression. In that case, the Wilcoxon test p-values may be set

artificially high. Example correlation maps generated with the mean time series from

ROI 2 for one iteration of the simulation are shown in Figure 5.4.

With no processing, shown in Figure 5.2(a), ROIs 1 and 2 have a relatively large

correlation coefficient of 0.39, while ROIs 1 and 3 have a strong negative correlation

of -0.73 caused by the modeled B-field correlations. As seen in Figure 5.4(a), the

dynamically changing B-field yields dispersed regions of correlation, while correlation

between ROIs 1 and 2 are present but weak.

The process of center frequency correction slightly alters the correlation coeffi-

cients in a favorable but non-significant manor as seen in Figures 5.2(b) and 5.3(a).

Further, as seen in Figure 5.4(b), although the center frequency correction may re-
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duce dispersed correlations and non-significantly increase correlations between the

simulated connected regions, the method performs suboptimally.

Phase regression significantly improves computed correlations. As seen in Figures

5.2(c) and 5.3(b), the phase regressor method yields significantly increased correla-

tion coefficients between simulated connected regions in ROIs 1 and 2. In functionally

uncorrelated regions, the phase regressor method yields significantly reduced corre-

lations between ROIs 1 and 3, ROIs 1 and 4, ROIs 2 and 3, and ROIs 2 and 4, and

effectively unchanged correlation coefficients between ROIs 3 and 4. As seen in Fig-

ure 5.4(c), the spatial distribution of computed correlations more closely matches the

simulated data, with clear correlations between ROIs 1 and 2, and no large regions

of dispersed correlations as seen in the unprocessed and center frequency correlation

maps. Further, as seen in Figure 5.3(f), the phase regressor method performs superi-

orly to the center frequency correction method, with similar results as when compared

to the no processing case.

Dynamic B-field correction also significantly improves computed correlations. Fig-

ures 5.2(d) and 5.3(c) illustrate that the dynamic B-field correction method yields sig-

nificantly increased correlation coefficients between the simulated connected regions

in ROIs 1 and 2. Similar to the phase regressor method, the dynamic B-field correc-

tion method increased correlations between simulated connected regions and either

decreased or left unchanged correlation coefficients between simulated unconnected

regions. Furthermore, as with the phase regressor method, the dynamic B-field cor-

rection method proved superior to the center frequency correction method, as shown

in Figure 5.3(d). When compared to the phase regressor method, the dynamic B-
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field correction method yields significantly stronger correlations between simulated

connected regions, while the two methods perform similarly in all other cases, as

shown in Figure 5.3(e). The dynamic B-field correction method yields slight, but

significant, decreases in the correlation coefficients between some simulated, uncon-

nected regions. In the example data set, shown in Figure 5.4(d), the dynamic B-field

correction method yields a correlation map which closely corresponds to the ideal

generated correlation map.

5.4 Experimental Illustration

5.4.1 Methods

Experimental data was acquired on a General Electric 3.0 T system with a stan-

dard echo planar pulse sequence. Complex-valued data were reconstructed offline

with custom software, utilizing three navigator echoes to correct the Nyquist ghost

[Nencka et al., 2008]. Scan parameters included: 64×64 matrix, 19.2×19.2 cm2 field

of view, 11 slices, 3 mm slice thickness, 1 mm inter-slice gap, 125 kHz acquisition

bandwidth, 26.0 ms echo time, 1000.0 ms repetition time, 45◦ flip angle, and 460 rep-

etitions. The subject was at rest for the first 300 repetitions, and was visually cued

to perform a block designed, bilateral finger tapping task for the final 160 repetitions.

Functional regions of interest in the left and right motor cortices, as well as in the

functionally unconnected parietal lobe were defined using the final 160 repetitions.

Each region of interest consisted of five voxels and is shown in Figure 5.6(a). The data

set was then truncated to the first 300 repetitions for the resting state analysis. Data

was considered in 4 separate cases: no processing, center frequency offset correction,
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(a) No Processing (b) Center Frequency Correction

(c) Phase Regression (d) Dynamic B Correction

Figure 5.2: Correlation matrices between the four regions of interest. The matrices are
shown with no processing (a), phase regression (b), global center frequency correction
(c), and TOAST correction (d). Correlation coefficients are numerically shown on the
lower triangular region of the symmetric matrices, and the results of a Lilliefors test
for normality are shown on the upper triangular region, with 1 representing normality
with p < 0.05. Computed variances are shown along the diagonal.
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(a) Center Frequency Correction
Minus No Processing

(b) Phase Regression Minus No
Processing

(c) Dynamic B Correction Minus
No Processing

(d) Dynamic B Correction Minus
Center Frequency Correction

(e) Dynamic B Correction Minus
Phase Regression

(f) Phase Regression Minus Cen-
ter Frequency Correction

Figure 5.3: Difference between the correlation matrices under different processing
conditions. Differences in correlation coefficients are shown in the lower triangular
region of the symmetric matrices while p-values from non-parametric Wilcoxon tests
(top) and paired t-tests (bottom) are shown in the upper triangular region. The diag-
onal values are identically zero. Differences between center frequency corrected and
unprocessed data (a), phase regression processed and unprocessed data (b), dynamic
B-field corrected and unprocessed data (c), dynamic B-field corrected and center fre-
quency corrected data (d), dynamic B-field corrected and phase regression processed
data (e), and phase regression processed and center frequency corrected data (f) are
shown.
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(a) No Processing (b) Center Frequency Correction

(c) Phase Regression (d) Dynamic B Correction

Figure 5.4: Correlation maps from a representative simulation iteration. Correlations
with the mean time series of ROI 2 are shown with no processing (a), center frequency
offset correction (b), phase regression (c), and dynamic B-field correction (d).
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phase regression, and dynamic B-field correction. Slice timing correction was applied,

utilizing temporal sinc interpolation to shift each slice to the same temporal phase.

As in the above simulation, data were motion corrected and a low temporal frequency

bandpass filter with cutoff frequencies of 0.005 Hz and 0.10 Hz was applied to each

processed data set. No other processing was performed. Mean magnitude time series

were extracted from each region of interest, and correlation coefficients between the

mean time series were computed.

5.4.2 Results

Figure 5.5 contains the computed correlation matrices between the considered re-

gions of interest under each of the processing conditions. The experimental results

generally agree with the simulated results. The correlation between the functionally

connected left and right motor cortices was found to be higher after processing with

all methods. This suggests that physiologic correlation was obscured in part by shifts

at other frequencies and phases associated with magnetic field changes. The corre-

lation coefficients between the right motor cortex and the functionally unconnected

parietal lobe were also found to decrease in magnitude with each of the processing

methods. This suggests that the magnetic field modulation induced correlations be-

tween functionally unconnected regions that were corrected by these methods. As

seen in Figures 5.5(c) and 5.5(d), the phase regressor method and dynamic B-field

correction methods perform similarly to each other and superiorly to the cases of no

processing and center frequency correction, as seen in Figures 5.5(a) and 5.5(b).

