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Abstract

Magnitude-only data models have dominated fMRI analysis since the inception

of the technology. However, when such analyzes are done half the data is disregarded

which may or may not contain valuable information. This overlooked data is called

the phase and is restricted to values between −π and π. When phase time series are

analyzed, ordinary least squares (OLS) regression has been the technique of choice.

However, OLS models perform poorly when “wrap-around” or low SNR is present.

We have explored alternatives to the OLS model which will account for the angular

response of the phase while also allowing us the flexibility to develop similar hy-

pothesis tests. We adopt a model by Fisher and Lee (1992) to our analysis of the

generally discarded fMRI phase time series and show its improvement over the OLS

model for both parameter estimation and data prediction for various conditions. We

fit the model to both simulated data and acquired data from an actual fMRI exper-

iment and found an improvement in parameter estimation along with modeling for

the Fisher and Lee method in the simulated data while detailing potential benefits

when used with experimental acquired data. Finally, we look at a map of statistics

relating association of the observed voxel phase time courses with a reference function

in our acquired data and show the possible detection of biological information in the

generally discarded phase.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is an invaluable tool used by clinicians and

physicians alike to investigate and diagnose biological phenomena in both animals

and humans. An MRI of the knee can reveal whether ligaments are intact or torn,

while an MRI of the brain can detect the difference between gray and white matter.

Different pulse sequences are able to be constructed with enough sensitivity to look

at tumors, abnormalities in blood vessels, or bone damage [8]. Functional magnetic

resonance imaging (fMRI) can be thought of as many volumetric MRIs over time.

This allows the investigator to localize and monitor different mental processes in

different parts of the brain. An example using fMRI is shown when looking at dyslexia

in children [1]. Those children affected by the disorder had different brain activity

patterns than those who did not suffer from dyslexia. However, it was shown that the

neural activity in the affected children can be corrected to match those children who

5



CHAPTER 1. INTRODUCTION 6

read normally within a few weeks by using reading instruction . This is just one of

the many examples which fMRI was used as a tool by investigators looking to better

understand and treat individuals with conditions that affect millions a year.

Functional MRI is a collection of MRI slices over a period of time. Usually

in experimental fMRI some type of stimuli is introduced, such as finger tapping or

flashing lights, and then removed to measure changes in brain response. This is

usually done in a number sets of some predetermined length. We will use eight sets

lasting 16 seconds each for both “on” and “off” function in both simulated and real

data.

Those areas of the brain that exhibit cognitive function to different types of stimuli

is of interest to investigators. When neurons in a given location synapse for brain

function they use up bound oxygen in the hemoglobin of oxygenated blood. The

physiological response in the brain is to overcompensate with a surplus of oxygenated

blood in that location. It is the change in the magnetic field in this location due to an

increase of oxygenated blood that is measured and not neuronal firing. A statistically

significant increase in oxygenated blood in a location or voxel associated with the

presentation of a stimulus is called activation [2].

Currently, the most common method being used to detect activation in fMRI is

a general linear model with magnitude-only data. However, this model disregards

all the phase data and any information it may contain. We will look at modeling

the phase data that is generally disregarded by using a model which is more flexible
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than the ordinary least squares (OLS) regression model, the current standard for this

type of analysis. Specifically, we will implement a model developed by Fisher and

Lee (1992) on both simulated and actual experimental fMRI time series data then lay

the framework for making inferences about the possible phase activations. In doing

this we will have accounted for the angular nature of the response and provide an

improvement in dealing with the “wrap-around” issue. In the past the only way that

has been used to account for “wrap-around” in fMRI data was to artifically “unwrap”

it and proceed with an analysis.



