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a b s t r a c t

Image processing is common in functional magnetic resonance imaging (fMRI) and functional connec-
tivity magnetic resonance imaging (fcMRI). Such processing may have deleterious effects on statistical
maps computed from the processed images. In this manuscript, we describe a mathematical framework to
evaluate the effects of image processing on observed voxel means, covariances and correlations resulting
from linear processes on k-space and image-space data. We develop linear operators for common image
processing operations, including: zero-filling, apodization, smoothing and partial Fourier reconstruction;
and unmodeled physical processes, including: Fourier encoding anomalies caused by eddy currents, intra-
acquisition decay and magnetic field inhomogeneities. With such operators, we theoretically compute the
exact image-space means, covariances and correlations which result from their common implementation
and verify their behavior in experimental phantom data. Thus, a very powerful framework is described
to consider the effects of image processing on observed voxel means, covariances and correlations. With

this framework, researchers can theoretically consider observed voxel correlations while understanding
the extent of artifactual correlations resulting from image processing. Furthermore, this framework may
be utilized in the future to theoretically optimize image acquisition parameters, and examine the order

.
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of image processing steps

. Introduction

Magnetic field gradients can be used in magnetic resonance
maging to encode the measured signal as a linear transformation
f the object being imaged. An inverse transform is then applied
o the acquired signal to reconstruct an image of the object. As the
ncoding and reconstruction are linear transformations, they can
e considered through the constructs of linear algebra as multipli-
ations of matrices upon vectors representing either the physical
bject or the acquired signal. Rowe et al. (2007) have recently pub-
ished a description of this mathematical formalism, using Fourier
ncoding and reconstruction as a specific example. In the case of

ourier encoding, the acquired data is in the spatial frequency space,
-space, and it is reconstructed through the inverse Fourier trans-
orm to image-space. In addition to describing the mathematical
ormalism of image reconstruction, the work also illustrated that,
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because of the linear properties of the reconstruction, correlated
observations in k-space lead to correlated volume elements, or vox-
els, in the reconstructed image.

Correlated voxels, which necessarily arise from correlated k-
space measurements, are the basis of functional connectivity
studies (Biswal et al., 1995). These connectivity studies determine
voxels to be connected if their time series exhibit high correlations.
Common techniques, including cross-correlation analysis, principle
component analysis (PCA), and independent component analysis
(ICA), have been used to determine regions with high correlations
in their time series (Biswal et al., 1995; Friston et al., 1993; van
de Ven et al., 2004). Regardless of the analysis method, voxel cor-
relation, and thus k-space correlation, affect the measured voxel
connectivity.

The low temporal frequency physiologic processes upon which
functional connectivity studies rely are clearly not the only sources
of voxel correlation. Global signal fluctuation may arise from

physiologic processes (Glover et al., 2000; Pfeuffer et al., 2002;
Birn et al., 2006; Shmueli et al., 2007). As described by Rowe et
al. (2007), temporal autocorrelation in the acquired signal also
may lead to image-space voxel correlation. Artifactual time series
correlations have also been observed in inanimate phantom stud-
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es (Kriegeskorte et al., 2008). Additionally, as this manuscript
escribes, operations on k-space data before reconstruction and

mage-space data after reconstruction can produce correlations in
oxels. Sequences of spatially correlated images lead to temporally
orrelated time series. Clearly one must be mindful of the effects
f such operations when drawing conclusions from functional con-
ectivity (fcMRI) and functional (fMRI) data.

In this manuscript we consider several operations. These
nclude: Fourier encoding anomalies, k-space observation cen-
oring, k-space line shifting, symmetric k-space generation, and
moothing through k-space windowing, zero-filling, and image-
pace convolution. We first develop linear operators for the
entioned operations and show toy examples of each using an
× 8 data set. We then utilize the operators to theoretically exam-

ne image-space correlations associated with the operators under
ore relevant parametrizations, including 96 × 96 data acquisition

rrays. Finally we illustrate the results of the operations in acquired
6 × 96 phantom data.

. Theory

.1. Operator development

In this section we extend the mathematical formalism of image
econstruction presented by Rowe et al. (2007) to a more general
ase. We describe Cartesian Fourier reconstruction for the sake of
emonstration, although the mathematics hold true for any lin-
ar reconstruction operator. Other linear operators may include
egridding operators for non-Cartesian k-space sampling methods.
irst we further extend the previously published statistical model
o include the data as it is ideally collected. This includes model-
ng the points acquired during the phase encoding blips of echo
lanar imaging (EPI), and the reversal of lines acquired with nega-
ive frequency encoding gradients. We describe models of Fourier
ncoding anomalies, k-space line shifting, symmetric k-space gen-
ration, zero-filling, and multiplication of the k-space observations
ith a windowing function in light of the extended statistical
odel.
Rowe et al. (2007) have described complex-valued Fourier

econstruction through a real-valued isomorphism such that a
ector of the reconstructed image, y, is the product of a Fourier
econstruction operator, ˝, with a vector of the observed k-space
bservations, s:

= ˝s. (1)

n the above equation, if the reconstructed image is m rows by n
olumns, y is a vector with mn real image values stacked above
n imaginary image values, ˝ is a reconstruction operator array
ith dimensions of 2 mn × 2 mn, and s is a vector of mn appropri-

tely ordered real Cartesian k-space observations stacked above mn
maginary Cartesian k-space observations. The Cartesian Fourier
econstruction operator may be written as

=
(

�(˝C ) −�(˝C )
�(˝C ) �(˝C )

)
, (2)

here �(·) and �(·) take the real and imaginary parts of the
rguments respectively, and ˝C is the Kronecker product of two
atrices, ˝x and ˝y, which Fourier transform the columns and

ows of the acquired k-space, respectively:
C = ˝x ⊗ ˝y.

he Kronecker product, denoted by ⊗, multiplies each element of
he first matrix by the entire second matrix. The jkth element of ˝x,
ce Methods 181 (2009) 268–282 269

where j and k are indices from 0 to n − 1, may be written as

(˝x)jk = w((−n/2)+j)((−n/2)+k),

where w = (1/n)ei2�/n for the inverse Fourier transform and w =
e−i2�/n for the forward Fourier transform. A similar matrix of
dimension m exists for ˝y.

Under the formalism of Eq. (1), if the k-space observations have a
covariance matrix of cov(s) = � 0, the resulting reconstructed image-
space values have a covariance matrix of ˝� 0˝T, where T denotes
transposition. Here we develop operators, O, such that the acquired
signal, S, may be processed as desired and transformed to image-
space. It is helpful to note that s represents the properly ordered
k-space data while S represents the real/imaginary k-space obser-
vation pairs acquired along the k-space trajectory, including points
acquired during echo planar imaging phase encoding blips. With
such operators developed, the original reconstruction relationship
shown in Eq. (1) may be more appropriately modeled as

y = OS, (3)

with a covariance matrix resulting from the k-space covariance
matrix, � , calculated as

cov(y) = O�OT . (4)

In light of the new parameterization, if the originally collected
k-space data, S, has mean of S0, the final reconstructed complex-
valued image, y, has a mean of OS0 and a covariance matrix as shown
above.