Figure 5.6 shows the computed correlation maps, thresholded at a correlation coef-

ficient of 0.4, with center frequency offset correction in Figure 5.6(b), phase regression
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(a) No Processing (b) Center Frequency Correction

(c) Phase Regression (d) Dynamic B Correction

Figure 5.5: Computed correlation matrices from experimental data with no processing
(a), center frequency offset correction (b), phase regression (c), and dynamic B-field
correction through the TOAST method (d). Correlation coefficients are numerically
shown on the lower triangular region of the symmetric matrices and the variances are
shown on the diagonals of the matrices.
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in Figure 5.6(c), and dynamic B-field correction in Figure 5.6(d). Results after no

processing are not visually distinct from the center frequency offset corrected results,

and are thus not shown. As found in the simulation, the correlation coefficients in

the motor cortices are elevated after phase regression and dynamic B-field correction.

Additionally, as found in the simulation, regions of correlation are substantially more

focally located with dynamic B-field correction, and are generally found to be a subset

of the center frequency offset corrected correlations.

5.5 Discussion

Much work has been performed over the past several years to improve the quality

of fcMRI data. Such work has included the beneficial regression of several nuisance

regressors from the acquired data, including cardiac and respiratory signals [Glover

et al., 2000], the respiratory volume per time [Birn et al., 2006], and the pulse rate

[Shmueli et al., 2007]. Regression of other nuisance regressors, including the global

mean signal, have recently gained much attention with respect to the possible intro-

duction of processing induced correlations [Murphy et al., 2008, Chang and Glover,

2009, Weissenbacher et al., 2009]. Additional recent work has examined the impor-

tance of individual nuisance regressors when considering spontaneous BOLD signal

fluctuations and has used dynamic shimming to address temporally varying B-field

inhomogeneities [Bianciardi et al., 2009]. In general, these studies have found that sig-

nificant sources of non-neuronal correlations exist in fcMRI data and that accounting

for non-neuronal sources of correlation yields higher correlations between functionally

connected regions and reduced correlations between functionally unconnected regions.

One potential source of significant non-neuronal correlations in fcMRI data is
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(a) Regions of Interest (b) Center Frequency Correction

(c) Phase Regression (d) Dynamic B Correction

Figure 5.6: Illustrative experimental data. The regions of interest are shown in (a).
The connectivity maps in a superior slices resulting from the mean time series from
the right motor cortex region of interest with center frequency correction (b), phase
regression (c), and dynamic B-field correction (d).
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signal fluctuation associated with temporal magnetic field fluctuations. Such fluctu-

ations may arise from out of field of view motion [Pfeuffer et al., 2002], and scanner

hardware instability. Magnetic field fluctuations can lead to varying image warping

[Jezzard and Balaban, 1995] and varying intra-voxel spin dephasing [Haacke et al.,

1999]. Multiple methods have been described to directly, and indirectly, address the

results of such magnetic field fluctuations. Some groups have modified pulse sequences

to dynamically shim the imager based upon the phase of the subject’s respiratory cy-

cle [Bianciardi et al., 2009]. Other groups have utilized regressors associated with out

of field of view motion, including the signal from a respiratory bellows [Glover et al.,

2000, Birn et al., 2006].

In this study, we considered purely post-processing methods for addressing dy-

namic B-field fluctuations. These methods do not require the modification of the

utilized pulse sequence, and they do not require the acquisition of physiologic data

from external sources. Thus, the considered methods may be retrospectively applied

to any acquired data set where the complex-valued data has been saved. The meth-

ods we studied included center frequency offset correction [Jesmanowicz et al., 1993,

1995], phase nuisance regression [Menon, 2002], and dynamic B-field correction [Hahn

et al., 2009].

In simulated data and in illustrative experimental data, the results of standard

motion correction and center frequency offset correction were found to yield non-

significant improvements in artifacts associated with magnetic field fluctuations. As

it has been previously described, although out of field of view motion can cause global

field shifts in the imaging plane, more structure exists than a zeroth order correction
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may address [Hahn et al., 2009].

Voxelwise phase regression and dynamic B-field correction methods proved to be

superior in simulated and illustrative experimental data. These methods were found

to reduce dispersed correlations associated with dynamic magnetic field alterations.

Both processing techniques were found to yield significantly increased correlation coef-

ficients between functionally connected regions and significantly reduced or unchanged

correlation coefficients between functionally unconnected regions in simulated data.

This observation was supported in the experimental data.

The dynamic B-field correction method was found to perform marginally better

than the phase regressor method in the simulated data. While both methods yielded

similar reduction in correlation between ideally uncorrelated regions, the dynamic

B-field correction method yielded significantly higher correlation between simulated

connected regions. Additionally, in the experimental data, the dynamic B-field cor-

rection method yielded a functional connectivity map which more focally localized

correlated regions. With these results, and with the theoretical advantage of physi-

cally modeling the magnetic field rather than empirically modeling the magnitude as

a function of phase, we find the dynamic B-field correction method to be the preferred

method for post acquisition correction of magnetic field fluctuations in fcMRI data.

Additionally, the B-field correction method has been parameterized in other work

as a linear operator which acts upon the acquired k-space data [Nencka et al., 2009].

With the ability to consider this processing as the result of a linear operator, pro-

cessing induced alterations in the acquired data mean, covariance, and correlation

structures from this process can be exactly computed. Furthermore, the framework
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described by Nencka et al. [2009] allows one to consider the effects of a series of pro-

cessing operations on acquired data. The results of this work highlight the need for

researchers to consider the effects of the implemented processing pipeline on experi-

mental data.

Further consideration of the dynamic B-field correction and phase regression meth-

ods is needed in future studies. As it has previously stated, the regression of physi-

ologic waveforms from external monitoring equipment including respiratory bellows,

electrocardiographs, and pulse oximeters have been been utilized to address the effects

of out of field of view motion. It was not considered in this study if such physiologic

nuisance regressors have the same action pathway as the considered data-based B-

field fluctuation correction strategies. Studies with dynamic B-field shimming have

found improvements with the inclusion of such nuisance regressors [Bianciardi et al.,

2009], and thus, it may be found that the methods considered in this manuscript are

complimentary to the use of such physiologic regressors.