Chapter 2

Background

The MRI data we acquire generally after an inverse Fourier transform (IFT)

has taken place is composed of two parts, a real (yR`,m,n) and imaginary (yI `,m,n)

image parts, where (`,m, n) are the location coordinates, slice, row, and column, of

the voxel on the 3D volume image. We are neglecting a third coordinate, `, because

we will deal only with a single slice of an MRI scan over time. These parts can be

broken down in the following way for a single time point,

yRm,n = ρRm,n + ηRm,n (2.0.1)

yIm,n = ρIm,n + ηIm,n (2.0.2)

where ρRm,n and ρIm,n are the true signals while ηRm,n and ηIm,n are the additive

random noise in each channel [17]. It is assumed that the noise has the following dis-

tribution, (ηRm,n, ηIm,n)′ ∼ N(0, Σ). Combining the channels into a complex number,

8



CHAPTER 2. BACKGROUND 9

ym,n, we get

ym,n =
[
ρRm,n + ηRm,n

]
+ i
[
ρIm,n + ηIm,n

]
. (2.0.3)

However, the above notation is dealing only with a particular voxel at one time

point, MRI. In functional MRI (fMRI) we observe the same voxel over a regularly

sampled discrete time series. Therefore, we must introduce the necessary subscript,

t, to describe these different time points,

ym,n,t =
[
ρRm,n,t + ηRm,n,t

]
+ i
[
ρIm,n,t + ηIm,n,t

]
. (2.0.4)

FMRI can be thought of as a 4D lattice of complex numbers where time is the fourth

dimension.

The most common methodology used currently in fMRI activation detection is

the magnitude-only data model. This can only be explored after transforming from

rectangular coordinates yRm,n and yIm,n into polar coordinates leaving the investigator

with both a magnitude and phase value for each voxel and time point. This is a non-

unique transformation of the data. The magnitude-only model discards the phase.

Using phase-only data, we will explore task related phase changes which will be called

“phase activation.”

Rowe and Logan (2004) introduced a complex nonlinear multiple regression model

for magnitude activation that included a phase imperfection, θ, and a set of time

dependant covariates, x′
t [17]. They define X as a n × (q + 1) design matrix where

n is the number of time points for each voxel and q + 1 is the number of columns.
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This design is composed of the individual rows x′
t. A simple design matrix has three

columns which represent the intercept, a linear trend over time, and the reference

function. The justification for a linear trend column in the design matrix is justified

in a paper by Smith et al. (1999) in which he notices a low frequency drift over time

in both cadavers and phantom fMRI scans [20]. Rowe and Logan’s model has the

following form




yRt,m,n

yIt,m,n


 =




x′
tβ cos(θ)

x′
tβ sin(θ)


 +




ηRt,m,n

ηIt,m,n


 (2.0.5)

with θ ∈ (−π, π] and β ∈ Rq+1 being fixed but unknown parameter coefficients

estimated voxel by voxel. As the reader can clearly see they are using both parts of

the complex data at once rather than discarding the phase and using the magnitude-

only data model. This model specifies the phase imperfection to be constant over

time in a given voxel, however the authors expanded this model by incorporating

an unrestricted phase that is unique at each time point. The magnitude-only data

model was shown by Rowe and Logan to be equivalent to their complex model when

unrestricted phase is present [18].
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2.1 Magnitude Model

The most common method used to compute activations is the magnitude-only data

model, which will be denoted by,

rt =
{

[x′
tβ cos(θ) + ηRt ]

2
+ [x′

tβ sin(θ) + ηIt]
2
} 1

2

. (2.1.6)

To reduce the amount of needed subscripts and using the fact that voxels are treated

individually we will focus on a single time series at time t,

rt =
{

[x′
tβ cos(θ) + ηRt ]

2
+ [x′

tβ sin(θ) + ηIt]
2
} 1

2
. (2.1.7)

The magnitude is typically modeled with a normal distribution but this is only as-

ymptotically true for a large signal-to-noise ratio (SNR) defined by ρ/σ [17]. To find

the marginal distribution of the magnitude, which is what we have when we throw

out the phase, we must integrate out the phase from the following joint distribution,

f(r, φ) = (2πσ2)−1re−
r2+ρ2−2rρ(cos(φ)cos(θ)+sin(φ)sin(θ))

2σ2 , r, ρ, σ2 > 0 − π < φ, θ ≤ π,

(2.1.8)

bringing us to the exact distribution which is a Ricean and derived in Appendix A.1.

