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Recent BOLD fMRI data analysis methods show promise in reducing
contributions from draining veins. The phase regressor method
developed by [Menon, R.S., 2002. Post-acquisition suppression of
large-vessel BOLD signals in high-resolution fMRI. Magn. Reson.
Med., 47, 1–9] creates phase and magnitude images, regresses
magnitude as a function of phase, and subtracts phase-estimated
magnitudes from the observed magnitudes. The corrected magnitude
images are used to compute cortical activations. The complex constant
phase method, developed by [Rowe, D.B., Logan, B.R., 2004. A
complex way to compute fMRI activation. NeuroImage, 23, 1078–
1092], uses complex-valued reconstructed images and a nonlinear
regressor model to compute magnitude cortical activations assuming
temporally constant phase. In both methods, the usage of the phase
information is claimed to bias against voxels with task-related phase
changes caused by some draining veins. The behavior of the statistical
methods in data with several task-related magnitude and phase
changes is compared. The power of the statistical methods for
determining voxels with specific task-related magnitude and phase
change combinations are determined in ideal simulated data. The
phase regressor and complex constant phase activation determination
techniques are examined to characterize the responses of the models to
select task-related phase and magnitude change combinations in
representative simulated time series. Possible draining veins in human
preliminary data are discussed and analyzed with the models and the
current challenges which prevent these methods from being reliably
implemented are discussed.
© 2007 Elsevier Inc. All rights reserved.

Introduction

The measured signal in MRI can be encoded to represent the
complex-valued Fourier transform (FT) of the object being imaged.
The image is generally reconstructed by performing an inverse
Fourier transform (IFT) on the collected data (Rowe et al., 2007b).
The object is physical, and is thus real-valued. Therefore, under
ideal conditions, the FT of the object would result in observed
complex-valued data and the IFT of this data would result in the
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reconstruction of the unaltered, real-valued image of the object.
However, small-scale inhomogeneities in the magnetic field and
measurement noise lead to complications in this mathematical
treatment of the data (Haacke et al., 1999). The reconstructed
image is thus complex-valued, and can be visualized through a
unique representation in real and imaginary images.

Functional MRI (fMRI) traditionally relies upon the statistical
analysis of time series of magnitude-only images using blood
oxygen level-dependent (BOLD) contrast to determine areas of
cortical activation (Ogawa et al., 1993; Bandettini et al., 1993; Cox
et al., 1995). Because popular methods of determining brain
activation through fMRI only utilize magnitude images over the
experimental time course, they discard information about small-
scale magnetic field disturbances contained in the complex-valued
data, or phase image time course (Rowe and Logan, 2004). This
phase data is often corrupted by physiologic processes, slight
subject motion and other noise (Pfeuffer et al., 2002). In spite of
the noise in this data, some have proposed using the information in
this data to improve the detection power of activation methods (Lai
and Glover, 1997; Nan and Nowak, 1999). Others have directly
used the phase information alone to detect activations (Rowe et al.,
2007a). This phase data, related to local magnetic field changes,
may hold a great deal of information about the source of the BOLD
signal.

The BOLD signal arises from changes in blood oxygenation,
and is thus sensitive to the capillaries where the oxygenation
change occurs and downstream draining veins. With activation the
concentration of oxyhemoglobin in the active capillaries and veins
increases, effectively altering the blood's susceptibility. This leads
to a change in the magnetic field within active vessels which
correlates with the activity. Thus, the magnetization within these
active vessels will acquire a different net phase with activation than
with rest. If the active vessels within a voxel are large well-oriented
draining veins which contribute strongly to the observed signal,
they will contribute a task-related phase change (Menon, 2002).
Smaller venules and capillaries located in the parenchymal tissue,
which are more randomly oriented, more densely packed, and carry
a smaller volume of blood, lead to random de-phasing without a
preferential direction. Therefore, because of these randomly
oriented phase alterations within a voxel in the parenchyma, the
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signal will decay but will not exhibit a coherent phase change. The
orientation of the vessels with respect to the magnetic field, and
many other variables, will obviously affect the strength of the task-
related phase change (TRPC), as it will be minimized, for instance,
with the vein at the “magic angle”. Thus voxels with TRPCs will
most likely be contaminated by the macrovasculature while it is not
certain that voxels without TRPCs are free from draining veins
(Klassen and Menon, 2005).

Because it is believed that the most relevant cortical activations
detected through BOLD contrast are those which are tied to the
microvasculature where the blood oxygenation change occurs,
many attempts have been made to reduce the contributions from
the macrovasculature, or large draining veins, to the BOLD-
computed cortical activations. In standard resolution fMRI,
activations from draining veins are generally not of concern as
such veins are co-localized in voxels with active parenchyma.
Further downstream, the venous blood is diluted resulting in less
signal change. It has been shown that with an active cortex area of
100 mm2 such dilution is observable about 4 mm downstream from
the active cortex, with only 1/4 of the oxygenation change of active
cortex up to 25 mm away (Turner, 2002). In higher-resolution
fMRI, however, this draining vein signal becomes more proble-
matic. Draining vein contributions are less consistently co-
localized in voxels with active parenchyma and they may be
several voxels away from the active cortex. Furthermore, smaller
voxel volume leads to attenuated partial volume effects and intra-
voxel de-phasing, allowing draining veins to have a greater
influence in the signal of downstream voxels. Thus, the de-
localization of activations from draining veins becomes proble-
matic when higher resolution fMRI is used.