The covariance structure of the square of the magnitude data
may be derived from this complex data covariance matrix. The
covariance matrix for the square of the magnitude data is con-
sidered as an analytical solution exists in the described linear
framework. The magnitude operation, being non-linear in nature,
does not extend well to the described framework. Nevertheless, it
can be shown that the magnitude squared covariance asymptot-
ically approaches the magnitude covariance. It will be seen that
the magnitude squared correlation structure, which is asymptoti-
cally equal to the magnitude data correlation structure, is generally
found to exhibit similar properties to the real and imaginary cor-
relation structures. A brief derivation of the magnitude squared
covariance matrix is included in Appendix A.

In light of this framework, the effects of several processing
techniques will be considered. The mean, covariance, and corre-
lations will be computed for each operation on the complex and
magnitude squared data. A brief description of each operator fol-
lows, with expanded descriptions of their compositions included in
Appendices.

2.1.1. Anomalies in Fourier encoding
The k-space observation process is often assumed to be instan-

taneous at the echo time, TE (Haacke et al., 1999). Under that
assumption, and assuming an exponential intra-acquisiton decay
map of T∗

2(x, y) and magnetic field inhomogeneity map of �B(x, y),
the acquired k-space signal is

s(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
�(x, y)e−TE/T∗

2
(x,y)ei��B(x,y)TEe−i2�(kxx+kyy)dxdy,

(5)

where � is the proton gyromagnetic ratio and � is the proton spin
density. The k-space points are defined by the temporal integral of

the applied magnetic field gradients applied along the appropriate
directions:

kx = �

2�

∫ t

0

Gx(t′)dt′, ky = �

2�

∫ t

0

Gy(t′)dt′.



270 A.S. Nencka et al. / Journal of Neuroscience Methods 181 (2009) 268–282

Fig. 1. Toy example operators. (a) Fourier, ˝; (b) unifrom T∗
2 Fourier, ˝a; (c) B0 gradient Fourier, ˝a; (d) censoring, C; (e) row reversal, R; (f) complex permutation, PC; (g)

row permutation, PR; (h) row Fourier, ˝row; (i) phase shift, ˚; (j) partial Fourier, H; (k) zero-filling, F; (l) apodization, A; (m) magnitude smoothing, Smm .
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hus, the observed k-space data, encoded in time, is assumed to be
he Fourier transform of the proton spin density weighted by the
ntra-acquisition decay and with a phase determined by the mag-
etic field inhomogeneity. The image-space representation may
hen be recovered with an inverse Fourier transform. An image of
he ideal 128 × 128 Fourier, ˝, operator, described above and in
owe et al. (2007), for an 8 × 8 image array toy example is shown

n Fig. 1(a). Each column of this operator corresponds to either the
eal or imaginary part of a voxel of the original 8 × 8 image array,
nd each row corresponds to either the real or imaginary part of
voxel of the processed image array. This operator is described as

deal as it does not account for T∗
2 or �B effects.

However, as the definition of k-space locations suggests, the k-
pace observation process occurs over a finite duration of time,
ith each k-space measurement being sampled at a unique time
oint. Thus, the k-space signal equation may be more appropriately
onsidered as

(kx, ky|t) =
∫ ∞

−∞

∫ ∞

−∞
�(x, y)e−t/T∗

2
(x,y)ei��B(x,y)te−i2�(kxx+kyy)dxdy,

(6)

hen the k-space point (kx, ky) is sampled at time t = t(kx, ky). With
he t(kx, ky) variable changing for each k-space measurement, image
lurring from intra-acquisiton decay and image warping from mag-
etic field inhomogeneities may occur (Jesmanowicz et al., 1998;

ezzard and Balaban, 1995). Thus, the Fourier transform operator
eveloped by Rowe et al. (2007) may be modified to account for
on-instantaneous k-space observation in a modified Fourier oper-
tor, ˝a. Each row of the operator is modified with exponential
erms for T∗

2(x, y) and �B(x, y) as described in Appendix B.
The inclusions of these parameters finely alter the structure of
to arrive at ˝a. Two examples of ˝a are shown in Fig 1(b) and

c). Fig. 1(b) illustrates a Fourier matrix that accounts for a spa-
ially uniform T∗

2 decay. The element values tend toward zero in the
ater portion of ˝a because of the exponential decay. Fig. 1(c) illus-
rates a Fourier matrix that accounts for a magnetic field gradient
n the frequency encoding direction. This array is clearly different
rom the ideal Fourier array in Fig. 1(a) and the array including
ecay in Fig. 1(b). This Fourier array is essentially a skewed ver-
ion of the ideal array. In both the cases of intra-acquisition decay
nd magnetic field inhomogeneity, an external measure of the per-
urber must be utilized. A T∗

2(x, y) map may be acquired through
he consideration of the magnitude of separate scans with vary-
ng echo times, and the �B(x, y) map may be acquired through
he consideration of the phase of separate scans with varying echo
imes.

.1.2. Obtaining s from S
In Eq. (1), s is assumed to include only the properly ordered k-

pace observations located on the Cartesian k-space grid. However,
s the k-space data is acquired in echo planar imaging (EPI), this is
ot true of the collected signal. Rather, the collected k-space data, S,

s observed as real–imaginary pairs throughout the k-space traver-
al defined by the pulse sequence. Thus, in addition to including
oint-wise real–imaginary pairs instead of a column of real obser-
ations above a column of imaginary observations, the acquired
ata includes e extra points acquired during the phase encod-

ng blips and incorrectly ordered observations from the negative
requency encoding lines in echo planar imaging. If the acquired

-space point at row r and column c on the desired k-space grid is
enoted as sr,c,R/I, where the final R/I index indicates that the obser-
ation is real or imaginary, and the extra k-space points acquired
uring the phase encoding blips are denoted as Er,ep,R/I, with ep

ndexing the extra point number, the actually acquired data is the
ce Methods 181 (2009) 268–282 271

long vector:

S = [s1,1,R, s1,1,I , . . . , s1,n,I, E1,1,R, . . . , E1,e,I, s2,n,R, s2,n,I,

s2,n−1,R, . . . , Em,e,I]
′.

However, the data required for the reconstruction in Eq. (1) is

s = [s1,1,R, s1,2,R, . . . , sm,n,R, s1,1,I , . . . , sm,n,I]
′.

Therefore, points in S must be censored and its component lines
reordered to produce the s required in Eq. (1). This can be performed
in the three steps of censoring extra points, reversing alternating
lines, and segregating real and imaginary observations. Censoring
may be performed with a censoring matrix, C, row reversal may
be performed with a permutation matrix, R, and the separation of
real and imaginary data may be performed with another permuta-
tion matrix, PC. The construction of these operators is discussed in
Appendix C, and the operators are shown in Fig. 1(d)–(f), respec-
tively.

Thus, the process of converting the acquired data to the required
data for Eq. (1) may be considered as

s = PCRCS. (7)

As the operators in Eq. (7) are censoring and permutation matrices,
considering their effects on uncorrelated k-space observations is
trivial. In the case of uncorrelated k-space observations, � = Im(n+e).
The covariance between the processed k-space observations, �PC RC ,
is

�PC RC = PCRCIm(n+e)C
T RT PT

C
�PC RC = Imn.

Thus, the processes of censoring, reversing, and permuting uncorre-
lated k-space observations does not yield correlated k-space values
as it can be shown that CCT = I, RRT = I and PCPT

C = I. However, if iden-
tity k-space covariance matrix � is not assumed, these processes
will alter the covariance.