The Ricean has the following density function,

f(r|ρ, σ2) =
r

σ2
e−

r2+ρ2

2σ2 I0

(rρ

σ2

)
, r > 0, ρ > 0, σ2 > 0. (2.1.9)

In the above equality I0(·) is a zeroth order modified Bessel function of the first kind.

The subscript t is momentarily suppressed for clarity. If the SNR is zero the Ricean
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distribution simplifies to a Rayleigh distribution. Using the derivation by Rowe and

Logan (2004) we will expand the squares in the above magnitude model and use the

Taylor’s expansion that states
√

1 + u ≈ 1 + u/2 for the first two terms.

rt =
{

[x′
tβ]

2
+
[
η2

Rt
+ η2

It

]
+ 2 [x′

tβ] [ηRt cos θ + ηIt sin θ]
} 1

2

(2.1.10)

= [x′
tβ]

[
1 +

2 [ηRt cos θ + ηIt sin θ]

[x′
tβ]

+

[
η2

Rt
+ η2

It

]

[x′
tβ]2

] 1
2

(2.1.11)

≈ x′
tβ + εt (2.1.12)

where εt = ηRt cos θ + ηRt sin θ ∼ N(0, σ2) is temporally independent and identically

distributed. If the data is not independent than the investigator should pre-whiten

the data as described in the Appendix of Rowe and Logan (2004). Expressed in

matrix notation we write the model as

r = X β + ε (2.1.13)

where ε ∼ N(0, σ2In). Here X is a design matrix of dimension n×p, r and ε are n×1

vectors of magnitude-only observations and errors, and β is a (q + 1)× 1 vector. We

see that the model reduces to a standard linear multiple regression model for large

SNR.

Finding the maximum likelihood estimates and deriving likelihood ratio tests deal-

ing with linear hypothesis of Cβ = 0 are straight forward and are derived in the

Appendix A.3 [15, 17]. We see that the unrestricted maximum likelihood estimates

are,

β̂ = (X ′X)
−1

X ′r (2.1.14)
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σ̂2 =
(r − Xβ̂)′(r − Xβ̂)

n
(2.1.15)

with the restricted MLE’s being,

β̃ = Ψβ̂ (2.1.16)

σ̃2 =
(r − Xβ̃)′(r − Xβ̃)

n
(2.1.17)

and Ψ = I − (X ′X)−1C ′(C(X ′X)−1C ′)−1C. Using the asymptotic χ2
w distribution of

-2 log of a likelihood ratio test we note that the test statistic is

−2 log Λ = n log

(
σ̃2

σ̂2

)
. (2.1.18)

The degrees of freedom, w, is equal to the full row rank of C [15].

This has been the usual way to model activation in fMRI but this method also

removes half the data by not looking at the phase [17]. When we convert from real-

imaginary rectangular coordinates to polar coordinates we generate a magnitude, r,

and an angle, φ.

In the next sections we will look at building a model from the phase-only data and

detect “phase” activation. In doing so we will gain an insight into the possibility of

information being contained in the phase which is disregarded in the magnitude-only

data model. Even if the phase-only data model doesn’t model activation as well as

the magnitude model it will at least give us another method to investigate activa-

tion or a biological response to the presentation of stimulus. The complex model by

Rowe and Logan (2004) is yet another method developed which detects statistically
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significant changes or activation in the magnitude but from the raw complex data

[17]. Their model shows great promise and improved power over the industry stan-

dard, the magnitude-only data model. Allowing the investigator to look at the entire

data and not artifically generated magnitude-only data is another positive attribute.

As mentioned, we will be exploring possible biological information in the generally

omitted phase-only data while disregarding the magnitude-only data.



Chapter 3

Theory

As previously stated, the phase data is often disregarded when trying to determine

task related activation in fMRI. However, phase represents half the data in each voxel

so intuitively we would like to develop a model analogous to the magnitude-only data

and make inferences. We will see that as with the magnitude-only data model ordinary

least squares (OLS) can also be used when modeling phase-only data when various

assumptions about the data hold. Finally, we will account for the angular response

property of the phase in which π and −π are adjacent to each other by discussing

methods discussed by Gould [6], Johnson and Wehrly [10], along with Fisher and Lee

[5] to model the data.