Chapter 6

Conclusion

6.1 Summary of Presented Work

With the consideration of dynamic B-field correction in fcMRI in the last chapter,

we have essentially returned to the issues discussed about the experimental data in

Chapter 2. In that work, we attempted to use physiologic information, encoded in the

phase of the MRI signal, to elucidate the vascular origin of the observed BOLD fMRI

signal. We found that the phase regressor and the complex constant phase statisti-

cal methods perform differently when task related phase changes occur in acquired

fMRI data. Specifically, we found the phase regressor method to exhibit a strong

bias against finding voxels to be active when moderate to large task related phase

changes occur, but to yield an inordinate number of false positives by over-correcting

the magnitude signal when phase noise corrupted the regression. The complex con-

stant phase method was, conversely, found to be overly sensitive to yielding false

negatives. Any phase variation, task related or not, was found to increase the resid-

ual variance of the fit constant phase model, thereby reducing activation statistics.

136
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Thus, while differences between the models were highlighted, the need for improved

processing of complex-valued fMRI data to address the issue of phase stability was

made abundantly clear.

In light of the need for improved complex-valued data processing, we set forth

to develop a mathematical method for both processing complex-valued data, and

analytically modeling the effects of such modeling. In Chapter 3, we extended our

previous linear implementation of Fourier reconstruction to allow for temporally con-

stant image processing. We considered standard reconstruction processes, utilized

to ensure artifact free reconstructed images, as well as standard physical processes

including intra-acquisition decay and static magnetic field inhomogeneities. The de-

veloped linear framework was implemented through simulation and shown, though

the consideration of individual operators, to yield results which concur with previous

findings. Furthermore, with the linear representation of processing operators, their

effects on the mean, covariance, and correlation structures of the observed k-space

data may be easily computed. The power of the framework was then further illus-

trated by analytically examining the effects of several processes, performed in series

on one data set. The results illustrate that the bulk effect of multiple processes is more

complicated than the summation of the results from the individual processes. Thus,

with this framework, it is possible to linearly process complex-valued k-space data

and keep track of the effects of the processing steps on the observed noise structure.

With the ability to model temporally constant processes on observed complex-

valued data developed in Chapter 3, we extended the model to the temporal domain

in Chapter 4. More common temporal processes like slice timing correction, motion



6.1 138

correction, and temporal filtering were implemented in this framework. Addition-

ally, a dynamic B-field error correction operator was described, to address the issues

observed in the experimental data of Chapter 2. Once again, the ability to model

the effects of the processes on the mean, covariance, and correlation of the observed

k-space data was illustrated, and the effects of multiple processes in series were found

to differ from the simple summation of the individual processes. Furthermore, the

processing modified covariance matrix was shown to contain the information neces-

sary to compute voxel covariance matrices and image covariance matrices. Thus, the

effects of time series processing may be included in statistical models for fMRI and

fcMRI. One may effectively evaluate the ordering of implemented processing steps,

and evaluate what level of processing yields an acceptable covariance structure.

In light of the operators described in Chapter 4, we moved on to consider fMRI and

fcMRI data. In other work, we considered the effects of dynamic B-field correction in

fMRI data, and found that it significantly improved the performance of complex data

models [Hahn et al., 2009]. In the work in this dissertation, we chose to evaluate the

effects of the dynamic B-field correction operator in simulated and acquired fcMRI

data. We evaluated this operator, along with phase regression and center frequency

offset correction, in data where temporally dynamic B-field fluctuations corrupt ac-

quired fcMRI data. In simulation it was found that the dynamic B-field correction

method and the phase regressor method both favorably improved fcMRI measure-

ments. Specifically, it was found that the dynamic B-field correction method yielded

significantly increased correlation coefficients between simulated connected regions

when compared to all other methods, and reduced correlation coefficients between
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simulated disconnected regions. Along with these results, the ability of the dynamic

B-field correction method to be considered with the linear framework from Chapters

3 and 4, and the fact that the dynamic B-field correction method physically models

the magnetic field rather than relying upon the empirical fit of magnitude as a func-

tion of phase, we believe that the dynamic B-field correction method is the preferred

method for addressing B-field fluctuation artifacts in fcMRI data.

Thus, the body of work presented in this dissertation represents a progression of

our technological development in our consideration of complex-valued data. We first

considered complex-valued data to gain further insight into the nature of acquired

fMRI data. We found that the complex-valued data suffered from artifacts which

needed to be addressed through further processing of the data. We developed meth-

ods for applying common image processing techniques to acquired complex-valued

data, and produced a framework through which the effects of the processes could be

considered on the resulting statistical measurements. Further, we developed a method

within this framework to address the effects of dynamically changing B-fields, which

lead to the phase instability which corrupted the initially described data. We have

since applied that method to fMRI and fcMRI data to find improvements in the

consideration of the data.

6.2 Future Work

As with all developmental work, the results from our work indicate directions for

future consideration.

The initial use of phase to address the macrovascular source of the BOLD signal

may face additional challenges. As with all bulk magnetic susceptibility contrast
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methods, the geometric orientation of the magnetic field perturbers can alter the

magnetic fields which the observed spins experience. Thus, as stated in Chapter 2,

the orientation of the vasculature may prevent the observation of phase shifts with

activations in the draining vasculature. Further work needs to be done to consider

this phenomenon. Recent work has suggested that the observed phase shift with fMRI

may be from a bulk magnetic susceptibility effect of the vascularized tissue, rather

than the vasculature itself [Feng et al., 2008, 2009]. Further biophysical modeling to

elucidate the spatial regimes of phase contrast in fMRI is needed. Specifically, the

phase hemodynamic response function must be studied both at voxel and sub-voxel

spatial scales so that complex-data models may appropriately model the functional

phase response.

As mentioned in Chapter 3, the dimensionality of image processing operators can

grow to be prohibitive, even when considering moderately sized data sets. The de-

scribed spatial operators are well represented as sparse matrices, but the combination

of spatial and temporal processes described in Chapter 4 yields matrices with high

rank. Thus, the issue of high dimensional matrices becomes more significant when

considering linear temporal and spatial processes. At this point, we have addressed

the problem by focusing upon a small region of interest when considering the oper-

ators, ignoring the possible long spatial distance effects of the operations. Further

work in the field of computer science is needed to lift this dimensionality restriction.

As it currently stands, the large dimensionality of the considered operators lead to

memory management issues, as well as computational time restrictions. The opti-

mization of the algorithms utilizing the described linear framework to use general
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purpose graphical processing unit computations and to parallelize the calculations

across multiple nodes may bring the theoretical framework to the realm of utility for

clinical researchers.