2.1.3. Line shifting
Unmodeled gradient timing errors and eddy current effects may

cause alternating k-space lines to be shifted in EPI acquisitions
(Haacke et al., 1999). This shifting results in the N/2 or Nyquist
ghost artifact associated with EPI. An offset term is introduced in
the signal equation:

s(kx, ky|t) =
∫ ∫

�(x, y)e−t/T∗
2

(x,y)−i��B(x,y)t+i(−1)�2��kxx
e−i2�(kxx+kyy)dxdy (8)

where �kx is the effective eddy current k-space shift and � is
the frequency encoding line number in Eq. (8). These shifts can
be estimated and corrected to reduce such artifacts in the recon-
structed images. Such shifts are often determined through the use
of navigator echoes (Jesmanowicz et al., 1993) or reference scans
Bernstein et al. (2004). Thus, opposite shifts are then applied to
the acquired k-space lines to realign them. The application of these
shifts involves the use of the Fourier shift theorem. Each line is
Fourier transformed, multiplied by a complex-valued exponential,
and then inverse Fourier transformed to the shifted state. Thus, the
process of shifting the k-space lines can be considered in several
steps: The vector s is reordered to group real and imaginary obser-
vations from each line together; The lines are Fourier transformed;
The transformed lines are multiplied by a complex-valued expo-
nential; The phase altered lines are inverse Fourier transformed into
shifted lines; The shifted lines are reordered to the original ordering
of s. Thus, three operators need to be constructed: a permutation

operator, PR, to convert from s with the reals for the image stacked
above the imaginaries for the image to a vector of reals stacked
above imaginaries for each row; a row Fourier transform operator,
˝row, to transform each of the rows; and a phase shift operator, ˚,
to alter the phase of the transformed rows. Additionally, inverses of
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he permutation operator, trivially P−1
R = PT

R , and Fourier transform
perator, ˝−1

row , are needed. The details of these three operators are
iven in Appendix D, and image representations of them are shown
n Fig. 1(g)–(i).

With the permutation, Fourier transform and phase shift oper-
tors defined, shifting the acquired k-space lines alternating
irections to yield a corrected set of k-space observations simply

nvolves linear algebra:

corrected = P−1
R ˝−1

row˚˝rowPRs. (9)

hus, when performed on a time series of images, the reconstructed
ean and covariance are altered by the processes in Eq. (9) to

(y) = ˝P−1
R ˝−1

row˚˝rowPRs0 (10)

nd

ov(y) = (˝P−1
R ˝−1

row˚˝rowPR)� (P−1
R ˝T

row˚T (˝−1
row)

T
PR˝T ), (11)

here s0 = E(s) in Eq. (10) is the mean k-space observation vector
nd � 0 = cov(s) in Eq. (11) is the mean k-space covariance matrix.
t should be once again noted that if � = I, then

˝P−1
R ˝−1

row˚˝rowPR)(PT
R ˝T

row˚T (˝−1
row)

T
(P−1

R )
T
˝T ) = I (12)

ecause it can be shown that each of the operators in Eq. (12) mul-
iplied by their transposes yield identity matrices. If � /= I, the

ean, covariance, and correlation will be altered by the operations,
eading to the correlation of a voxel with its ghost location.

.1.4. Symmetric k-space generation
Symmetric k-space generation relies upon the symmetry of

-space about the origin under complex conjugation when a real-
alued object is imaged. This symmetric generation has been used
n partial Fourier acquisitions (Jesmanowicz et al., 1998). In the sim-
lest case the first m/2 + 1 lines of k-space are acquired and the final
/2 − 1 lines are generated through the symmetry relationship. The
artial Fourier interpolation matrix, H, is described in Appendix E. A
raphical representation of H is shown in Fig. 1(j) for the case of an
× 8 symmetric k-space generation from a 5 × 8 k-space acquistion.

With this partial Fourier reconstruction matrix, the omitted data
s generated using the k-space symmetry relationship with the

atrix multiplication sS = Hs. In the event of a full k-space acqui-
ition, no symmetric data need be generated and H = I. Effects of
artial Fourier processing on a data set may be considered with the
odified reconstructed mean and covariance being

(y) = ˝Hs0

nd

ov(y) = ˝H�0HT ˝T . (13)

ote that HHT /= I when a partial k-space acquisition is made. It
s seen that partial k-space reconstruction necessarily requires k-
pace observations to be correlated. Therefore, as the process of
econstruction is linear, image-space observations must exhibit a
orrelation. Thus, the operator modifies the covariance and corre-
ation. Of course, the reconstruction of an image with fewer points
n partial Fourier reconstruction additionally yields increased vari-
nce.

.1.5. Smoothing with k-space windowing and image-space
onvolution

Smoothing of the complex-valued data may be performed

uring apodization, zero-filling, or explicit image smoothing oper-
tions. The Fourier convolution theorem allows complex-valued
mage-space convolution to be considered with k-space win-
owing. Thus, zero-filling, k-space apodization, and image-space
omplex data smoothing may be considered with operators of the
ce Methods 181 (2009) 268–282

same form. Because of the image-space convolution associated with
these processes, it is obvious that they have a non-negligible effect
on image-space voxel correlations. In Appendix F, we describe a
zero-filling operator, F, and an apodization operator, A. The apodiza-
tion operator may include any windowing function, including the
usual Fermi, Tukey, Hanning or Gaussian apodization windows.
In Appendix F, we also describe an operator, Sm, which may be
implemented on magnitude or magnitude squared data to yield
image-space smoothing. The zero-filling operator is shown in
Fig. 1(k), the apodization operator in Fig. 1(l), and the image-space
magnitude smoothing operator in Fig. 1(m).

As it is well known, convolution alters the image mean, covari-
ance, and correlation. Thus, even if � = I, the application of these
operators alters the data as it will be shown.

3. Operator implementation

With the above linear operators defined, it is possible to math-
ematically determine the image-space correlations resulting from
applying the operators to k-space data with a covariance matrix,
cov(S) = � . The image-space covariance, cov(y), after applying an
operator, O, to k-space data with a covariance matrix of � is defined
in Eq. (4).

Without loss of generality, we describe here the case of applying
the operators to uncorrelated k-space data. Thus, � is assumed to be
the identity matrix. Therefore, Eq. (4) simplifies to cov(y) = OOT. It
is clear from this that if OOT = ı2I, where ı2 = 1/(m2n2) is a scalar
introduced by the inverse Fourier transform, then the resulting
image-space observations have scaled identity covariance matri-
ces. With the covariance matrix known, the correlation matrix may
be exactly calculated as

cor(y) = D−1/2cov(y)D−1/2, (14)

where D = diag(cov(y)).
As it was mentioned in the description of the operators, the cen-

soring of the k-space observations, row reversal, reordering, and
line shifting operators yield no image-space correlations in uncor-
related k-space data as in each case the operator multiplied by its
transpose results in an identity matrix. If the k-space covariance
matrix is not the identity, the operators will modify the covariance
and correlation. More interesting results follow from the applica-
tion of the operators including anomalies in the Fourier encoding
process, partial Fourier reconstruction and k-space windowing or
image-space convolution. In the following sections we consider
these operators individually and serially in the case of a 96 × 96
data acquisition.