15
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3.1 Ordinary Least Squares

We begin to look more closely at the phase-only data model by first deriving its

distribution, φ, which is outlined in Appendix A.1 and shown in Rowe and Logan

(2004). Below in Equation 3.1.2 we have the joint distribution of the magnitude r

and the phase φ along with the marginal distribution of φ by integrating out r. We

are suppressing subscripts, t, on r, ρ, and φ to make our notation simpler however

the reader should keep in mind they vary over time.

f(r, φ) = (2πσ2)−1re−
r2+ρ2−2rρ(cos(φ)cos(θ)+sin(φ)sin(θ))

2σ2 , r, ρ, σ2 > 0 − π < φ, θ ≤ π,

(3.1.1)

f(φ) =
e−

ρ2

2σ2

2π

[
1 +

ρ cos(φ − θ)

2πσ
e

ρ2 cos2(φ−θ)

2σ2 Φ

(
ρ cos(φ − θ)

σ

)]
, (3.1.2)

where Φ(·) is the cumulative distribution of a standard normal. Since the phase distri-

bution is quite intimidating at first glance we will look at the asymptotic distribution

for large SNR [17]. This distribution simplifies to a normal distribution with mean

θ and variance τ 2 = σ2/ρ2. If the SNR = 0 or ρ = 0, the distribution limits to the

following uniform,

f(φ) =
1

2π
, −π < φ ≤ π. (3.1.3)

The asymptotic normal distribution will be used when we build our OLS phase re-

gression model. Doing this will make our large SNR assumption imperative if we are

to make valid inferences without using numerical methods.

To be consistent with Rowe and Logan (2004) we will give the following argument in
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support of the normal limiting distributions for the phase and explain the assumptions

which must be present for it to hold thus making OLS a reasonable model. To deal

with our time series we introduce the subscript t to distinguish our observed data at

different times,

φt = tan−1

[
ρt sin(θt) + ηIt

ρt cos(θt) + ηRt

]
. (3.1.4)

Recall that the distribution assumptions are on ηIt and ηRt which are both distributed

as N (0, σ2). Focusing on the argument of the arctan function, call it Rt.

Rt =
ρt sin(θt) + ηIt

ρt cos(θt) + ηRt

=
[ρt sin(θt) + ηIt ]

1
ρt cos(θt)

[ρt cos(θt) + ηRt ]
1

ρt cos(θt)

=
tan(θt) + N(0, σ2

ρ2
t cos2(θt)

)

1 + N(0, σ2

ρ2
t cos2(θt)

)
. (3.1.5)

Examining the final equality we can approximate this further when θt is small. The

ratio of non central normal random variables has been discussed in the statistical

literature by Marsaglia [13]. When θt is small and the SNR is large, we observe

cos2(θt) to be close to one and the variances of the random components are very

small. We can approximate the denominator as unity and using the Taylor expansion

of tan(θt) ≈ θt for small θt and reduce Rt to be

Rt ≈
N
(
θt,

σ2

ρ2
t

)

N
(
1, σ2

ρ2
t

)

≈ N

(
θt,

σ2

ρ2
t

)
. (3.1.6)

Now looking at the arctan of the above distribution we see that the Taylor expansion
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of tan−1(θt) is ≈ θt − θ3
t

3
+

θ5
t

5
. Since we have the restriction that θt is small we can

neglect all the terms raised to powers greater than one. This agrees with the marginal

distribution of φt we derived earlier. So,

φt = tan−1

(
ρ sin(θt) + ηIt

ρ cos(θt) + ηRt

)

≈ N

(
θt,

σ2

ρ2
t

)
(3.1.7)

for larger SNR and small θt. However, this argument is only valid for very small

θt. More generally the limiting distribution can be derived from the marginal phase

distribution for large SNR and θt.