It is the goal of this paper to explore two recently proposed
post-processing methods which utilize the magnitude and phase
components of the complex-valued signal to determine BOLD
cortical activations. It has been suggested that the complex phase
regressor method localizes computed activations to the parench-
yma by reducing draining vein contributions (Menon, 2002).
Likewise, Rowe and Logan's method of magnitude activation in
complex data assuming constant phase has been claimed to both
localize activations to the parenchyma and reduce the draining vein
component of activations (Rowe and Logan, 2004; Rowe, 2005a;
Nencka and Rowe, 2005). In this study, we compare the ability of
the two statistical techniques to bias against voxels which exhibit
task-related phase changes under ideal simulated conditions. We
also discuss the application of these techniques to preliminary
experimental data and several confounding factors which must be
resolved for such phase-based draining vein identification to be
practically implemented.

Statistical methods

We first briefly outline the parameterization of the advanced
statistical activation detection techniques and offer illustrative
simulated voxel time series. Both the phase regressor and complex
constant phase methods employ the use of general linear models.
Simple general linear models are well developed in the literature.
Further descriptions of the implementations of the phase regressor
and complex constant phase models are given in Appendices A
and B.

The phase regressor method (Menon, 2002) assumes normally
distributed noise on the magnitude and phase data. The model also
assumes that task-related magnitude changes associated with
draining veins are linearly related to the task-related phase changes
of those veins. Assuming errors in both variables, the magnitude
values for a time series are regressed as a function of the
corresponding phase values for a given voxel. Based upon each
phase time point value, an estimated magnitude is determined
using the computed regression. This phase-estimated magnitude is
then subtracted from the observed magnitude to discount the phase
associated magnitude component in a “phase-corrected” magnitude
time series. The common magnitude-only general linear model is
then used to analyze the corrected magnitude time series.

Examples of this method are illustrated through simulated voxel
time series shown in Fig. 1. The simulated data were created using
the complex-valued general linear model as described by Rowe
(2005b):

Yt ¼ b0 þ b1t þ b2x2tð Þcos g0 þ g1t þ g2x2tð Þ þ gRt½ �
þ i b0 þ b1t þ b2x2tð Þ sin g0 þ g1t þ g2x2tð Þ þ gIt½ �: ð2:1Þ

In all cases, no linear trend was modeled in phase, γ1=0, and
β2, γ2, and β0 were set to determine the contrast-to-noise ratio
(CNR=β2 /σ), task-related phase change (TRPC=γ2*180 /π), and
signal-to-noise ratio (SNR=β0 /σ). In Figs. 1(A) and (D), the ideal
magnitude time series (red), noise corrupted time series (green),
phase corrected magnitude time series (blue) and phase regressor
model fit (black) are shown. Figs. 1(B) and (E) depict the
corresponding ideal and simulated phase time series. In Figs. 1(C)
and (F), scatter plots of magnitude (vertical axis, in arbitrary units)
and phase (horizontal axis, in degrees) are shown for time points
during the active (star) and inactive (circle) periods. The regression
for magnitude as a function of phase, accounting for errors in both
variables, is shown by the solid black line.

The first row of Fig. 1 is for a time series with a very strong
task-related magnitude changes (CNR=1) and no task-related
phase changes (TRPC=0°), as would be expected in a voxel
containing only parenchyma. It can be seen that the phase regressor
method preserves the statistically significant block design in the
corrected magnitude time series with reduced magnitude.

The second row of Fig. 1 depicts a time series with a moderate
task-related magnitude change (CNR=0.78) and moderate task-
related phase change (TRPC=2°), as could be expected in a voxel
containing a draining vein. In this case, error in the fit of the
magnitude as a function of the phase leads to a statistically
insignificant overcorrection of the magnitude data in the phase
corrected magnitude data. Thus, while the original magnitude-only
time series exhibits a statistically significant block design, the
corrected time series does not as the phase regressor method
subtracts larger magnitude estimates from the observed magnitude
time series during active blocks, reducing the statistical signifi-
cance of the activation statistic.

The complex constant phase method (Rowe and Logan, 2004)
aims to bias against time series which exhibit phase changes
through an entirely different mechanism than the phase regressor
model. The complex constant phase method models the entire
complex-valued voxel time series in a general linear model. This
statistical model assumes normally distributed noise on the
complex-valued data and assumes that the phase is temporally
fixed on a voxel-wise basis. Thus, the model simultaneously fits a
block design to the magnitude data and a constant phase to the
phase data. When a time series exhibits phase changes, the fit of
the constant phase to the incorrectly modeled temporally varying
phase leads to an increase in the variance of the residuals from the
fit model. As it is shown in Appendix B, an increase in the variance