In the following calculations, physical parameters similar to
those in typical fMRI studies were considered. The maps of the
physical parameters and apodizers considered are shown in Fig. 2.
The proton spin density, � shown in Fig. 2(a), was assumed to
be zero outside of the phantom, and unity within the phantom.
The intra-acquisition decay, T∗

2 shown in Fig. 2(b), was considered
as a modified Shepp–Logan phantom which was scaled to physi-
cally relevant values from 10 to 100 ms. The B field inhomogeneity
was considered as a horizontal gradient from 0 to 2.5 × 10−6 T, as
shown in Fig. 2(c). This B field inhomogeneity is significant, but
on the order of the inhomogeneity observed in the inferior frontal
lobe. The timing of the k-space observations is shown in Fig. 2(d),
and is representative of a standard EPI pulse sequence with an
acquisition matrix of 96 × 96, bandwidth of 250 kHz, effective echo

spacing of 0.96 ms, and echo time of 50 ms. The considered k-space
apodization filter, shown in Fig. 2(e), is a Gaussian window with
an image-space representation shown in Fig. 2(f). The image-space
representation has a full width at half maximum of three pixels. Par-
tial Fourier reconstruction was considered with 16 overscan lines.
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ig. 2. Parameters considered in theoretical calculations. (a) Proton spin density, �;
ime, t; (e) k-space time apodization window; (f) image-space apodization window

hen the processes were not considered in the following calcula-
ions the parameters for the unconsidered processes are equivalent
o: T∗

2 as a uniform, infinite map; �B as a map of zeroes; and the
podization window as a map of ones.

Calculations were made to examine the intra-acquisition decay,
field inhomogeneity, partial Fourier interpolation, and k-space

podization operators individually. Additionally, the combination
f intra-acquisition decay, partial Fourier interpolation and k-space
podization performed serially was evaluated. Results illustrating
he processed image means are shown in Fig. 3, and the correla-
ions for the center pixel in the processed images with all other
ixels are shown in Fig. 4. The first and second columns of Fig. 3

llustrates the mean magnitude and phase images, while the third
nd fourth columns respectively illustrate the mean real and imag-
nary images. Each row of Fig. 3 illustrates the results on the mean
mage in light of a different processing pipeline. Fig. 4 illustrates
he correlations for the center pixel for the same processing cases.
dditionally, correlation coefficients for the four neighbors of the
enter pixel are shown in Table 1 for several processing pipelines.

.1. Fourier anomalies

As it has previously been described, intra-acquisition decay
ields an increase in the point spread function in the phase encod-
ng direction (Jesmanowicz et al., 1998). The increase in the point
pread function occurs preferentially in the phase encoding direc-
ion because of the decreased effective bandwidth in this direction
n EPI. This can be seen through the apparent blurring of the edges
f the phantom in the magnitude and real images in Fig. 3(a) and
c). Nevertheless, slight correlation is noted between voxels in the
requency encoding direction as well in Table 1 due to the non-

nstantaneous acquisition of each k-space line. These correlations
re dramatically less in the frequency encoding direction than in
he phase encoding direction because of the remarkably higher
andwidth in the frequency encoding direction. Additionally, intra-
cquisition decay leads to the appearance of edges in the mean
tra-acquisition decay T∗
2 , seconds; (c) B-field inhomogeneity, �B, Tesla; (d) k-space

phase and imaginary image in Fig. 3(b) and (d). The increased point
spread function in the phase encoding direction is clear in the cor-
relation maps in Fig. 4(a)–(d). The magnitude squared point spread
function is less than the real and imaginary point spread functions.
Moderate correlation between the real and imaginary data was
observed along the phase encoding direction. The observation of
the reduced magnitude squared point spread function holds true
for each of the considered processing pipelines.

Also as previously described, static B field inhomogeneities lead
to image warping and phase generation (Jezzard and Balaban, 1995)
Thus, warping and a bulk shift in the phase encoding direction is
apparent in the mean images that include B field inhomogeneities
in the Fourier operators in Fig. 3(e)–(h). More minor sub-voxel
warping also occurs in the frequency encoding direction because
of the higher sampling bandwidth in that direction. The phantom
appears warped but uniform in Fig. 3(e) as the magnitude data
does not contain phase information, while the horizontally vary-
ing phase information is apparent in the phase, real and imaginary
data in Fig. 3(f)–(h). Very small correlations are seen from the B field
inhomogeneity in Fig. 4(e)–(h). In fact, as seen in Table 1, higher
correlation coefficients are observed in the frequency encoding
direction than in the phase encoding direction. Such an observa-
tion may corroborate the observations of Kriegeskorte et al. (2008)
where correlations in the frequency encoding direction appear to
dominate. In this framework with uncorrelated data, B field inho-
mogeneities do not significantly alter observed variances.

3.2. Partial Fourier reconstruction

In the ideal calculated case, partial Fourier reconstruction does
not visually alter the mean reconstructed images in Fig. 3(i)–(l).

As expected with partial Fourier reconstruction, no obvious infor-
mation is introduced into the phase or imaginary data. However,
as described above, partial Fourier interpolation does slightly alter
the mean image and correlation structure, even in this ideal case.
Negligible correlation results between the real and imaginary data
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Fig. 3. Reconstructed mean magnitude squared, phase, real and imaginary signal with various processes included. In each case, only the listed operator was included. In
the serial case, T∗

2 decay, partial Fourier reconstruction, and k-space apodization were considered. (a) Magnitude squared T∗
2 ; (b) phase T∗

2 ; (c) real T∗
2 ; (d) imaginary T∗

2 ; (e)
magnitude squared �B; (f) phase �B; (g) real �B; (h) imaginary �B; (i) magnitude squared partial Fourier; (j) phase partial Fourier; (k) real partial Fourier; (l) imaginary
partial Fourier; (m) magnitude squared apodized; (n) phase apodized; (o) real apodized; (p) imaginary apodized; (q) magnitude squared serial; (r) phase serial; (s) real serial;
(t) imaginary serial.
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Fig. 4. Image-space correlations for the center pixel in magnitude squared, real, imaginary, and real/imaginary data with various processes included. In each case, only the
listed operator was included. In the serial case, T∗

2 decay, partial Fourier reconstruction, and k-space apodization were considered. (a) Magnitude squared T∗
2 ; (b) real T∗

2 ; (c)
imaginary T∗

2 ; (d) real/imaginary T∗
2 ; (e) magnitude squared �B; (f) real �B; (g) imaginary �B; (h) real/imaginary �B; (i) magnitude squared partial Fourier; (j) real partial

Fourier; (k) imaginary partial Fourier; (l) real/imaginary partial Fourier; (m) magnitude squared apodized; (n) real apodized; (o) imaginary apodized; (p) real/imaginary
apodized; (q) magnitude squared serial; (r) real serial; (s) imaginary serial; (t) real/imaginary serial.
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Table 1
Calculated correlation coefficients for the center voxel’s nearest neighbors under several operations.