As mentioned, phase data is rarely analyzed in fMRI, and the times it is, OLS is the

modeling methodology of choice [3]. Before an OLS model can be fit, the time series

needs to be artifically “unwrapped.” The process of artifically “unwrapping” the data

and then fitting an OLS model to it will be described shortly. Menon (2002) looked

at phase time series after unwrapping and noticed an approximate linear association

with the magnitude data which he believed was attributed to large blood vessels

[14]. The OLS model will be briefly summarized then an alternative model will be

introduced along with its advantages and disadvantages.

The OLS phase-only data model can be written for an arbitrary voxel in the fol-

lowing form,

φt = z′
tγ + δt, (3.1.8)

where φt are observed phase angle measurements at each time point t and z′
t is a
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specific row of the design matrix Z in Equation 3.1.9, γ are the fixed but unknown

phase regression coefficients, and δt is the measurement error. This measurement

error is assumed to originate from the following normal distribution, N(0, τ 2
t ) where

τ 2
t = σ2/ρ2

t , and the design matrix for our example Z is constructed in the following

way for three covariates,

Z =




1 1 1

1 2 1

...
...

...

1 17 −1

...
...

...

1 256 −1




. (3.1.9)

The above design matrix includes a column of 1’s to model the intercept, a column

of counting numbers to account for a possible linear trend over time [20], and a third

column with alternating sets of 16 1’s and -1’s to account for the a task related

function. Sets of 16 are used in our matrix to coincide with both our simulated

and acquired data which have stimulus lengths of 16 seconds. We define SNR by

ρt/σ = (β0+β1t+β2z2t)/σ but β1t+β2z2t is generally very small when compared to β0

within the brain and zero outside the brain so we utilize the following approximation,

ρt/σ ≈ β0/σ and thus the variance τ 2 becomes constant over time. When we describe

the phase-only data with the OLS model we can make inferences using standard linear

contrasts tests, H0: Dγ = 0 vs H1: Dγ 6= 0. Our contrast matrix, D, is defined to

be a w × (q + 1) matrix. This testing procedure leads to the unrestricted, (γ̂, τ̂ 2),
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and restricted, (γ̃, τ̃ 2), maximum likelihood estimates for γ and τ 2 having the familiar

form,

γ̂ = (Z ′Z)−1Z ′φ (3.1.10)

τ̂ 2 =
(φ − Zγ̂)′(φ − Zγ̂)

n
(3.1.11)

γ̃ = Ψγ̂ (3.1.12)

τ̃ 2 =
(φ − Zγ̃)′(φ − Zγ̃)

n
(3.1.13)

and Ψ = I − (Z ′Z)−1D′[D(Z ′Z)−1D′]−1D. Using the asymptotic χ2
w distribution of

-2 log of a likelihood ratio test we note that the test statistic is

−2 log Λ = n log

(
τ̃ 2

τ̂ 2

)
. (3.1.14)

The degrees of freedom, w, is equal to the full row rank of D [15]. We also may test

individual hypothesis by using the large sample normal statistics because the number

of time points present.

The angular response of the phase-only OLS model can cause modeling problems

at the wrap around junction if not accounted for properly thus resulting in poor

parameter estimation and incorrect inferences. When a combination of the three

following conditions are valid we can describe the phase data with little concern

using our standard OLS regression model. These conditions are 1) a large SNR,

2) our baseline angle, γ0, is not near either the upper boundary of π or the lower

boundary of −π, and 3) the linear trend is small enough that the data does not rise

or lower beyond π and −π. The large SNR assumption makes the probability that
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successive measurements have a large difference between them to be very small. A

simulated time series following the aforementioned conditions is plotted in Figure

3.1(a).

However, in real acquired fMRI data the mean phase in voxels varies greatly and

these stringent conditions are in general not met. Often within an fMRI data set,

phase angles are observed close to ±π. An example of phase data which “wraps”

around the phase boundary is seen in Figure 3.1(b) where the cyan time series is

the original data and the blue time series is the “unwrapped” data. As previously

mentioned, the method generally used to deal with this issue is “unwrapping.” Un-

wrapping is the process of beginning with the first observation, proceeding through

the time series and “flagging” an observation in which the next point in the time series

have an absolute difference greater than or equal to a predefined value, generally π,

then shifting the rest of the time series by multiples of ±2π. The process is repeated

to the end of the time series. However, when high SNR becomes suspicious the model

fails and the investigator needs another model to work with.