Fig. 1. Simulation Time Series for CNR=1, TRPC=0° (A, B, and C) and CNR=0.78, TRPC=2° (D, E, and F). Panels A and D illustrate the ideal magnitude time
series (red), simulated magnitude time series (green), phase-corrected magnitude time series (blue) and fit phase regressor model (black). Panels B and E illustrate
the ideal phase time series (red) and simulated phase time series (green). Panels C and F show scatter plots of the active (star) and inactive (circle) time points with
phase (in degrees) on the horizontal axis and magnitude (in arbitrary units) on the vertical axis. The fit of magnitude as a function of phase for the phase regressor
method is shown as a solid line and the mean phase angle and mean magnitude value are shown as dotted vertical and horizontal lines, respectively.
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of the residuals from the fit model will lower the computed
activation statistic. Thus, the bias against voxels with phase
changes in the complex constant phase statistical method is
achieved through the increase of the variance of the residuals from
the model in voxels with phase changes. This is opposed to the
empirical modeling of the magnitude-phase relationship deter-
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mined in the phase-regressor model. Instead of modeling the
draining vein response, the complex constant phase method relies
upon a reduced statistical fit of the model in expected draining
veins. This identification of veins based upon a reduced fit of the
model, rather than directly modeling the venous response, can be a
criticism of the complex constant phase statistical model.

Example time series for the constant phase method are shown in
Fig. 2. The first row shows an active voxel with a strong magnitude
change (CNR=1) and no task-related phase change (TRPC=0°).
This data is the same as presented in Figs. 1(A), (B), and (C). The
magnitude fit is in good correspondence to the data and is seen that
the errors from the phase time series fit result only from the phase
noise. The residual variance from this fit is identical to that of the
magnitude-only fit. The second row includes a time series from a
simulated voxel with a moderate magnitude change (CNR=0.35)
and large task-related phase change (TRPC=4°). These parameters
differ from those in Figs. 1(D), (E) and (F) as the models exhibit
favorable vein-reducing characteristics with different CNR–TRPC
combinations, as will be discussed in the next section. As in the
previous case, the magnitude fit from the constant phase method is
good, nearly corresponding to the ideal simulated data. However,
Fig. 2. Simulation time series for CNR=1, TRPC=0° (row 1) and CNR=0.35, TRP
simulated magnitude time series (green), and constant phase fit (blue). Panels B a
(green), and constant phase regression fit (blue). The constant phase regression of
the residuals of the phase model are inflated through the addition of
the structured phase change in addition to the random phase noise.
This leads to an increase in the variance of the fit model's residuals
and a corresponding decrease in the associated activation statistic.
Thus, the constant phase method biases against voxels with tem-
porally non-constant phase, including voxels with task-related phase
changes because of the reduced model fit to the data.

Computer simulation study

Methods

To examine the properties of these statistical activation detec-
tion methods under known conditions a simulation was performed
in MATLAB (The Mathworks, Natick, MA, USA). In the
simulation, time courses for each pixel of a 128×128 array were
first created using the complex-valued general linear model defined
in Eq. (2.1). In all cases, there was no linear trend in the phase
(γ1 =0). All pixels were made active so that a non-zero
contribution was made by the reference function to the magnitude
and/or phase data (β2=0 to σ and γ2=0 to 5π / 180). The strengths
C=4° (row 2). Panels A and C illustrate the ideal magnitude time series (red),
nd D illustrate the ideal phase time series (red), simulated phase time series
the phase is coincident with the ideal phase time series in panel B.
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of the magnitude contributions were determined by setting the
temporal contrast-to-noise ratios (CNR=β2 /σ), and the strengths
of the phase changes were determined by setting γ2 values, and
thus the number of degrees in the task-related phase changes
(TRPCs). In all of the 128×128 pixels, the complex-valued
simulated data was corrupted with randomly generated, normally
distributed noise in the real and imaginary components with a
temporal signal-to-noise ratio (SNR=β0/σ) of 20. This temporal
SNR approximately corresponds to the SNR measured in the
human data presented later, as determined by the β0 and σ terms in
the magnitude-only general linear model regression. Each pixel of
the 128×128 array was assigned a different CNR–TRPC combi-
nation, for a total of 16,384 separate combinations. One thousand
iterations of computing activations on different generated data sets
were performed to determine powers of the various method for
declaring pixels active above an α=0.05 Bonferroni adjusted
threshold in each iteration of this simulation (Logan and Rowe,
2004). The activation power for a method was defined to be the
percentage of times in the one thousand data sets that a pixel was
declared active by that method.

Results

The results of the simulation are shown in Fig. 3. The ho-
rizontal axis represents the CNR, as it changes from 0 on the left-
hand side to 1 on the right-hand side in 128 equal steps, and the
vertical axis represents the TRPC as it changes from 0° on the top
to 5° on the bottom in 128 equal steps. Each subfigure depicts a
surface indicating the power of each post-processing method for
detecting activations with the varying CNR–TRPC combinations.