Operation Left neighbor
real

Left neighbor
imaginary

Left neighbor
real/imaginary

Left neighbor
magnitude2

Right neighbor
real

Right neighbor
imaginary

Right neighbor
real/imaginary

Right neighbor
magnitude2

None 1.3e−16 1.3e−16 4.25e−17 3.3e−17 1.3e−16 1.3e−16 4.25e−17 3.3e−17
Uniform T∗

2 5.6e−8 5.6e−8 3.7e−5 1.2e−8 5.6e−8 5.6e−8 3.7e−5 1.2e−8
Varying T∗

2 4.9e−8 4.9e−8 3.4e−5 1.6e−8 4.9e−8 4.9e−8 3.4e−5 1.2e−8
B-gradient 5.5e−7 5.5e−7 5.8e−10 7.5e−8 5.5e−7 5.5e−7 6.0e−10 7.7e−10
Partial Fourier 3.8e−5 8.9e−5 8.0e−17 7.0e−6 3.8e−5 8.9e−5 8.0e−17 7.0e−6
Partial Fourier and uniform T∗

2 5.6e−5 4.0e−3 1.3e−6 1.3e−6 5.6e−5 4.0e−3 1.3e−6 1.3e−6
Partial Fourier and varying T∗

2 7.7e−5 8.6e−4 9.3e−7 2.3e−6 7.7e−5 8.7e−4 1.3e−6 2.3e−6
Gaussian smoothing 7.3e−1 7.3e−1 1.3e−16 7.3e−1 7.3e−1 7.3e−1 1.3e−16 7.3e−1
Varying T∗

2 partial Fourier and smoothing 7.5e−1 7.5e−1 2.2e−4 7.5e−1 7.4e−1 7.4e−1 1.0e−4 7.4e−1
Varying T∗

2 B-gradient and smoothing 8.2e−1 8.2e−1 2.9e−6 7.0e−1 7.5e−1 7.5e−1 2.7e−6 5.4e−1

Operation Top neighbor
real

Top neighbor
imaginary

Top neighbor
real/imaginary

Top neighbor
magnitude2

Bottom neighbor
real

Bottom neighbor
imaginary

Bottom neighbor
real/imaginary

Bottom neighbor
magnitude2

None 5.4e−15 5.4e−15 9.2e−15 1.4e−15 5.4e−15 5.4e−15 9.2e−15 1.4e−15
Uniform T∗

2 4.9e−1 4.9e−1 2.0e−1 3.4e−3 4.9e−1 4.9e−1 2.0e−1 2.4e−3
Varying T∗

2 4.9e−1 4.9e−1 1.9e−1 5.2e−3 4.9e−1 4.9e−1 1.9e−1 3.6e−3
B-gradient 2.7e−16 6.3e−17 8.1e−15 3.6e−17 1.5e−15 6.2e−20 1.1e−14 3.9e−16
Partial Fourier 2.6e−2 5.7e−1 1.0e−5 2.9e−3 2.6e−2 5.7e−1 1.0e−5 2.9e−3
Partial Fourier and uniform T∗

2 5.3e−1 2.0e−1 1.1e−3 1.2e−1 5.3e−1 2.0e−1 1.1e−3 1.2e−1
Partial Fourier and varying T∗

2 5.3e−1 1.1e−1 1.3e−3 1.0e−1 5.3e−1 1.1e−1 4.4e−4 1.2e−1
Gaussian smoothing 7.3e−1 7.3e−1 2.8e−16 7.3e−1 7.3e−1 7.3e−1 2.8e−16 7.3e−1
Varying T∗

2 partial Fourier and smoothing 3.7e−1 6.1e−1 2.2e−2 3.7e−1 3.3e−1 6.1e−1 1.1e−2 3.3e−1
Varying T∗

2 B-gradient and smoothing 5.9e−1 5.9e−1 1.4e−1 5.8e−1 5.9e−1 5.9e−9 1.4e−1 5.9e−1
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as seen in Fig. 4(l). Fig. 4(i)–(k) illustrate slight correlations in
the phase encode direction. Note that these correlations are less
than those associated with intra-acquisition decay. In fact, as pre-
viously described by Jesmanowicz et al. (1998), when both partial
Fourier reconstruction and intra-acquisition decay are considered,
reduced correlation along the phase encoding direction is observed
when compared to full Fourier reconstruction in the presence of
intra-acquisition decay. Although Table 1 shows slight increases in
correlation coefficients in neighboring voxels in the phase encod-
ing direction with partial Fourier reconstruction, the effective point
spread function in the phase encoding direction is reduced by par-
tial Fourier reconstruction. It should be further noted that non-zero
phase, caused by magnetic field inhomogeneities, exists in exper-
imental data and leads to further alterations of the reconstructed
mean images. Partial Fourier reconstruction was found to increase
variance in the real and magnitude data while decreasing variance
in the imaginary data, as expected.

3.3. k-Space windowing and image-space convolution

Apodization with a Gaussian window clearly alters the recon-
structed image means. The magnitude mean image in Fig. 3(m)
illustrates that the edge of the phantom is blurred and dilated as
a result of convolution of the image-space apodization kernel. The
real mean image shows the same result in Fig. 3(o). As there is ide-
ally no data in the imaginary data, apodization does not introduce
significant information into the phase and imaginary mean images
in Fig. 3(n) and (p), although the noise appears to be smoothed. Cor-
relations resulting from apodization, shown in Fig. 4(m)–(p), are as
expected through the Fourier convolution theorem. Specifically, the
image-space correlations resulting from k-space apodization are
related to the image-space convolution with the Fourier transform
of the k-space apodization window. As convolution with a real-
valued kernel does not induce correlations between the real and
imaginary data, no correlations are seen in Fig. 4(p). Apodization
was found to decrease variance as expected with spatial smoothing.

3.4. Serial processes

The results of serially considering intra-acquisition decay, par-
tial Fourier reconstruction, and k-space apodization on the mean
images are shown in Fig. 3(q)–(t). The effects of intra-acquisition
decay and apodization appear to dominate the reconstructed mean
images. However, the computed image-space correlations, shown
in Fig. 4(q)–(t), are not simply the superposition of the correlations
associated with each process. In this result, some of the utility of
the theoretical framework is illustrated as the result of a series of
complicated processing steps may be easily computed. The effects
of smoothing from apodization were found to dominate the pro-
cessed data variance as it was reduced to the level observed with
apodization alone.

4. Experimental illustration

To illustrate the performance of the operators, their application
to phantom data was considered. Two experimental data sets were
considered. The data sets were acquired on a 3.0 T General Electric
Signa LX magnetic resonance imager, with a spherical doped agar
phantom with T∗

2 = 40.0 ms as the subject. Each data set consisted
of 1024 images of a single 2.5 mm thick, 24.0 cm field of view slice,
with a 96 × 96 acquisition matrix, minimum full k-space echo time

of 50.0 ms, effective echo spacing of 0.96 ms, 2000.0 ms repetition
time, and 250 kHz acquisition bandwidth. The proton spins were
excited with an 80◦ radio frequency pulse in one data set, and with
a 0◦ radio frequency pulse in the other data set. The data set with
no excitation pulse was acquired to match the condition of pure
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ig. 5. Image-space correlations for the center voxel in the acquired phantom data
quared, real, imaginary, and real/imaginary data after smoothing. (a) Magnitude n
f) real excited; (g) imaginary excited; (h) real/imaginary excited.

oise considered in some of the above theoretical computations,
hile the data set with an excitation pulse more closely matches

tandard acquisitions.
Data were collected with a custom echo planar imaging pulse

equence, and reconstructed with locally developed software. With
ontrol of the entire acquisition and reconstruction pipeline, the
onfounds of unmodeled data processing are reduced. Never-
heless, some temporal filtering of the k-space acquisitions is
erformed to sub-sample the acquired 1 GHz samples to the
ollected 250 kHz samples. This processing may result in an auto-
orrelation of k-space observations, although such a correlation
tructure was not observed and is likely obscured by the noise in
he experimental data.