Often times simply “unwrapping” the data and fitting an OLS regression line to

the data is sufficient as in Figure 3.1(a). This situation can be defined as “control”

data in which no “wrap-around” is present and the SNR is large. However, as we see

in Figure 3.1(b) this isn’t always true. We see the fitted OLS regression line (black)

for the “unwrapped” data (blue) doesn’t model the data correctly and often this

will lead to incorrect inferences. The associated reference function jumps are very
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Figure 3.1: Part a: Shows data where no “unwrapping” is needed. Part b: Shows

an example of an improper OLS fitted line (Black) to “unwrapped” phase time series

(Blue) along with the original data (Cyan) and true values (Magenta).
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small when looking at the true values (magenta) causing the line to appear nearly

straight. The fitted regression line has a negative slope while the true value of the

slope coefficient is positive. This implies the need for another model that can account

for the angular response. Simply “unwrapping” the data does not guarantee OLS

to be a correct method to deal with the “wrap-around” issue, especially when the

SNR is low. Instead, we explore various angular models and look at fitting the data

one. Implementing an angular model procedure to deal with the angular nature of

the response will allow us to relax the large SNR requirement.

3.2 Circular Phase Model

3.2.1 Distribution

Since the unwrapped OLS model fails for various conditions including a low SNR

we will explore distributions and models that deal with data similar to our phase

measurements. The literature dealing with angular regressions include models by

Gould [6], Johnson and Wehrly [10], along with Fisher and Lee [5]. We will expand

on these and choose a preferred model for our simulated and real fMRI phase data.

First, we would like to introduce the most common distribution used with angular

random variables and which also is the corner stone of our angular regression tech-

niques. This distribution goes by two names, the circular normal and the Von Mises.
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We will use these two interchangeably. The conditional distribution of the phase

given the magnitude is actually a circular normal distribution [9] and is derived in

Appendix A.2. This fact alone should give us confidence in using models based on

this distribution. The circular normal has the following probability density function

(PDF),

f(φ) =
eκ cos(φ−θ)

2πI0(κ)
, −π < φ, θ ≤ π, 0 < φ, θ < ∞. (3.2.15)

This distribution has mean θ and concentration κ.

3.2.2 Models

As describe in Jammalamadaka and SenGupta (2001), Gould (1969) introduced a

model which estimated the overall mean direction of each data point using the fol-

lowing form,

θt = γ0 +
m∑

j=1

γjzjt(mod 2π) (3.2.16)

with j = 1, . . . ,m, where m is the number of covariates, and t = 1 . . . n, n being the

number of time points in a single voxel. The modulus, denoted by mod, is defined to

be the remainder of each γjzjt quantity when dividing by the argument, 2π. The log

likelihood for this angular regression with a single regressor,γ, i.e. m = 1, case is

log L = −n log 2π + κ
n∑

t=1

cos(φt − γ0 − z1tγ1) − n log I0(κ). (3.2.17)

As discussed by Johnson and Wehrly, this model has some advantages [10]. These

advantages include the ability to test γ1 = 0 and the ability to estimate the unknown
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parameters using an iterative process which Gould laid out in his paper. Yet, this

model has certain limitations that arise when considering it for our fMRI phase time

series analysis. This model assumes the angle continuously “wraps” around resulting

in what is referred to as the “barber’s pole” form. However, in fMRI data the phase

angle rarely wraps around more than once unless the SNR is extremely low as would

by seen outside the brain. Johnson and Wehrly also discussed the fact that the MLEs

are non-unique in this model because the likelihood function has infinitely many

equally high peaks.