As shown in Figs. 3(A) and (B), both the magnitude-only and
phase-only statistical methods are dependent upon only the CNR
and the TRPC respectively. However, the complex constant phase
and complex phase regressor analysis methods show obvious
dependencies upon both the CNR and TRPC. As seen in Fig. 3(C),
with small TRPCs, just like the magnitude-only method, the
complex constant phase statistical method declares all voxels with
significant CNRs active with high power. Such TRPC–CNR
combinations are observed in parenchymal voxels. However, as
TRPCs increase, this similarity between the magnitude-only and
complex constant phase statistical methods diminishes, as also
shown in an abstract by Nencka and Rowe (2006). When larger
TRPCs are present in the time series, the constant phase method
requires a higher CNR to declare voxels active. In the brain, such
voxels with moderate CNRs and larger TRPCs include voxels
which contain draining veins. Thus, this simulation suggests that
the complex constant phase method may bias against such voxels
which may contain draining veins. However, if a voxel contains
both a large TRPC and CNR, the constant phase method declares
the voxel active with the same power as the magnitude-only
method. These TRPC–CNR combinations can result from large
draining veins which exhibit extraordinarily large CNRs. In such
cases, the constant phase method does not bias against the
contaminated voxels. This suggests that the complex constant
phase method may bias against some voxels with TRPCs while not
removing all of them.

As shown in Figs. 3(D), (E) and (F), the phase regressor method
yields more complicated results than the other methods which are
more easily understood with the analysis of individual time series
in Figs. 1 and 4. In the situations shown in Fig. 1, the phase
regressor statistical method performs as expected when there are
small TRPCs and large CNRs by biasing against time series with
TRPCs. However, errors can be introduced into the analysis
through errors in the regression of magnitude as a function of
phase. Examples of such errors are shown in Fig. 4 as two
simulated time series with identical parameters but different seed
values for the random noise yield different phase regressor
statistics. Slight errors in the estimation of the phase or magnitude
variance needed for the fit assuming errors in both variables can
lead to large variation in the fit. With small CNRs this leads to
occasional over- and undercorrection of the magnitude signal. In
Fig. 3(E), this is responsible for the band of moderate power with
small CNRs. With larger CNRs, the errors in the fit from either
overestimating the phase variance or underestimating the magni-
tude variance dominate as the magnitude time series are system-
atically overcorrected. In Fig. 3(F), this is responsible for the large
region of determined negative correlation, although no negative
correlation was simulated.

In the region where the phase regressor method performs as
expected, it exhibits a bias against smaller TRPCs which is
sharper than the complex constant phase method. Additionally the
phase regressor method exhibits a bias against smaller CNRs with
no TRPCs that the complex constant phase method does not
exhibit.

This simulation on ideal data suggests that the complex
constant phase method may exhibit a more conservative region
of activations, possibly including some draining vein activations
with large TRPCs. The phase regressor method may exhibit a more
aggressive bias against draining veins under ideal conditions, but it
also may include many false positives from slight errors in the
regression of magnitude as a function of phase. Additionally, the
constant phase statistical method retains the power of the
magnitude-only method at low CNRs when no TRPCs are present
while the phase regressor method requires a higher CNR to find
activations.

Preliminary human experimental study

Methods

A preliminary human study was performed that consisted of a
blocked design bilateral finger tapping experiment to yield
activation in the primary motor cortex and an angiogram was
obtained to identify large veins. The task consisted of resting 20 s,
followed by 8 epochs of 16 s of tapping and 16 s of rest. Each
subject (N=5) performed the task while being imaged using a
gradient recalled echo EPI pulse sequence. Scanning used a GE
Signa LX 3 T scanner with a quadrature transmit/receive coil,
where 10 axial slices of 96×96 were acquired in the motor cortex.
Slices demonstrating activation in the primary motor cortex as
well as superior slices containing draining large veins as identified
in the angiogram were examined in this study. The scanning
parameters for the EPI acquisitions included a minimum full
k-space TE of 50 ms, TR of 2000 ms, flip angle of 80°, field of
view of 19.2 cm, slice thickness of 2 mm, and 138 time points.
This resulted in 2-mm isotropic voxels. Data was pre-processed to
correct for minor k-space offsets in alternating lines caused by
eddy currents. A time of flight spoiled gradient recalled echo
pulse sequence was used to acquire an angiogram. Parameters for
this sequence included an acquisition matrix of 256×256, TE of
5.1 ms, TR of 40 ms, flip angle of 40°, field of view of 24.0 cm,
and slice thickness of 1.4 mm. This sequence saturates the



Fig. 3. Simulation z-statistic activation power surfaces. The magnitude-only (MO, A), phase-only (PO, B) and constant phase (CP, C) methods positive z-statistic
power surfaces are identical to the shown unsigned surfaces. The MO and PO methods are dependent upon only CNR and task-related phase change (TRPC),
respectively. The CP method biases against larger TRPCs. The phase regressor method (PR, D) includes positive and negative statistics. Positive z-statistic PR
method E exhibits a sharp bias against TRPCs and fails if a voxel exhibits a small CNR. When large TRPCs are observed in voxels, the negative PR method F
over-corrects for phase-related magnitude changes.
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stationary tissue signal, allowing the unsaturated in-flowing blood
to be imaged as a hyper-intense.