Three navigator echoes of the center line of k-space were
cquired to estimate error in the center frequency, and group delay
ffsets between odd and even k-space lines (Nencka et al., 2008). In
he data acquired with an excitation pulse a group delay of 5.6 �s
1.4 k-space points) between odd and even lines was observed.

ithout correction of the group delay, severe Nyquist ghosting
xisted in the reconstructed data. This resulted in correlations
etween image voxels and ghost voxels. Correction of the group
elay error greatly reduced the Nyquist ghost and resulting image-
pace correlations. The same group delay error was assumed on
he data set acquired without an excitation pulse. No significant
mage-space correlations were apparent before or after applica-
ion of the group delay error correction, in agreement with the
heoretical result that the even and odd line shifts do not induce
orrelation in pure noise data. The data acquired with no radio
requency excitation was found to exhibit uncorrelated normally
istributed noise in space and time with a mean of zero. Global,
emporal phase structure was corrected in the data set acquired
ith radio frequency excitation to account for field shifts associ-
ted with gradient heating and radio frequency phase variation
Hahn et al., 2008). The data acquired with radio frequency exci-
ation exhibited uncorrelated noise after phase correction. Thus,
n both the no radio frequency excitation and the dynamic phase
orrected data sets, there are no apparent structured correlations
no excitation pulse (noise) and with an excitation pulse (excited) in the magnitude
b) real noise; (c) imaginary noise; (d) real/imaginary noise; (e) magnitude excited;

above the background correlations in the unprocessed data. Corre-
lation coefficients in the experimental data for the four-neighbors
of the center voxel under multiple processing conditions are shown
in Table 2.

Smoothing of the noise data yields expected results, in agree-
ment with those which are theoretically computed. The resulting
images are shown in Fig. 5. The similarity between the magni-
tude squared, real, imaginary, and real/imaginary correlations in
the smoothed noise data in Fig. 5(a–d) and the theoretical cases in
Fig. 4(m–p) supports the validity of the theoretical method. Some
residual phase correlation manifests itself in the correlation maps
for the radio frequency excited data in Fig. 5(e–h). Nevertheless,
these results are similar to the theoretically expected case.

5. Discussion

This work extends a line of research which has been briefly men-
tioned in a paper (Rowe et al., 2007), and further developed in
conference proceedings (Nencka and Rowe, 2007, 2008). In that
work, the underlying theory for computing image-space corre-
lations based upon k-space processes was developed. We have
extended that work by developing multiple operators for com-
mon reconstruction processes which are defined in the first part of
this manuscript. We have studied the results of those operators by
theoretically computing image-space correlations associated with
relevant implementations. We have examined the validity of the
operators and the theoretical image-space correlations by verifying
the results in acquired phantom data.

The results presented in this manuscript for individual oper-
ations may appear obvious, as relatively simple operations were
considered. However, the utility of the method is demonstrated

when multiple operations are considered at once. With this the-
oretical framework, the exact image-space point spread function
may be computed following a string of processing operations on
ideally uncorrelated data. This is useful as often a string of oper-
ations are performed on a data set. If all the common processes
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escribed here are implemented on a data set, the reconstructed
mage would be represented as

= Sm˝aAFHP−1
R ˝−1

row˚˝rowPRPCRCS. (15)

he complicated process including all the described processing
teps in Eq. (15) lends itself well to this analytic mathematical
odel that is based upon simple linear algebra.
Furthermore, the alterations to an arbitrary covariance struc-

ure, � , may be examined. By computing the correlation structure
ollowing processing procedures on uncorrelated data, a reason-
ble null hypothesis threshold for experimental correlations may
e considered. Thus, the theoretical method described in this
anuscript and previous abstracts may be used to consider how
uch spatial processing is too much when considering functional

onnectivity or fMRI data.
This method may be further expanded with operators for addi-

ional processing operations. Operators for parallel acquisition
mage reconstruction, transmit/receive field inhomogeneities, non-
artesian gridding, masking, and image shifting could easily be
eveloped for the described framework. Additionally, continuing
ork seeks to further extend this model to include more relevant

emporal processing. A time series of images could be considered
y stacking k-space observation vectors to create a time series
bservation vector, and performing Kronecker products between
he operators and identity matrices with dimensions equal to the
umber of time series observations. Under such a parameterization,
he effects of temporal processing may also be examined. Operators
or dynamic magnetic field correction (Hahn et al., 2008, 2009),

otion correction (Jenkinson et al., 2002), slice timing correction
Henson et al., 1999), temporal band-pass and notch filtering, and
emporal smoothing (Gonzalez and Woods, 1992) may be devel-
ped by performing the Kronecker product with matrices other
han identities. Thus, the full processing pipeline may be appro-
riately modeled with an extension to the described framework.

n light of such a framework, statistical models may appropriately
odel the acquired data, rather than modeling data which has

een preprocessed. Such models may allow scientists to statisti-
ally model the underlying physical changes associated with fcMRI
nd fMRI in more natural data (Rowe and Logan, 2004, 2005; Rowe,
005), rather than modeling the observed indirect magnitude sig-
al fluctuations.

Current computational limitations prevent the full implemen-
ation of such a statistical model. For a 96 × 96 k-space acquisitio

atrix, the described operators are 18432 × 18432. If all double pre-
ision elements are saved to an array, such an array requires over 2.5
igabytes of memory. In many cases, sparse matrix representations
ay be considered, but in cases including the Fourier operator or
modified Fourier operator, each element must be computed. As

he matrix multiplication required to compute the alteration of a
ovariance matrix based upon the operation, O� OT =

∑
, requires

hree separate matrices in memory, O, � , and
∑

, at least 7.5 giga-
ytes of memory must be addressed. Thus, 64-bit computing is
ssential. Further, hardware optimized matrix multiplication rou-

cov(y1, y2) = E(y1y2) − E(y1)E(y2)

= E(x2
1Rx2

2R) + E(x2
1Rx2

2I) + E(x2
1Ix

2
2R) + E(x

= 2(� 2
RR	2

1R	2
2R + � 2

RI	
2
1R	2

2I + � 2
IR	2

1I	
2
2R

+ �RI	1R	2I�1 cos(�1)�2 sin(�2) + �IR
ines like the BLAS (Dongarra, 2002a,b), are essential for timely
omputations. If a time series of N images were to be considered, the
emory requirements would grow by a factor of N2 and the time

or calculations would likewise grow. As the number of computing
ores in personal computers continues to grow, and the availability
ce Methods 181 (2009) 268–282 279

of memory continues to increase, such calculations for reason-
able time series will likely become possible in the relatively near
future.

In spite of these technological issues, this manuscript presents
an exact theoretical means of computing image-space correlations
which arise from processing operations, describes the construc-
tion of several common operators, presents theoretical results for
common image acquisition techniques, and verifies those theo-
retical results in acquired echo planar data. The results illustrate
that processing operations and physical processes affect computed
voxel correlations, especially in local neighborhoods of voxels. This
has strong implications for methods which consider correlations
between nearby voxels, as the choice of processing techniques and
the physical properties of the imaging subject may substantially
affect computed results.
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Appendix A. Magnitude squared covariance

Consider two magnitude squared variables

y1 = x2
1R + x2

1I ,
y2 = x2

2R + x2
2I ,

(A.1)

where x1R and x2R are the real components of the first and second
observations while x1I and x2I are the imaginary components. For
the sake of this derivation, let:

E(x1R) = �1cos �1, var(x1R) = 	2
1R cor(x1R, x2I) = �RI,

E(x1I) = �1sin �1, var(x1I) = 	2
1I cor(x1I , x2I) = �II,

E(x2R) = �2cos �2, var(x2R) = 	2
2R cor(x1R, x2R) = �RR,

E(x2I) = �2sin �2, var(x2I) = 	2
2I cor(x1I , x2R) = �IR,

cor(x1R, x1I) = �1,
cor(x2R, x1I) = �2,

(A.2)

where � represents an observation’s magnitude and � represents
an observation’s phase. The magnitude and phase may be obtained
from the reconstructed image. Note that the � and variance values
may be obtained from the complex correlation matrix.