Furthermore, several operations are applied to acquired data in processing steps

which are not described in Chapters 3 and 4. Specifically, parallel acquisition image

reconstruction techniques are well suited to consideration in light of the described

framework. In such cases, correlations exist between the signals acquired from the

multiple channels, and the processing effects on those non-identity correlations could

prove to be significant and interesting.

Additionally, the processing techniques described in Chapter 5 to reduce artifac-

tual correlations associated with magnetic field fluctuations must be considered in

series with other, now common, nuisance regression techniques. As the methods aim

to alleviate artifacts from similar processes, the colinearity between the B-field correc-

tions and the other regressors may be quite high, making their serial use less effective.

However, as dynamic B-field shimming has suggested, the different techniques may

address artifactual correlations through different action mechanisms [Bianciardi et al.,

2009].

Finally, our work in this dissertation advances the general goal of our lab. We

have been seeking to work back from the statistical modeling of reconstructed mag-

nitude images in fMRI to the physical processes which yield the functional BOLD

contrast. Lab members have considered the statistical thresholding of activation

statistics [Logan and Rowe, 2004], and have worked to develop statistical models of

the complex valued data [Rowe and Logan, 2004, 2005, Rowe, 2005a]. We have de-
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veloped a mathematical framework to include the effects of necessary data processing

upon the acquired data, including image reconstruction, in the statistical evaluation

of fMRI and fcMRI data. Additionally, we have worked to obtain further informa-

tion through the modeling of the complex valued data, as we have used the complex

constant phase method in attempts to attenuate delocalized BOLD activations. Our

continuing aim is to work farther back in the data acquisition process, accounting

for other acquisition based processes on the acquired data. The ultimate goal is to

develop the statistical model so that activation statistics and correlation studies may

be described in terms of physical parameters, including changes in T ∗
2 , or changes in

blood oxygenation, flow, and volume, while including the effects of each data process-

ing step along the way.



Appendix A

Menon’s Complex Phase Regressor (PR)

Method

Unlike the traditional magnitude-only method, a two step method developed by

Menon [2002] utilizes phase information in an attempt to bias against magnitude

activations in voxels with associated task related phase changes. Using the standard

Fourier reconstruction method, complex-valued images are formed and are converted

into unique pairs of magnitude and phase images with the following standard trans-

formations for magnitude and phase:

mt =
√

r2
t + i2t , (A.0.1)

φt = arctan

(
it
rt

)
. (A.0.2)

In these equations, mt is the calculated magnitude of the tth time point of a

voxel time series, φt is the calculated phase of the tth time point, and rt and it are
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the reconstructed real and imaginary observations at the tth time point, respectively.

The phase and magnitude time series for each voxel are then considered. To reduce

task related changes in the magnitude in voxels with task related phase changes, a

least squares linear regression of magnitude values as a function of phase is computed

for each voxel to create an estimated magnitude image:

mest = B̂ + Âφ (A.0.3)

Â =
−(Sφφ −

σ̂2
φ

σ̂2
m

Smm) +

√(
Sφφ −

σ̂2
φ

σ̂2
m

Smm

)2

+ 4
σ̂2

φ

σ̂2
m

S2
φm

2
σ̂2

φ

σ̂2
m

Sφm

(A.0.4)

B̂ = m̄− Âφ̄ (A.0.5)

where m̄ is the arithmetic mean of the magnitude time series, and φ̄, Sφφ, Smm, and

Sφm are defined to be:
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φ̄ = arctan

( 1
n

∑n
t=1 sin φt

1
n

∑n
t=1 cos φt

)
(A.0.6)

∆φ = arctan




%

(
rt+it

m̄ exp i∗φ̄

)

$
(

rt+it
m̄ exp i∗φ̄

)



 (A.0.7)

Sφφ =
n∑

t=1

(∆φ)2 (A.0.8)

Smm =
n∑

t=1

(mt − m̄)2 (A.0.9)

Sφm =
n∑

t=1

(∆φ)(mt − m̄). (A.0.10)

In these formulae, B̂ and Â are determined through a least squares regression with

normally distributed errors in both m and φ [Casella and Berger, 1990]. The $ and

% symbols indicate taking the real and imaginary components of the complex-valued

element. The estimated variances, σ̂2
φ and σ̂2

m, are determined individually for each

voxel by taking the FT of the time series, setting the task frequency and its first

four harmonics to zero, and then calculating the variance of the filtered time series

after taking the IFT [Menon, 2002]. Because the phase time series can wrap around,

circular statistics were implemented to determine the average phase, φ̄, and difference

in phase,∆ φ, without the need to unwrap the phase time series [Jammalamadaka

and SenGupta, 2001]. Using the phase image time series, estimated magnitude im-

age time series are created using the above described linear regression. The phase

estimated magnitude (mφt = Âφt) is then subtracted from the observed magnitude,

ideally leaving corrected magnitude time series with no magnitude changes in vox-
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els with TRPCs. The same general linear model used in the magnitude activation

method is then used to compute cortical activations for the corrected magnitude time

series. This model was introduced with an empirical linear fit of the phase’s effect on

magnitude observations. However, it is not clear that a linear fit is optimal, as some

data suggests a more complicated relationship [Klassen and Menon, 2005].



Appendix B

Rowe and Logan’s Complex Constant Phase

(CP) Method

The Rowe-Logan complex constant phase method [Rowe and Logan, 2004] is dif-

ferent from the previous method in that it directly utilizes the information in the

complex-valued reconstructed images to compute magnitude activations. This both

avoids the large signal-to-noise ratio assumption of normally distributed noise for the

Ricean noise in the magnitude-only images, and utilizes twice as many data points

to compute the maximum likelihood estimators, leading to a theoretically improved

power of determining true activations [Rowe, 2005b]. The model for data in this case

is:




R

I



 =




X 0

0 X








β cos θ

β sin θ



 + η,η ∼ N(0, σ2I2n). (B.0.1)
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In this equation, the left hand side is the vector of observed real data (R =

(r1...rn)′) stacked on top of the vector of imaginary data (I = (i1...in)′); X is the

same design matrix as in the magnitude-only activation method; β is the same vector

of regression coefficients as in the magnitude-only activation method; and θ is the

fixed but unknown phase angle of the data which is estimated on a voxel-wise basis.