Johnson and Wehrly (1978) also introduced an alternative model to be used for

angular data with linear predictors. Their model assumed that the predictor variable,

z1t, is random and has a known distribution. This allows them to derive the joint

distribution of φt and z1t,

f(φt, z1t) = 2πg [2π(F1(φt) − F2(z1t))] f1(φt)f2(z1t), 0 ≤ φt < 2π, −∞ < z1t < ∞

where F (φt), F (z1t), f(φt), f(z1t) are marginal cumulative density functions (CDFs)

and marginal PDFs for φt and z1t respectively. The function g(·) is an a priori

defined density on a unit circle. This density g(·) is often chosen to be the Von Mises

distribution because it is the most well known. The authors accordingly chose g(·) to

be the Von Mises distribution for their example, making the conditional distribution

of φt given z1t to be the following,

f(φ|Z) = [2πI0(κ)]−n eκ
∑n

t=1 cos(φt−γ0−2πF (z1t)).
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where φ = (φ1, . . . , φn)′. The authors also show that the maximum likelihood es-

timates for the mean angle, γ0, and the concentration, κ, are well defined for this

model. From this distribution Johnson and Wehrly show the maximum likelihood

estimates of γ0 and κ to be γ̂0 = z̄0 and κ̂ from R̄ = A(κ̂), where

R̄ cos(z̄0) =
1

n

n∑

t=1

cos(φt − 2πF (zt)) (3.2.18)

and

R̄ sin(z̄0) =
1

n

n∑

t=1

sin(φt − 2πF (zt)), (3.2.19)

A(R̄) = I1(κ̂)/I0(κ̂) (3.2.20)

and Im(·) is the modified Bessel function of the first kind and order m [10].

This model does differ from Gould’s angular model because it restricts φt from

“wrapping” around more than once. In other words, the model by Johnson and

Wehrly doesn’t allow more than one complete rotation of the phase on the “barber

pole” as z1t varies over time. Often times this is a reasonable assumption as in fMRI

phase data.

However, this model does have drawbacks of its own including the need to know

the distribution of z1t. We often do not know the PDF or CDF of our predictor

variables and tend to view them as fixed numbers that don’t originate from a known

distribution. Also, this model only allows for a single predictor z1t. We may like to

choose a design matrix Z as described in the previous section thus allowing us to

include both a possible linear trend and reference function into our model.
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Fisher and Lee (1992) generalize the Johnson and Wehrly model to allow for mul-

tiple predictor variables and relaxed the need for distributional assumptions on the

design matrix [5]. Their model assumes the angular observations, φ1, . . . , φn, are

independent and follow a Von Mises distribution with a constant concentration para-

meter, κ, that is the same across the series. In other words, φ1, . . . , φn each originate

from a Von Mises distribution with mean θt and concentration κ. Since they keep

the concentration parameter fixed over time they model using only mean directions.

They mention a model that fixes the mean and models the concentration but this is

not appropriate for functional “phase” activation. The fixed concentration model is

given by

θt = γ0 + g(u′
tγ) (3.2.21)

where the design matrix U , with the tth row u′
t = (u1t, . . . , u(q+1)t), is comprised of all

columns except the first in the design matrix Z, as defined in the previous section. Of

course U can have any combination of columns the investigator chooses but we will

focus on our choice. There is no need to include the baseline column in U because

the intercept is already estimated within the model. The “link” function g(·) has the

purpose of mapping the result to the range of −π to π. As stated by the authors this

link function corrects the non-identifiability problem of MLEs that is present in the

Gould model [5]. One possible link function that we will use which is given by Fisher

and Lee is,

g(·) = 2 tan−1
(
sgn(·) |·|ξ

)
(3.2.22)



CHAPTER 3. THEORY 28

where sgn(·) is the operator that returns the sign of its argument and the trans-

formation parameter, ξ, can be estimated from the data similar to the Box-Cox

transformation [4, 5].

Another form used by the authors to model the directional mean was

θt = γ0 ± 2πg(zi). (3.2.23)

Here z are lying on the bounded region [0, 1]k after scaling and k being the number of

columns in our design matrix. This allows the link function, g(·), to be within some

flexible parametric family of k-dimensional distribution. The authors gave an example

of having the link function equal the incomplete beta distribution, Ix(α, β),for the

single covariate case. This distribution has the following PDF,

Ix(α, β) =
Γ(α + β)

Γ(α)Γ(β)

∫ x

t=0

tα−1(1 − t)β−1dt. (3.2.24)

We won’t be exploring this model of the directional mean because we want to allow

our design matrix to be as robust as needed while defining the link function to be as

simple as possible.