Algorithms developed in MATLAB (The Mathworks, Natick,
MA, USA) were used to compute activations in the functional data.
Before computing activations, an ideal 0/1 frequency filter
(Gonzalez and Woods, 1992) was used to remove respiration and
extremely low-frequency noise from signal drift in the voxel time
courses (Smith et al., 1999). Also, the first three time points were
removed from analysis to adjust for signal stabilization. Activation
statistics were then computed using the magnitude-only statistical
method unwrapped phase-only statistical method, phase regressor
statistical method as described in Appendix A (Menon, 2002),
and complex constant phase statistical method as described in
Appendix B (Rowe and Logan, 2004). The resulting z-statistic
activation maps were thresholded using a Bonferroni adjusted
α=0.05 threshold on a per-slice basis (Logan and Rowe, 2004). No
clustering techniques were considered to show the raw results of
applying the statistical methods and because the methods were



Fig. 4. Simulation time series for CNR=0 and TRPC=5°. Panels A, B, and C show a time series with the complex data corrupted by normal noise and panels D,
E, and F show the same time series with the random noise generated by a different seed value. Panels A and D illustrate the ideal magnitude time series (red),
simulated magnitude time series (green), phase-corrected magnitude time series (blue) and fit phase regressor model (black). Panels B and E illustrate the ideal
phase time series (red) and simulated phase time series (green). Panels C and F show scatter plots of the active (star) and inactive (circle) time points with phase
on the horizontal axis and magnitude on the vertical axis. The fit of magnitude as a function of phase for the phase regressor method is shown as a solid line and
the mean phase angle and mean magnitude value are shown as dashed vertical and horizontal lines, respectively. The expected fit of the magnitude as a function
of phase corresponds to the horizontal dotted line at the mean magnitude value.
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Fig. 6. The anatomical underlays for the representative parenchymal and
venous slices shown in Fig. 5 are shown here in panels A and C. The
corresponding time of flight angiograms from those slices are shown in
panels B andD. The vasculature is imaged as hyper-intense in the angiogram,
and it is apparent that the venous slice activations are co-localized with the
imaged vasculature while the parenchymal slice activations are not. The
locations of probable active veins are circled in panels C and D.
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originally presented assuming no spatial correlation in activations.
Each thresholded activation map was overlaid on the first slice of
the functional time series for anatomical reference. Additionally,
the corresponding slices from the angiograms were examined to
determine the localization of large draining veins.

In all subjects, eight axial slices were considered, with four
through the active parenchyma and four through superior slices as
pial veins draining the motor cortex run superiorly to the sagittal
sinus. The slices with active parenchyma were chosen as the slices
with the highest number of voxels with magnitude-only activation
z-statistics above a slice-wise α=0.05 Bonferroni-adjusted thresh-
old in the motor cortex. The superior slices with draining pial vein
contributions were selected as slices at least 4 mm superior to the
previously described slices and exhibited phase-only activations
(Rowe et al., 2007a) along the cortical surface. These activations
were near the central sulcus and coincided with the anatomical
locations of pial veins in the angiogram. Furthermore, signal loss
due to venous de-phasing was also observed in the regions of the
expected draining veins. EPI slices were not registered to the
corresponding angiogram slices because small-scale B-field
inhomogeneities caused minor warping in the EPI images
preventing accurate alignment with the small structures observed
in the angiogram.

Preliminary results

Representative activation maps shown in Fig. 5. The anatomical
underlays for these parenchymal and venous slices are shown in
Figs. 6(A) and (C), respectively, with the angiograms shown in
Figs. 6(B) and (D). Note that the activations in the parenchymal
slice (Fig. 5(A)) do not correspond with hyper-intense signal in the
angiograms while the activations in the venous slice (Fig. 5(E)) are
well localized with the hyper-intense vascular signal in the venous
slice. Furthermore, stronger negative activation statistics are found
Fig. 5. Representative activations from the human data are shown in a parenchymal
the brain. MO activations are shown in panels A and E, PO activations in panels B a
The CP activations are generally a subset of the MO activations, while the PR act
suffers from several confounding factors and leads yield diffuse activations in pan
with the phase-only statistical method in the regions of the active
veins in Fig. 5(F), while very few phase-only activations are found
in the parenchymal slice in Fig. 5(B). Other less significant phase
slice (first row) and venous slice (second row) cropped to the region around
nd F, CP activations in panels C and G, and PR activations in panels D and H.
ivations include many voxels which are not MO active. The PO time series
el F.



Table 1
Percentage of constant phase and phase regressor activations which are also
magnitude only and phase only activations

% Voxels also MO-active % Voxels also PO-active

All
slices

Parenchymal
slices

Venous
slices

All
slices

Parenchymal
slices

Venous
slices

CP 85.6 86.8 88.8 15.7 14.8 20.4
PR 31.7 36.8 37.8 42.6 34.3 40.1
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activations are seen in Fig. 5(F), as likely the result of task-related,
out of field of view motion.