The covariance between the magnitude squared variables
assuming normally distributed noise is thus:

) − (E(x2
1R) + E(x2

1I))(E(x2
2R) + E(x2

2I))
2
I 	2

1I	
2
2I) + 4(�RR	1R	2R�1 cos(�1)�2 cos(�2)

R�1 sin(�1)�2 cos(�2) + �II	1I	2I�1 sin(�1)�2 sin(�2)).

(A.3)

By letting x1 = (x1R, x1I)′, x2 = (x2R, x2I)′, E(x1) = 
1, E(x2) = 
2,
cov(x1) =

∑
1, cov(x2) =

∑
2, and cov(x1, x2) =

∑
12, one can com-

pactly write:

E(yj) = tr(˙j) + 
′
j

j, j = 1, 2,

var(yj) = 2tr(˙′
j
˙j) + 4
′

j
˙j
j, j = 1, 2,

cov(y1, y2) = 2tr(˙′
12˙12) + 4
′

1˙12
2,

(A.4)

where tr(·) denotes the trace operation.

Appendix B. Fourier anomalies
The standard Fourier operator, ˝, is described in Eq. (2). This
operator may be modified to include anomalies in the Fourier
encoding procedure, produced by T∗

2 decay and B-field inhomo-
geneity. Each anomaly introduces time dependent exponential
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erms to the signal equation as shown in Eq. (6). The exponential
erms for T∗

2 and �B, denoted as E(kx, ky, x, y), may be considered
ith their real and imaginary components through the Euler iden-

ity:

(kx, ky, x, y) = e−t(kx,ky)/T∗
2

(x,y)ei��B(x,y)t(kx,ky) (B.1)

(kx, ky, x, y) = e−t(kx,ky)/T∗
2

(x,y) cos(��B(x, y)t(kx, ky))

+ ie−t(kx,ky)/T∗
2

(x,y) sin(��B(x, y)t(kx, ky)). (B.2)

hese multiplicative terms may be included in the Fourier matrix
ith encoding anomalies as

a = ˝. ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(E(1, 1, 1, 1)) · · · �(E(m, n, 1, 1)) −�(E(1, 1, 1,
...

. . .
...

...
�(E(1, 1, m, 1)) · · · �(E(m, n, m, 1)) −�(E(1, 1, m
�(E(1, 1, 1, 2)) · · · �(E(m, n, 1, 2)) −�(E(1, 1, 1,

...
. . .

...
...

�(E(1, 1, m, n)) · · · �(E(m, n, m, n)) −�(E(1, 1, m,
�(E(1, 1, 1, 1)) · · · �(E(m, n, 1, 1)) �(E(1, 1, 1,

...
. . .

...
...

�(E(1, 1, m, n)) · · · �(E(m, n, m, n)) �(E(1, 1, m,

here .* indicates point-wise multiplication of the matrices. Clearly
he form of T∗

2 and �B are dependent upon the physical system
eing imaged.

ppendix C. Censoring and reordering acquired data

As acquired, the EPI k-space data is not in a format appropriate
or the developed Fourier operators. Extra data must be censored,
ata acquired with negative frequency encoding gradients must be
eversed, and the real data must be segregated from the imaginary
ata.

First, the extra points acquired during the phase encoding
lips must be censored. A binary censoring matrix of dimension
mn × 2m(n + e) is used to multiply S. The censoring matrix is an

dentity matrix with the rows corresponding to the extra acquired
oints omitted. Mathematically, this can be described using the
ronecker product. Thus, the censoring matrix, C, is the Kronecker
roduct of an identity matrix with a non-square matrix which

ncludes an identity matrix and an 2n × 2e matrix of zeros denoted
y Z(2n, 2e):

= Im ⊗ [I2n, Z(2n, 2e)]. (C.1)

hus, the extraneous points acquired during the phase encoding
lips are removed through the use of the censoring matrix, SC = CS.
toy example of a censoring matrix for an 8 × 8 array of k-space
easurements with 1 point acquired during the phase encoding

lips is shown in Fig. 1(d).
With the removal of the points acquired during the phase encod-

ng blips, SC contains only the k-space observations that are on the
-space grid. The second step is to reorder the alternating lines
here the data is collected with negative frequency encoding gra-
ients. This is slightly more complicated than simply reversing the
ata as it is still in real–imaginary pairs which would be swapped
o imaginary–real pairs if only row reversal was performed. Again,
Kronecker product is used to construct the row reversal operator,

. To construct �, a Kronecker product between �, a “reverse iden-

ity” matrix, to reverse the row, and an identity matrix, to preserve
he real–imaginary pairs, is used:

= �n ⊗ I2. (C.2)
ce Methods 181 (2009) 268–282

· · · −�(E(m, n, 1, 1))
. . .

...
· · · −�(E(m, n, m, 1))
· · · −�(E(m, n, m, 2))
. . .

...
· · · −�(E(m, n, m, n))
· · · �(E(m, n, 1, 1))
. . .

...
· · · �(E(m, n, m, n))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.3)

To apply this row reversal to only even lines, an alternating row
reversal matrix, R, must be constructed. This is the Kronecker
product between an identity matrix and a block, B, which pre-
serves one row and reverses one row. Thus, the block is defined
to be

B =
(

I2n Z(2n, 2n)
Z(2n, 2n) �

)
, (C.3)

and the alternating row reversal matrix is thusly

R = Im/2 ⊗ B. (C.4)

Note that this assumes an acquisition with reversed even rows,
although an acquisition with reversed odd rows would require the
trivial change of switching the positions of I2n and � in B. With
the alternating row reversal matrix constructed, the alternating
row reversal can be easily performed: SRC = RSC. A toy example of
an alternating row reversal matrix for an 8 × 8 k-space data set is
shown in Fig. 1(e).

The final step of converting S to s involves reordering SRC to
include the real observations stacked above the imaginary obser-
vations. This operation is performed by a permutation matrix, PC,
which can be constructed by interleaving the columns of two non-
square matrices. These matrices include PC1 = [Imn; Z(mn, mn)] and
PC2 = [Z(mn, mn); Imn]. The columns of these matrices are inter-
leaved to produce PC by taking the first column of PC1 followed by
the first column of PC2 and so on. This real–imaginary reordering
can be performed through matrix multiplication to yield the data
ordering required in Eq. (1), s = PCSRC. An example assuming an 8 × 8
k-space acquisition is shown in Fig. 1(f).

Appendix D. Nyquist Ghost correction

Even and odd lines may be shifted in opposite directions to cor-
rect for the Nyquist ghost introduced from eddy current effects in
EPI. This may be performed through the use of the Fourier shift
theorem. The three operators which are described in this section
reorder the data into sets of real and imaginary data for each row,
Fourier transform each row, and apply a phase shift to the Fourier
transformed row.