As with the other methods, hypothesis tests which consider the value of β2 are used

to determine the activation statistics for each voxel. In this activation method, the

phase angle θ is assumed to be temporally constant, and is thus represented by

its maximum likelihood estimator in both the unrestricted alternative hypothesis

and in the restricted null hypothesis. The maximum likelihood estimators for the

unrestricted case, β2 '= 0, can be shown to be:

β̂ = β̂R cos θ̂ + β̂I sin θ̂ (B.0.2)

σ̂2 =
1

2n








R

I



−




Xβ̂ cos θ̂

Xβ̂ sin θ̂









′ 






R

I



−




Xβ̂ cos θ̂

Xβ̂ sin θ̂







 (B.0.3)

θ̂ =
1

2
arctan



 β̂′I(X
′X)β̂R(

β̂′R(X ′X)β̂R − β̂′I(X
′X)β̂I

)
/2



 (B.0.4)

β̂R = (X ′X)−1X ′
RR (B.0.5)

β̂I = (X ′X)−1X ′
II. (B.0.6)

The maximum likelihood estimators for the null hypothesis, β2 = 0, or more

generally Cβ = 0 with C = (0, 0, 1) in this case, can be shown to be:
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Ψ = (X ′X)−1
[
(X ′X)− C ′(C(X ′X)−1C ′)−1C

]
(B.0.7)

β̃ = Ψ
[
β̂R cos θ̃ + β̂I sin θ̃

]
+ (X ′X)−1C ′ [C(X ′X)−1C ′]−1

(B.0.8)

σ̃2 =
1

2n








R

I



−




Xβ̃ cos θ̃

Xβ̃ sin θ̃









′ 






R

I



−




Xβ̃ cos θ̃

Xβ̃ sin θ̃







 (B.0.9)

θ̃ =
1

2
arctan



 β̂′RΨ(X ′X)β̂I(
β̂′RΨ(X ′X)β̂R − β̂′IΨ(X ′X)β̂I

)
/2



 . (B.0.10)

As with the magnitude-only method, these maximum likelihood estimators can

be used to test for significance of β2 utilizing a likelihood ratio statistic with a large

sample χ2
d distribution under the null hypothesis, where d is once again the full row

rank of C or the degrees of freedom:

−2 log λCP = n log
σ̂2

σ̃2
. (B.0.11)

In this case, the χ2 statistics can be manipulated to approach F or t statistics asymp-

totically for large samples. In this paper, large sample z-statistics are considered

through the transformation of:

ZCP = sign(Cβ̂)
√
−2 log(λCP ) (B.0.12)

The activation statistics can then be thresholded to determine activations.

This complex constant phase method has also been argued to remove voxels de-
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clared active as the result of TRPCs associated with draining veins [Nencka and

Rowe, 2005, Rowe and Nencka, 2006]. While not explicitly relying upon a math-

ematical model of the phase behavior, this method assumes that θ is fixed to be

temporally constant but unknown in each voxel, while varying from voxel-to-voxel.

By assuming that the angle θ is represented by its maximum likelihood estimator for

the voxel time series, a constant phase condition is assumed in the individual voxel

time series. When this condition is not met as a voxel exhibits task related phase

changes, the assumptions of the model are not satisfied, making the fit constant phase

suboptimal. This results in larger residual variances in the model, σ̂2, and thus lower

activation statistics. It is this reduced fit, not the explicit modeling of the phase

response, that has been claimed to reduce draining vein contributions. Therefore, the

complex constant phase activation method theoretically biases against declaring such

voxels active. It should be noted that allowing the angle θ to be estimated at each

time point has been shown to remove any phase dependence in the model, yielding

the magnitude-only activation method [Rowe and Logan, 2005]. Further, in a more

general activation method the phase angle θt has been modeled in a linear fashion

along with the magnitude [Rowe, 2005a].



Appendix C

Magnitude Squared Covariance

Consider two magnitude squared variables

y1 = x2
1R + x2

1I ,

y2 = x2
2R + x2

2I ,
(C.0.1)

where x1R and x2R are the real components of the first and second observations while

x1I and x2I are the imaginary components. For the sake of this derivation, let

E(x1R) = ρ1 cos θ1, var(x1R) = σ2
1R, cor(x1R, x2I) =Γ RI ,

E(x1I) = ρ1 sin θ1, var(x1I) = σ2
1I , cor(x1I , x2I) = ΓII ,

E(x2R) = ρ2 cos θ2, var(x2R) = σ2
2R, cor(x1R, x2R) =Γ RR,

E(x2I) = ρ2 sin θ2, var(x2I) = σ2
2I , cor(x1I , x2R) =Γ IR,

cor(x1R, x1I) =Γ 1,

cor(x2R, x1I) =Γ 2,

(C.0.2)
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where ρ represents an observation’s magnitude and θ represents an observation’s

phase. The magnitude and phase may be obtained from the reconstructed image.

Note that the Γ and variance values may be obtained from the complex correlation

matrix.

The covariance between the magnitude squared variables assuming normally dis-

tributed noise is thus:

cov(y1, y2) = E(y1y2)− E(y1)E(y2)

= E(x2
1Rx2

2R) + E(x2
1Rx2

2I) + E(x2
1Ix

2
2R) + E(x2

1Ix
2
2I)−

(
E(x2

1R) + E(x
2
1I)

) (
E(x2

2R) + E(x2
2I)

)

= 2
(
Γ2

RRσ2
1Rσ2

2R + Γ2
RIσ

2
1Rσ2

2I + Γ2
IRσ2

1Iσ
2
2R + Γ2

IIσ
2
1Iσ

2
2I

)
+

4 (ΓRRσ1Rσ2Rρ1 cos(θ1)ρ2 cos(θ2)+

ΓRIσ1Rσ2Iρ1 cos(θ1)ρ2 sin(θ2)+

ΓIRσ1Iσ2Rρ1 sin(θ1)ρ2 cos(θ2)+

ΓIIσ1Iσ2Iρ1 sin(θ1)ρ2 sin(θ2)) .

(C.0.3)

By letting x1 = (x1R, x1I)′, x2 = (x2R, x2I)′, E(x1) = µ1, E(x2) = µ2, cov(x1) =

Σ1, cov(x2) =Σ 2, and cov(x1, x2) =Σ 12, one can compactly write:

E(yj) = tr(Σj) + µ′jµj, j = 1, 2,

var(yj) = 2tr(Σ′
jΣj) + 4µ′jΣjµj, j = 1, 2,

cov(y1, y2) = 2tr(Σ′
12Σ12) + 4µ′1Σ12µ2,

(C.0.4)

where tr(·) denotes the trace operation.