The parenchymal slice constant phase activations in Fig. 5(C)
are a subset of the activations found through the magnitude-only
method in Fig. 5(A). The constant phase activations in the
parenchymal slice are a small subset of the magnitude-only
activations, although the voxels do not exhibit statistically
significant TPRCs. The reduction of constant phase activations is
only partially explained by sub-threshold TRPCs. At this time, the
data is not of sufficient quality to produce the stable phase time
series required for the complex constant phase statistical model.
The constant phase model is vulnerable to instabilities in the phase
time series, not only phase instabilities which correlate with the
task. In the real data, phase instabilities which are off the task
frequency exist. Thus, in the parenchymal slice, both sub-threshold
TRPCs and other temporal phase instabilities lead to lowering the
statistical significance of the suspected constant phase parenchy-
mal activations. As discussed later, modified acquisition techniques
may improve the phase stability of the time series and thus improve
the results of the constant phase model.

The results of the constant phase method in the venous slice
(Fig. 5(G)) are also a small subset of the magnitude-only
activations (Fig. 5(E)). As apparent in Fig. 5(F), significant TRPCs
are observed in the MO active voxels with large TRPCs in the
suspected draining veins. The constant phase method thus biases
against the voxels with TRPCs as shown in the simulation. Voxels
with large TRPCs coupled with large CNRs are found to be active
while voxels with smaller CNRs are eliminated. This bias is likely
the result of the observed TRPCs from the draining veins and, as in
the parenchymal case, other unmodeled temporal phase variation.

The phase regressor activations in the parenchymal slice are
shown in Fig. 5(D). These activations correlate quite well with the
magnitude-only activations in the parenchymal slice. This is
consistent with an ideal method designed to reduce draining vein
contributions as the parenchymal slice activations are not
eliminated. The statistical significance of the parenchymal slice
activations is generally lower than found with the magnitude-only
method, likely because of the sub-threshold TRPCs observed in
these voxels. Thus, with sub-threshold TRPCs, the phase regressor
activations in real parenchymal data are consistent with the
simulated activations.

Venous slice activations found with the phase regressor method
are shown in Fig. 5(H). These activations include several
unexpectedly located activations which are not present in the
magnitude-only or complex constant phase activations. These
several unexpectedly located phase regressor activations throughout
the brain result from errors in the regression of the magnitude as a
function of phase when significant TRPCs are present. This is also
seen in the simulation in Fig. 3(F) where the phase regressor method
overcompensates for the positive correlation with task in the phase
data in several voxels to yield unexpected positive phase regressor
activations. In this experimental data, many voxels with negatively
correlated task-related phase changes are found to have positive
phase regressor activations as the simulation predicts. Thus, the
confounding factors in the phase data which lead to unexpectedly
located phase-only activations propagate into the phase regressor
activations. This is clearly not a property which an ideal method for
eliminating draining vein activations would exhibit.

The trends illustrated in the above representative data set extend
through all subjects as shown in Table 1 which consolidates the
data from all subjects. It is apparent that most of the constant phase
activations are also magnitude-only activations. Fewer of the phase
regressor activations are also magnitude-only activations as the
problem of false positives arising from the problematic fit of
magnitude as a function of phase. As both methods are argued to
reduce magnitude-only activations by biasing against voxels with
task-related phase changes, the constant phase method favorably
finds a subset of the magnitude-only activations to be above
threshold, while the phase regressor method appears to have an
increased rate of false positives.

Further illustrating the problem of the phase regressor statistical
method failing when significant TRPCs are present, the median
phase-only activation statistic for the phase regressor active voxels is
4.62. This is significant with a relatively strong Bonferroni-adjusted
α=0.10 threshold. The complex constant phase statistical model,
which consistently exhibits a bias against voxels with large TRPCs in
both the simulated and real data, however, has a median phase-only
activation statistic of 1.95 in its active voxels. This is not significant
with a weak, uncorrected α=0.05 threshold. Based only upon this, the
complex constant phase statistical method appears more favorable.

However, the complex constant phase method is relatively
conservative and finds a small subset of the magnitude-only
activations to be active. Only 18.1% of the magnitude-only
activations in all slices are also constant phase activations (14.5%
in parenchymal slices and 22.7% in venous slices). In all cases,
significant non-task-related phase changes in the real data
challenge the complex constant phase model's assumption of
constant phase, leading to reduced activation statistics. Only when
large CNRs are present does the complex constant phase method
find activations. Such CNRs are present in highly active cortex and
de-localized veins with large TRPCs. As shown in the simulation,
voxels with large TRPCs and large CNRs are not eliminated by the
complex constant phase statistical method. It is the coupling of
large TRPCs with large CNRs that leads to the increase of
correspondence between the magnitude-only and complex constant
phase activations in the venous slices.

The phase regressor method finds a higher percentage of the
magnitude-only activations. In all slices, 56.1% of the magnitude-
only activations are also phase regressor activations. In parench-
ymal slices, 59.9% of the magnitude-only activations are found,
while 55.7% of the venous slice magnitude-only activations are
active through the phase regressor method. This, of course, is
tempered by the tremendous number of phase regressor activations
which are not also magnitude-only activations.

Discussion and conclusion

The data presented in this manuscript raises challenges to the
applicability of statistical activation methods which reduce
draining vein contributions to real data. Simulations have revealed
the vulnerability of the phase regressor statistical method to slight
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errors in the estimates of the baseline magnitude and phase
variance in the regression of magnitude as a function of phase. This
leads to overcorrection of the magnitude data when large task-
related phase changes are present in the data. This problem was
illustrated in both simulated and real data with the presence of
apparent false positives.