The permutation matrix is a binary matrix which can be con-
structed by interleaving blocks of columns of two non-square
matrices to create a square matrix. The two matrices to be inter-
leaved are PR1 = [Imn, Z(mn, mn)] and PR2 = [Z(mn, mn), Imn]. The
permutation matrix, PR, results from taking the first n columns of
PR1 followed by the first n columns of PR2, and so on. The signal is

thus reordered to a column vector of the reals stacked above the
imaginaries for each row through multiplication with PR. As this is
a permutation matrix, its inverse is simply its transpose. A graphi-
cal representation of PR for an 8 × 8 k-space acquisition is shown in
Fig. 1(g).
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The row Fourier transform matrix is the Kronecker product of an
dentity matrix with the Fourier transform matrix ˝x, as defined
arlier, ˝row = Im ⊗ ˝x. A graphical representation of ˝row for an
× 8 k-space acquisition is shown in Fig. 1(h).

The phase shift operator is the final necessary operator for per-
orming a line shift. This operator multiplies the complex-valued
ourier transform of the line by a complex-valued exponential
o implement the Fourier shift theorem. For a shift of �, the jth
lement of the row must be multiplied by exp(−i2��j/n), or equiv-
lently cos(2��j/n) − isin(2��j/n). Thus, the real component of the
hase shifted jth element is �(fj) cos(2��j/n) − �(fj) sin(2��j/n),
here fj is the jth element of the Fourier transformed row. Sim-

larly, the imaginary component of the phase shifted jth element
s �(fj) sin(2��j/n) + �(fj) cos(2��j/n). Thus, for a row, this phase
hift matrix operator is

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos(2��1/n) · · · 0 −sin(2��1/n) · · ·
...

. . .
...

...
. . .

0 · · · cos(2��n/n) 0 · · · −sin
sin(2��1/n) · · · 0 cos(2��1/n) · · ·

...
. . .

...
...

. . .
0 · · · sin(2��n/n) 0 · · · cos(

Shifting a row to the right by � pixels is denoted by �+ while
hifting a row to the left by � pixels is denoted by �−. With this
epresentation, the phase shifting of lines in alternating directions
s denoted by ˚ = Im/2 ⊗ [�+, Z(2n, 2n); Z(2n, 2n), �−]. A graphical
epresentation of ˚ with � = 0.5 and an 8 × 8 acquisition matrix is
hown in Fig. 1(i).

ppendix E. Partial Fourier interpolation

Conjugate symmetry ideally exists about the origin in k-space, as
he reconstructed image is expected to be real-valued. This symme-
ry allows half of k-space to be generated without being acquired.
hus the acquired data array, s, only requires 2(m/2 + 1)n elements
hile the symmetrically generated data array, sS, is 2mn elements.

or the sake of consistency in notation, we assume that the remain-
ng 2(m/2 − 1)n elements in s are set to zero with the last (m/2 − 1)n
eal observations being zero and the last (m/2 − 1)n imaginary
bservations being zero. An equivalent symmetric k-space gener-
tion operator can be constructed which does not include these
ero elements thereby reducing the operator size. However, in the
onsidered case a square matrix, H, can be used for partial Fourier
econstruction. For the acquired real and imaginary points, the
artial Fourier operator returns the observed values. For the gener-
ted point (kx, ky), the partial Fourier operator returns the complex
onjugate of the observed point at (−kx, −ky). This partial Fourier
perator multiplies the uncollected points by zero, so the values
riginally substituted into these points are irrelevant. The partial
ourier operator is thusly a 2mn × 2mn matrix. This matrix which
ncludes identity, I, “reverse identity,” �, and zero, Z, matrices is:

=

⎛
⎜⎜⎜⎝

I(m/2+1)n Z((m/2 + 1)n, (m/2 − 1)n) Z

Z((m/2 − 1)n, n) �(m/2−1)n Z(

Z((m/2 − 1)n, mn) I(m/2+1)n Z((m/

Z((m/2 − 1)n, (m + 1)n) −�(m/2−1)n Z

A graphical representation of H is shown in Fig. 1(j) for the case
f an 8 × 8 symmetric k-space.
ppendix F. Convolution

We will first describe the zero-filling operator, F, and then
escribe the apodization operator, A, which includes the typical
ce Methods 181 (2009) 268–282 281

n/n)

/n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (D.1)

2 + 1)n, mn)

− 1)n,
3
2

mn)

1)n, (m/2 − 1)n)

− 1)n,
m

2
n)

⎞
⎟⎟⎟⎠ . (E.1)

Fermi apodization window and Gaussian smoothing window as
specific cases. We will finally describe the image-space magnitude
smoothing operator.

Zero-filling is often performed to yield an increase in apparent
reconstructed resolution and to create an array which has dimen-
sions of an integer power of two for fast Fourier transform routines
(Gonzalez and Woods, 1992). In zero-filling, zeros are appended
to the acquired k-space observations at higher spatial frequencies
than are observed. It is well known that zero-filling is equivalent
to image-space convolution with a sinc kernel. The zero-filling is
done symmetrically to preserve the location of the k-space origin
in the zero-filled array at (m/2 + 1, n/2 + 1). The zero-filling matrix
is a binary matrix containing blocks of zero and identity matri-
ces. This parameterization of the zero-filling operator assumes that

an even number of phase encode points, P, and an even number
of frequency points, J, are to be added to the acquired data. The
zero-filling operator is denoted as

F = I2 ⊗
(

FP

Im ⊗ FJ

FP

)
(F.1)

where

FP = Z
(

P/2, mn
)

(F.2)

and

FJ =
(

Z(J/2, n)
In

Z(J/2, n)

)
. (F.3)

Thus, zeros are appended symmetrically around the acquired
k-space matrix. It should be noted that this changes the dimension-
ality of s, and subsequent operators must be appropriately adjusted.
An example of F is shown in Fig. 1(k) for zero-filling a 4 × 4 k-space
data set to an 8 × 8 data set.

Apodization and filtering can be considered with the Fourier
convolution theorem, where convolution with a kernel in image-
space is simply point-wise multiplication of the Fourier transform
of the original kernel in k-space. Thus, any processing step which
involves the point-wise multiplication of k-space observations
with a kernel or the image-space convolution of the complex-
valued image with a kernel can be considered with the apodization

operator presented here. This apodization operator, A, is a diagonal

matrix in which the non-zero elements correspond to the values
of the k-space kernel for those points. If the values of the k-space
kernel, K, are indexed across rows such that the first element of the
first row is 1, the last element of the first row is n, the first element
of the second row is n + 1, and so on, the elements of A are easily
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efined such that Aj,j = K(j). An example of A is shown in Fig. 1(l) for
he case of a simple 8 × 8 Hanning k-space window.

Explicit image smoothing is often performed on the recon-
tructed magnitude data. Such a process is different from
moothing the complex data (Lai et al., 1996) and is a non-linear
rocess. However, with the magnitude squared covariance matrix
nown from the complex-valued covariance matrix, an operator,
mm, may be developed to consider smoothing magnitude squared
ata. The first row of the operator consists of the kernel weights for
ach magnitude squared data point for the first smoothed magni-
ude squared data point. The second row includes the weights for
he second point, and so on. An operator for smoothing an 8 × 8
ata set with a Gaussian kernel with a three voxel FWHM is shown

n Fig. 1(m). If image-space smoothing of the complex-valued data
ere preferred over k-space apodization, a complex-data smooth-

ng operator, Sm could be constructed as a block diagonal operator
here the two diagonal blocks are filled with Smm.
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