Appendix D

Fourier Anomalies

The standard Fourier operator,Ω , is described in Equation 3.2.1. This operator

may be modified to include anomalies in the Fourier encoding procedure, produced

by T ∗
2 decay and B-field inhomogeneity. Each anomaly introduces time dependent

exponential terms to the signal equation as shown in Equation 3.6. The exponential

terms for T ∗
2 and∆ B, denoted as E(kx, ky, x, y), may be considered with their real

and imaginary components through the Euler identity,

E(kx, ky, x, y) = e−t(kx,ky)/T ∗2 (x,y)eiγ∆B(x,y)t(kx,ky) (D.0.1)

= e−t(kx,ky)/T ∗2 (x,y) cos(γ∆B(x, y)t(kx, ky))

+ie−t(kx,ky)/T ∗2 (x,y) sin(γ∆B(x, y)t(kx, ky)). (D.0.2)
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These multiplicative terms may be included in the Fourier matrix with encoding

anomalies as

Ωa = Ω. ∗





$(E(1, 1, 1, 1)) · · ·$ (E(m, n, 1, 1)) −%(E(1, 1, 1, 1)) · · ·−% (E(m, n, 1, 1))

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

$(E(1, 1, m, 1)) · · ·$ (E(m, n, m, 1)) −%(E(1, 1, m, 1)) · · ·−% (E(m, n, m, 1))

$(E(1, 1, 1, 2)) · · ·$ (E(m, n, 1, 2)) −%(E(1, 1, 1, 2)) · · ·−% (E(m, n, m, 2))

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

$(E(1, 1, m, n)) · · ·$ (E(m, n, m, n)) −%(E(1, 1, m, m)) · · ·−% (E(m, n, m, n))

%(E(1, 1, 1, 1)) · · ·% (E(m, n, 1, 1)) $(E(1, 1, 1, 1)) · · ·$ (E(m, n, 1, 1))

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

%(E(1, 1, m, n)) · · ·% (E(m, n, m, n)) $(E(1, 1, m, n)) · · ·$ (E(m, n, m, n))





, (D.0.3)

where .∗ indicates point-wise multiplication of the matrices. Clearly the form of T ∗
2

and∆ B are dependent upon the physical system being imaged.



Appendix E

Censoring and Reordering Acquired Data

As acquired, the EPI k-space data is not in a format appropriate for the devel-

oped Fourier operators. Extra data must be censored, data acquired with negative

frequency encoding gradients must be reversed, and the real data must be segregated

from the imaginary data.

First, the extra points acquired during the phase encoding blips must be censored.

A binary censoring matrix of dimension 2mn× 2m(n + e) is used to multiply S. The

censoring matrix is an identity matrix with the rows corresponding to the extra

acquired points omitted. Mathematically, this can be described using the Kronecker

product. Thus, the censoring matrix, C, is the Kronecker product of an identity

matrix with a non-square matrix which includes an identity matrix and an 2n × 2e

matrix of zeros denoted by Z(2n, 2e):

C = Im ⊗ [I2n, Z(2n, 2e)]. (E.0.1)

Thus, the extraneous points acquired during the phase encoding blips are removed
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through the use of the censoring matrix, SC = CS. A toy example of a censoring

matrix for an 8× 8 array of k-space measurements with 1 point acquired during the

phase encoding blips is shown in Figure 3.1(d).

With the removal of the points acquired during the phase encoding blips, SC

contains only the k-space observations that are on the k-space grid. The second step

is to re-order the alternating lines where the data is collected with negative frequency

encoding gradients. This is slightly more complicated than simply reversing the data

as it is still in real-imaginary pairs which would be swapped to imaginary-real pairs

if only row reversal was performed. Again, a Kronecker product is used to construct

the row reversal operator, R. To construct R, a Kronecker product between I, a

“reverse identity” matrix, to reverse the row, and an identity matrix, to preserve the

real-imaginary pairs, is used:

R = In ⊗ I2. (E.0.2)

To apply this row reversal to only even lines, an alternating row reversal matrix, R,

must be constructed. This is the Kronecker product between an identity matrix and

a block, B, which preserves one row and reverses one row. Thus, the block is defined

to be

B =




I2n Z(2n, 2n)

Z(2n, 2n) R



 , (E.0.3)

and the alternating row reversal matrix is thusly

R = Im/2 ⊗B. (E.0.4)
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Note that this assumes an acquisition with reversed even rows, although an acquisition

with reversed odd rows would require the trivial change of switching the positions of

I2n and R in B. With the alternating row reversal matrix constructed, the alternating

row reversal can be easily performed: SRC = RSC . A toy example of an alternating

row reversal matrix for an 8× 8 k-space data set is shown in Figure 3.1(e).

The final step of converting S to s involves reordering SRC to include the real

observations stacked above the imaginary observations. This operation is performed

by a permutation matrix, PC , which can be constructed by interleaving the columns

of two non-square matrices. These matrices include PC1 = [Imn; Z(mn, mn)] and

PC2 = [Z(mn, mn); Imn]. The columns of these matrices are interleaved to produce

PC by taking the first column of PC1 followed by the first column of PC2 and so on.

This real-imaginary reordering can be performed through matrix multiplication to

yield the data ordering required in Equation 3.1, s = PCSRC . An example assuming

an 8× 8 k-space acquisition is shown in Figure 3.1(f).



Appendix F

Nyquist Ghost Correction

Even and odd lines may be shifted in opposite directions to correct for the Nyquist

ghost introduced from eddy current effects in EPI. This may be performed through

the use of the Fourier shift theorem. The three operators which are described in this

section reorder the data into sets of real and imaginary data for each row, Fourier

transform each row, and apply a phase shift to the Fourier transformed row.

The permutation matrix is a binary matrix which can be constructed by interleav-

ing blocks of columns of two non-square matrices to create a square matrix. The two

matrices to be interleaved are PR1 = [Imn, Z(mn, mn)] and PR2 = [Z(mn, mn), Imn].

The permutation matrix, PR, results from taking the first n columns of PR1 followed

by the first n columns of PR2, and so on. The signal is thus re-ordered to a column

vector of the reals stacked above the imaginaries for each row through multiplication

with PR. As this is a permutation matrix, its inverse is simply its transpose. A

graphical representation of PR for an 8 × 8 k-space acquisition is shown in Figure

3.1(g).
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The row Fourier transform matrix is the Kronecker product of an identity matrix

with the Fourier transform matrixΩ x, as defined earlier,Ω row = Im⊗Ωx. A graphical

representation ofΩ row for an 8× 8 k-space acquisition is shown in Figure 3.1(h).

The phase shift operator is the final necessary operator for performing a line

shift. This operator multiplies the complex-valued Fourier transform of the line by

a complex-valued exponential to implement the Fourier shift theorem. For a shift of

φ, the jth element of the row must be multiplied by exp(−i2πφj/n), or equivalently

cos(2πφj/n) − i sin(2πφj/n). Thus, the real component of the phase shifted jth

element is $(fj) cos(2πφj/n)−%(fj) sin(2πφj/n), where fj is the jth element of the

Fourier transformed row. Similarly, the imaginary component of the phase shifted jth

element is $(fj) sin(2πφj/n) + %(fj) cos(2πφj/n). Thus, for a row, this phase shift

matrix operator is

ζ =





cos(2πφ1/n) · · · 0 − sin(2πφ1/n) · · · 0

...
. . .