A current challenge of the complex constant phase method was
also illustrated in the presented experimental data. As the method
relies upon a reduced fit of the data to the constant phase model to
eliminate draining vein activations, the complex constant phase
statistical method also biases against voxels with non-task-related
phase instabilities in current real data and unshown simulations.
This problem was illustrated in the real data in this manuscript with
the reduction of activations in parenchymal data with sub-threshold
task-related phase changes.

Modifications to the implementations or data collection
methods for both the phase regressor statistical method and the
complex constant phase statistical method might need to be made
for either to reliably bias only against voxels with task-related
phase changes. Because the variance in the magnitude data is
generally expected to be far greater than the variance in the phase
data, an implementation of the phase regressor method assuming
error only in the magnitude values is reasonable. Such unpublished
implementations exist and preliminary investigations show that
they reduce the false positives observed in this study. Further work
needs to be done to evaluate different methods for computing the
regression of magnitude as a function of phase in an attempt to
reduce the vulnerability to overcorrections.

The complex constant phase statistical method relies upon
data with a relatively temporally constant phase, and further
work needs to be done to ensure the temporal stability of the
global phase signal. This includes either filtering the acquired
phase signal to remove non-task-related temporal variations, or
collecting data with more temporally stable phase time series.
The latter includes the acquisition of dynamic B-field maps with
each TR to correct for global phase changes (Roopchansingh et
al., 2003), the acquisition of smaller voxels where less de-
phasing can occur, and the reduction of TE to reduce the time
for disparate phases to accrue. Furthermore, a complex data
model which directly models both the magnitude and phase,
with a phase reference function accounting for global B-field
changes, such as that presented by Rowe (2005b), may yield
improved results without the limitations of the constant phase
restriction.

Once these models and data acquisition methods are improved
to reliably bias against draining veins in simple quadrature-
detected data, they could be generalized for use with multi-coil
methods which are growing in popularity. Such receive coils can
yield different phases for the same spatial locations in the
reconstructed images from each channel. These different phases
from each of the channels will clearly lead to complications in
these statistical methods which utilize phase. Appropriate con-
sideration for the phase in such multi-channel acquisitions should
be examined so that these methods may be expanded to
accommodate such data sets.
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Appendix A. Menon's complex phase regressor (PR) method

Unlike the traditional magnitude-only method, a two step
method developed by Menon (2002) utilizes phase information in
an attempt to bias against magnitude activations in voxels with
associated task-related phase changes. Using the same standard
Fourier reconstruction method, complex-valued images are formed
and are converted into unique pairs of magnitude and phase images
with the following standard transformations for magnitude and
phase:

mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2t þ i2t :

q
ðA:1Þ

/t ¼ arctan
it
rt

� �
: ðA:2Þ

In these equations, mt is the calculated magnitude of the tth
time point of a voxel time series, ϕt is the calculated phase of
the tth time point, and rt and it are the reconstructed real and
imaginary observations at the tth time point, respectively. The
phase and magnitude time series for each voxel are then
considered. To reduce task-related changes in the magnitude in
voxels with task-related phase changes, a least squares linear
regression of magnitude values as a function of phase is
computed for each voxel to create an estimated magnitude
image:

mest ¼ ̂Bþ ̂A/ ðA:3Þ

̂A ¼
� S// � ̂r2/

̂r2m
Smm

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� S// � ̂r2/

̂r2m
Smm

� �2

þ4
̂r2/
̂r2m
S2/m

r

2
̂r2/
̂r2m
S/m

ðA:4Þ

̂B ¼ m̄ � ̂A /̄ ðA:5Þ
where m̄ is the arithmetic mean of the magnitude time series,
and ϕ̄, Sϕϕ, Smm, and Sϕm are defined to be:

/̄ ¼ arctan

1
n

Pn
t¼1

sin/t

1
n

Pn
t¼1

cos/t

0
BB@

1
CCA ðA:6Þ

D/ ¼ arctan
F rtþit

m̄ exp i*/

� �

R rtþit
m̄ exp i*/

� �
0
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1
A ðA:7Þ

S// ¼
Xn
t¼1

ðD/Þ2 ðA:8Þ

Smm ¼
Xn
t¼1

mt � m̄ð Þ2 ðA:9Þ

S/m ¼
Xn
t¼1

ðD/Þ mt � m̄ð Þ: ðA:10Þ
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In these formulae, B̂and Â are determined through a least squares
regression with normally distributed errors in both m and ϕ (Casella
and Berger, 1990). TheR andF symbols indicate taking the real and
imaginary components of the complex-valued element. The
estimated variances, σ̂ϕ

2 and σ̂m
2, are determined individually for

each voxel by taking the FT of the time series, setting the task
frequency and its first four harmonics to zero, and then calculating
the variance of the filtered time series after taking the IFT (Menon,
2002). Because the phase time series can wrap around, circular
statistics were implemented to determine the average phase, ϕ, and
difference in phase, Δϕ, without the need to unwrap the phase time
series (Jammalamadaka and SenGupta, 2001). Using the phase
image time series, estimatedmagnitude image time series are created
using the above described linear regression. The phase-estimated
magnitude (mϕt=Âϕt) is then subtracted from the observed
magnitude, ideally leaving corrected magnitude time series with
no magnitude changes in voxels with TRPCs. The same general
linear model used in the magnitude activation method is then used to
compute cortical activations for the corrected magnitude time series.
This model was introduced with an empirical linear fit of the phase's
effect on magnitude observations. However, it is not clear that a
linear fit is optimal, as some data suggests a more complicated
relationship (Klassen and Menon, 2005).

