Complex Constant Phase Activation Model Removes Venous BOLD Contribution in fMRI

Andrew S. Nencka and Daniel B. Rowe

Department of Biophysics

Medical College of Wisconsin

Milwaukee, WI, USA

Wednesday, May 11, 2005

ISMRM 13th Scientific Meeting and Exhibition

Reconstruction

 ♦ Real and Imaginary ⇒ Magnitude and Phase

(a) Real K-space

(b) Imaginary K-space

Reconstruction

 ♦ Real and Imaginary ⇒ Magnitude and Phase

(c) Real Image

(d) Imagninary Image

Reconstruction

 ♦ Real and Imaginary ⇒ Magnitude and Phase

(e) Magnitude Image

(f) Phase Image

Bandettini et al. MRM 30:161-173(1993). Cox et al. MRM 33:230-236(1995).

Reconstruction

- ♦ Real and Imaginary ⇒ Magnitude and Phase
- The BOLD Signal
 - Physiological and physical sources of magnitude and phase changes

■ CBF

- CBV
- CMRO₂
- IV/EV Origin
- Venous Size
- Venous Orientation

Ogawa et al. Biophys. Journ. 64:803-812(1993). Duong et al. MRM 49:1019-1027(2003). Menon MRM 47:1-9(2002).

Reconstruction

- ♦ Real and Imaginary ⇒ Magnitude and Phase
- The BOLD Signal
 - Physiological and physical sources of magnitude and phase changes
- Spin Echo (SE) and Gradient Recalled Echo (GE) Pulse Sequences
 - SE removal of constant dephasing

(g) SE Phase

(h) GE Phase

Jochimsen et al. MRM 52:724-732(2004)

Activation Calculations

Magnitude Activations

- Disregard phase information
- Assume normal noise on the magnitude data

$$M = X\beta + \epsilon, \qquad \epsilon \sim N(0, \sigma^2 I)$$

$$M = \begin{pmatrix} m_1 \\ \vdots \\ m_i \end{pmatrix}, X = \begin{pmatrix} 1 & 1 & \pm 1 \\ \vdots & \vdots & \vdots \\ 1 & i & \pm 1 \end{pmatrix}, \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

Rowe NeuroImage 25:1310-1324(2005). Bandettini et al. MRM 30:161-173(1993). Cox et al. MRM 33:230-236(1995). Rowe, Logan NeuroImage 24:603-606(2005)

Activation Calculations

Magnitude Activations

- Disregard phase information
- Assume normal noise on the magnitude data

$$M = X\beta + \epsilon, \qquad \epsilon \sim N(0, \sigma^2 I)$$

- Magnitude Activations in Complex Data Assuming Constant Phase
 - Assume constant phase based upon physics
 - Assume normal noise in the complex data

$$\begin{pmatrix} R \\ I \end{pmatrix} = \begin{pmatrix} X & 0 \\ 0 & X \end{pmatrix} \begin{pmatrix} \beta \cos \theta \\ \beta \sin \theta \end{pmatrix} + \eta, \qquad \eta \sim N(0, \sigma^2 I)$$

Rowe NeuroImage 25:1310-1324(2005).

Rowe, Logan NeuroImage 23:1078-1092(2004).

Methods

Task

- Bilateral finger tapping-20s off; 20 sets of 16s on, 16s off
- Performed during SE scan and immediately afterwards in GE scan
- Scanning
 - Parameters identical for the two scans for comparison purposes
- Activations (voxels above threshold)
 - Determined for a single slice through the motor cortex
 - First 3 time points omitted
 - Ideal 0/1 Fourier filter of low frequency and respiratory noise
 - $\alpha = .05$, Bonferroni adjusted

GE: χ^2 Statistics Above Threshold

(i) Magnitude

(j) Complex Constant Phase

GE: χ^2 Statistics Above Threshold

Red: Magnitude Only

- Blue:
 Complex
 Constant Phase
 Only
- Green: Both

SE: χ^2 Statistics Above Threshold

(k) Magnitude

(I) Complex Constant Phase

SE: χ^2 Statistics Above Threshold

Red: Magnitude Only

- Blue:
 Complex
 Constant Phase
 Only
- Green: Both

Magnitude Activations

- Red:
 - GE Only
- Blue: SE Only
- Green: Both

Complex Constant Phase Activations

- Red:
 - GE Only
- Blue: SE Only
- Green: Both

GE Acquisition

- Complex constant phase activations are a subset of the magnitude activations
- Complex constant phase method biases against draining vein contributions

GE Acquisition

- Complex constant phase activations are a subset of the magnitude activations
- Complex constant phase method biases against draining vein contributions
- SE Acquisition
 - Complex constant phase activations nearly identical to magnitude activations
 - Complex constant phase method only biases against draining veins

SE and GE Pulse Sequences

- ♦ Magnitude
 - SE activations are a subset of GE
 - SE removes venous component

SE and GE Pulse Sequences

- Magnitude
 - SE activations are a subset of GE
 - SE removes venous component
- Complex Constant Phase
 - SE activations remain a subset of GE
 - SE removes venous component which was not biased against by the complex constant phase method

Thank You

Thank you for your attention.

FundingNIH R01EB00215

Full Activation Maps

(o) GE Magnitude

Overlay Maps

(q) M: SE & GE (r) CP: SE & GE

(s) SE: M & CP (t) GE: M & CP

	Only SE	Only GE	Both
Magnitude	39	462	49
Constant Phase	38	256	31

	Only Magnitude	Only Constant Phase	Both
SE	19	0	69
GE	231	7	280

SNR Maps

MEDICAL COLLEGE OF WISCONSIN

CNR Maps