...
...

. . .
...

0 · · · cos(2πφn/n) 0 · · ·− sin(2πφn/n)

sin(2πφ1/n) · · · 0 cos(2πφ1/n) · · · 0

...
. . .

...
...

. . .
...

0 · · · sin(2πφn/n) 0 · · · cos(2πφn/n)





. (F.0.1)

Shifting a row to the right by φ pixels is denoted by ζ+ while shifting a row to the

left by φ pixels is denoted by ζ−. With this representation, the phase shifting of lines

in alternating directions is denoted by Φ= Im/2 ⊗ [ζ+, Z(2n, 2n); Z(2n, 2n), ζ−]. A

graphical representation of Φwith φ = 0.5 and an 8× 8 acquisition matrix is shown

in Figure 3.1(i).



Appendix G

Partial Fourier Interpolation

Conjugate symmetry ideally exists about the origin in k-space, as the reconstructed

image is expected to be real-valued. This symmetry allows half of k-space to be

generated without being acquired. Thus the acquired data array, s, only requires

2(m/2 + 1)n elements while the symmetrically generated data array, sS, is 2mn

elements. For the sake of consistency in notation, we assume that the remaining

2(m/2− 1)n elements in s are set to zero with the last (m/2− 1)n real observations

being zero and the last (m/2− 1)n imaginary observations being zero. An equivalent

symmetric k-space generation operator can be constructed which does not include

these zero elements thereby reducing the operator size. However, in the considered

case a square matrix, H, can be used for partial Fourier reconstruction. For the ac-

quired real and imaginary points, the partial Fourier operator returns the observed

values. For the generated point (kx, ky), the partial Fourier operator returns the

complex conjugate of the observed point at (−kx, −ky). This partial Fourier op-

erator multiplies the uncollected points by zero, so the values originally substituted
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into these points are irrelevant. The partial Fourier operator is thusly a 2mn× 2mn

matrix. This matrix which includes identity, I, “reverse identity,” I, and zero, Z,

matrices is:

H =




I(m/2+1)n Z((m/2 + 1)n, (m/2− 1)n) Z((m/2 + 1)n, mn)

Z((m/2− 1)n, n) I(m/2−1)n Z((m/2− 1)n, 3
2 mn)

Z((m/2− 1)n, mn) I(m/2+1)n Z((m/2 + 1)n, (m/2− 1)n)

Z((m/2− 1)n, (m + 1)n) −I(m/2−1)n Z((m/2− 1)n, m
2 n)



 . (G.0.1)

A graphical representation of H is shown in Figure 3.1(j) for the case of an 8 × 8

symmetric k-space.



Appendix H

Convolution

We will first describe the zero filling operator, F , and then describe the apodiza-

tion operator, A, which includes the typical Fermi apodization window and Gaussian

smoothing window as specific cases. We will finally describe the image-space magni-

tude smoothing operator.

Zero-filling is often performed to yield an increase in apparent reconstructed res-

olution and to create an array which has dimensions of an integer power of two for

fast Fourier transform routines [Gonzalez and Woods, 1992]. In zero-filling, zeros are

appended to the acquired k-space observations at higher spatial frequencies than are

observed. It is well known that zero-filling is equivalent to image-space convolution

with a sinc kernel. The zero-filling is done symmetrically to preserve the location

of the k-space origin in the zero-filled array at (m/2 + 1, n/2 + 1). The zero fill-

ing matrix is a binary matrix containing blocks of zero and identity matrices. This

parameterization of the zero-filling operator assumes that an even number of phase

encode points, P, and an even number of frequency points, F , are to be added to
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the acquired data. The zero-filling operator is denoted as

F = I2 ⊗





FP

Im ⊗ FF

FP




(H.0.1)

where

FP = Z(P/2, mn) (H.0.2)

and

FF =





Z(F/2, n)

In

Z(F/2, n)




. (H.0.3)

Thus, zeros are appended symmetrically around the acquired k-space matrix. It

should be noted that this changes the dimensionality of s, and subsequent operators

must be appropriately adjusted. An example of F is shown in Figure 3.1(k) for zero

filling a 4× 4 k-space data set to an 8× 8 data set.

Apodization and filtering can be considered with the Fourier convolution theorem,

where convolution with a kernel in image space is simply point-wise multiplication

of the Fourier transform of the original kernel in k-space. Thus, any processing step

which involves the point-wise multiplication of k-space observations with a kernel

or the image-space convolution of the complex-valued image with a kernel can be

considered with the apodization operator presented here. This apodization operator,

A, is a diagonal matrix in which the non-zero elements correspond to the values of

the k-space kernel for those points. If the values of the k-space kernel, K, are indexed
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across rows such that the first element of the first row is 1, the last element of the

first row is n, the first element of the second row is n + 1, and so on, the elements

of A are easily defined such that Aj,j = K(j). An example of A is shown in Figure

3.1(l) for the case of a simple 8× 8 Hanning k-space window.

Explicit image smoothing is often performed on the reconstructed magnitude data.

Such a process is different from smoothing the complex data [Lai et al., 1996] and is

a non-linear process. However, with the magnitude squared covariance matrix known

from the complex-valued covariance matrix, an operator, Smm, may be developed to

consider smoothing magnitude squared data. The first row of the operator consists

of the kernel weights for each magnitude squared data point for the first smoothed

magnitude squared data point. The second row includes the weights for the second

point, and so on. An operator for smoothing an 8 × 8 data set with a Gaussian

kernel with a 3 voxel FWHM is shown in Figure 3.1(m). If image-space smoothing

of the complex-valued data were preferred over k-space apodization, a complex-data

smoothing operator, Sm could be constructed as a block diagonal operator where the

two diagonal blocks are filled with Smm.



Appendix I

Estimators for the Alternative Hypothesis

The maximum likelihood estimators for the alternative hypothesis may be derived

by maximizing the probability distribution. We consider the model in a given voxel

with n real and n imaginary observations




yR

yI



 =




CXβ

SXβ



 +




ηR

ηI



 ,




ηR

ηI



 ∼ N
(
0, σ2Σv

)
.

The probability distribution for this model is

L = (2πσ2)−2n/2|Σv|−1/2 exp



−
1

2σ2




yR − CXβ

yI − SXβ





′

Σ−1
v




yR − CXβ

yI − SXβ







 .