Appendix B. Rowe and Logan's complex constant phase (CP)
method

The Rowe–Logan complex constant phase method (Rowe and
Logan, 2004) is different from the previous method in that it
directly utilizes the information in the complex-valued recon-
structed images to compute magnitude activations. This both
avoids the large signal-to-noise ratio assumption of normally
distributed noise for the Ricean noise in the magnitude-only
images, and utilizes twice as many data points to compute the
maximum likelihood estimators, leading to a theoretically
improved power of determining true activations (Rowe, 2005c).
The model for data in this case is:

R
I

� �
¼ X 0

0 X

� �
bcosh
bcosh

� �
þ g; gfN 0; r2I2n

� �
: ðB:1Þ

In this equation, the left-hand side is the vector of observed real
data (R=(r1,…, rn)′) stacked on top of the vector of imaginary data
(I=(i1, …, in)′); X is the same design matrix as in the magnitude-
only activation method; β is the same vector of regression
coefficients as in the magnitude-only activation method; and θ is
the fixed but unknown phase angle of the data which is estimated
on a voxel-wise basis. As with the other methods, hypothesis tests
which consider the value of β2 are used to determine the activation
statistics for each voxel. In this activation method, the phase angle
θ is assumed to be temporally constant, and is thus represented by
its maximum likelihood estimator in both the unrestricted
alternative hypothesis and in the restricted null hypothesis. The
maximum likelihood estimators for the unrestricted case, β2≠0,
can be shown to be:

̂b ¼ ̂bR cos ̂hþ ̂bI sin ̂h ðB:2Þ

̂r2 ¼ 1
2n

R
I

� �
� X ̂bcos ̂h

X ̂b sin ̂h

� �	 
V
R
I

� �
� X ̂bcos ̂h

X ̂b sin ̂h

� �	 

ðB:3Þ
̂h ¼ 1
2
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2
4

3
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̂bR ¼ ðX VX Þ�1XRVR ðB:5Þ
̂bI ¼ ðX VX Þ�1XIVI : ðB:6Þ

The maximum likelihood estimators for the null hypothesis,
β2=0, or more generally Cβ=0 with C=(0, 0, 1) in this case, can
be shown to be:

b̃ ¼ W ̂bR cos h̃þ ̂bI sin h̃
h i

þ ðX VX Þ�1CV CðX VX Þ�1CV
h i�1

ðB:7Þ
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V
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X b̃ sin h̃

� �	 


ðB:8Þ

h̃ ¼ 1
2
arctan

̂bV
R
WðX VX Þ b̃I

̂bVRWðX VX Þ ̂bR � ̂bVIWðX VX Þ ̂bI
� �

=2

2
4

3
5: ðB:9Þ

In these equations, Ψ is the same as in the magnitude-only
method. As with the magnitude-only method, these maximum
likelihood estimators can be used to test for significance of β2
utilizing a likelihood ratio statistic with a large sample χ2

distribution under the null hypothesis, where d is once again the
full row rank of C or the degrees of freedom:

�2logkCP ¼ nlog
̂r2

r̃2
: ðB:10Þ

In this case, the χ2 statistics can be manipulated to approach F
or t statistics asymptotically for large samples. In this paper,
large sample z-statistics are considered through the transforma-
tion of:

ZCP ¼ signðC ̂bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2log kCPð Þ

p
ðB:11Þ

The activation statistics can then be thresholded to determine
activations.

This complex constant phase method has also been argued to
remove voxels declared active as the result of TRPCs associated
with draining veins (Nencka and Rowe, 2005; Rowe and Nencka,
2006). While not explicitly relying upon a mathematical model of
the phase behavior, this method assumes that θ is fixed to be
temporally constant but unknown in each voxel, while varying
from voxel-to-voxel. By assuming that the angle θ is represented
by its maximum likelihood estimator for the voxel time series, a
constant phase condition is assumed in the individual voxel time
series. When this condition is not met as a voxel exhibits task-
related phase changes, the assumptions of the model are not
satisfied, making the fit constant phase suboptimal. This results in
larger residual variances in the model, σ̂2, and thus lower
activation statistics. It is this reduced fit, not the explicit modeling
of the phase response, that has been claimed to reduce draining
vein contributions. Therefore, the complex constant phase activa-
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tion method theoretically biases against declaring such voxels
active. It should be noted that allowing the angle θ to be estimated
at each time point has been shown to remove any phase
dependence in the model, yielding the magnitude-only activation
method (Rowe and Logan, 2005). Further, in a more general
activation method the phase angle θt has been modeled in a linear
fashion along with the magnitude (Rowe, 2005b).
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