Maximizing the logarithm of the probability distribution maximizes the probability

distribution while simplifying the mathematics. The logarithm of the probability
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distribution is

LL =
−2n

2
log(2πσ2)− 1

2
log(|Σv|)+



−
1

2σ2




yR − CXβ

yI − SXβ





′

Σ−1
v




yR − CXβ

yI − SXβ







 .

Following the notation of the manuscript, letΣ −1
v be partitioned into four n × n

matrices

Σ−1
v =




ΣA ΣB

ΣC ΣD



 .

This inverse matrix may be determined by solvingΣ vΣ−1
v = I to yield the values

shown in Equations 4.8, 4.9, 4.10, and 4.11. For simplicity in notation, let the matrix

product be represented by α

α =




yR − CXβ

yI − SXβ





′

Σ−1
v




yR − CXβ

yI − SXβ





= y′RΣAyR − 2y′RΣACXβ + β′X ′C ′ΣACXβ +

y′IΣCyR − y′IΣCCXβ − β′X ′S ′ΣCyR + β′X ′S ′ΣCCXβ +

y′RΣByI − y′RΣBSXβ − β′X ′C ′ΣByI + β′X ′C ′ΣBSXβ +

y′IΣDyI − 2y′IΣDSXβ + β′X ′S ′ΣDSXβ.

Thus, the logarithm of the probability distribution may be written more concisely as

LL = −2n

2
log(2πσ2)− 1

2
log(|Σv|) +

(
− α

2σ2

)
.
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Differentiating the the logarithm of the probability distribution with respect to β

yields

∂LL

∂β
=

1

2σ2

∂α

∂β

=
1

2σ2
(−2y′RΣACX + 2X ′C ′ΣACXβ−

y′IΣCCX −X ′S ′ΣCyR + 2X ′S ′ΣCCXβ −

y′RΣBSX −X ′C ′ΣByI + 2X ′C ′ΣBSXβ −

2 y′IΣDSX + 2X ′S ′ΣDSXβ )

Setting this equal to zero and solving for β yields the maximum likelihood estimator

for β

β̂ =
(
2Ĉ ′X ′ΣAXĈ + 2Ŝ ′X ′ΣCXĈ + 2Ĉ ′X ′ΣBXŜ + 2Ŝ ′X ′ΣDXŜ

)−1

×
(
2y′RΣAXĈ + y′IΣCXĈ + Ŝ ′X ′ΣCyR+

y′RΣBXŜ + Ĉ ′X ′ΣByI + 2yIΣDXŜ
)

Differentiating the logarithm of the probability distribution with respect to σ2

yields
∂LL

∂σ2
= − n

σ2
+

α

2σ4
.

Setting this equal to zero and solving for σ2 yields the maximum likelihood estimator

for σ2

σ̂2 =
α̂

2n
.
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Following the notation of the manuscript,

Ĉ = cos(θ̂)In

Ŝ = sin(θ̂)In,

and θ̂ may be estimated with the method of moments

θ̂ = arctan

(
1/n

∑n
t=1 sin(θ̂t)

1/n
∑n

t=1 cos(θ̂t)

)
.



Appendix J

Estimators for the Null Hypothesis

The maximum likelihood estimators for the null hypothesis under which V β = δ

may be derived by maximizing the probability distribution with a Lagrange multiplier.

The function to be maximized is thus

h = LL− 1

2σ2
ψ′ (V β − δ)

= −n log(2πσ2)− 1

2
log(|Σv|)−

1

2σ2
(α + ψ′ (V β − δ)) ,

where α is as defined in Appendix I. Differentiating h with respect to ψ yields

∂h

∂ψ
=

δ − V β

2σ2
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Setting the above equation equal to zero and solving for ψ produces the maximum

likelihood estimator for ψ under the null hypothesis

ψ̃ =

[
V

(
2X ′C̃ ′ΣAC̃X + 2X ′S̃ ′ΣCC̃X + 2X ′C̃ ′ΣBS̃X + 2X ′S̃ ′ΣDS̃X

)−1

V ′
]−1

×
[
V

(
2X ′C̃ ′ΣAC̃X + 2X ′S̃ ′ΣCC̃X + 2X ′C̃ ′ΣBS̃X + 2X ′S̃ ′ΣDS̃X

)−1

×
(
2y′RΣAC̃X + y′IΣCC̃X + X ′S̃ ′ΣCyR+

y′RΣBS̃X + X ′C̃ ′ΣByI + 2y′IΣDS̃X
)
− δ

]
.

Differentiating h with respect to β yields

∂h

∂β
=

1

2σ2

(
∂α

∂β
+ ψ′V

)
.

Setting the above equation equal to zero and solving for β produces the maximum

likelihood estimator for β under the null hypothesis

β̃ =
(
2X ′C̃ ′ΣAC̃X + 2X ′S̃ ′ΣCC̃X + 2X ′C̃ ′ΣBS̃X + 2X ′S̃ ′ΣDS̃X

)−1

×
(
2y′RΣAC̃X + y′IΣCC̃X + X ′S̃ ′ΣCyR+

y′RΣBS̃X + X ′C̃ ′ΣByI + 2y′IΣDS̃X − ψ̃′V
)

.
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Similar to the alternative hypothesis case, the matrix product α̃ is

α̃ = y′RΣAyR − 2yRΣAC̃Xβ̃ + β̃′X ′C̃ ′ΣAC̃Xβ̃ +

y′IΣCyR − y′IΣCC̃Xβ̃ − β̃′X ′S̃ ′ΣCyR + β̃′X ′S̃ ′ΣCC̃Xβ̃ +

y′RΣByI − y′RΣBS̃Xβ̃ − β̃′X ′C̃ ′ΣByI + β̃′X ′C̃ ′ΣBS̃Xβ̃ +

y′IΣDyI − 2yIΣDS̃Xβ̃ + β̃′X ′S̃ ′ΣDS̃Xβ̃

Differentiating with respect to σ2 yields

∂h

∂σ2
= − n

σ2
+

1

2σ4
(α + ψ′ (V β − δ)) .

Setting this equal to zero and solving for σ2 yields the maximum likelihood estimator

for σ2 under the null hypothesis

σ̃2 =
α̃ + ψ̃′

(
V β̃ − δ

)

2n
.

Following the notation of the manuscript,

C̃ = cos(θ̃)In

S̃ = sin(θ̃)In,

and θ̃ may be estimated with the method of moments

θ̃ = arctan

(
1/n

∑n
t=1 sin(θ̃t)

1/n
∑n

t=1 cos(θ̃t)

)
.
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