Fisher and Lee give us equations to obtain parameter estimates and make inferences

using the mean model θt = γ0 + g(u′
tγ) with the link function defined as g(·) =

2 tan−1(·). Of course the link function can be chosen differently but we will illustrate

fitting the Fisher and Lee model with this particular choice. First, we define the

natural log likelihood, denoted log, of the Von Mises distribution,

log L = −n log 2π − n log I0(κ) + κ
n∑

t=1

cos(φt − γ0 − g(u′
tγ)). (3.2.25)
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Second, the authors define the following

vt = sin(φt − γ0 − g(u′
tγ)),

v = (v1, . . . , vn)′,

U = (u1, . . . , un)′

G = diag(g′(u′
1γ), . . . , g′(u′

nγ))

S =
1

n

n∑

t=1

sin(φt − g(u′
tγ))

C =
1

n

n∑

t=1

cos(φt − g(u′
tγ))

R = (S2 + C2)1/2.

In the above, variables have the following dimensions: v is a n × 1 vector, G is a

n × n matrix; while S, C, and R are scalars. The function, g′(·) is defined to be the

derivative of the link function and not the transpose. Next, the MLEs are found by

solving the following equations,

U ′Gv = 0 (3.2.26)

R sin(γ̂0) = S, (3.2.27)

R cos(γ̂0) = C, (3.2.28)

A(κ̂) = R (3.2.29)

where A(κ) = I1(κ)/I0(κ). Fisher and Lee describe an iterative procedure for finding

a solution to these equations. They also noted that centering the individual columns

of U around their means will optimize the numeric calculations. We begin with an
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initial value for γ̂ and calculate values for S, C, and R from the above equations. An

updated value of γ̂, denoted by γ̂∗ is then found by solving the following equation for

γ̂∗,

(U ′G2U)(γ̂∗ − γ̂) = U ′G2y (3.2.30)

where y = (y1, . . . , yn)′ and yt = vt

[A(κ̂)g′(u′
tγ̂)]

. We also find an updated estimate for

γ0 at each iteration by solving γ0 = tan−1(S/C) and κ from A(κ). The updated

estimate of γ̂∗ is recursively placed back into the formulas until a convergence criteria

is achieved such as a set number of iterations or until the iterative values differ by

less than some pre-defined amount.

Fisher and Lee also give us a solution to find the large sample asymptotic variance

of the estimated coefficient vector,

var(γ̂) =
1

κ̂A(κ̂)

{
(
U ′G2U

)−1
+

(U ′G2U)
−1

U ′gg′U (U ′G2U)
−1

(
n − g′U (U ′G2U)−1 U ′g

)
}

,

which will allow us to draw inferences on our γ’s where g is a vector whose elements

are the diagonal elements of G. They also describe the asymptotic variance for γ̂0

and κ̂ to be equal to 1/(nA′(k̂)) and [2(n − q)κ̂A(κ̂)]
1
2 , respectively where A′(κ) is

the derivative of the ratio of Bessel functions with respect to κ̂. The variance of the

asymptotic normal limiting distribution of the Von Mises is 1/κ [9].

This now provides us with estimates for out model parameters including the phase

regression coefficients, γ, and their variances. We can then use a large sample normal
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approximation to test the hypothesis, H0: γm = 0 verses H1: γm 6= 0 using the con-

structed test statistics, γ̂m/
√

var(γ̂m). Alternatively one could set up linear contrast

hypothesis tests and obtain the −2 log of the ratio of the unrestricted likelihood over

the restricted and use the asymptotic χ2
w distribution to make inferences.
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Simulations

We generated data to simulate activation in a voxel which is similar to that observed

from a bilateral finger tapping fMRI block design experiment as described in the next

Chapter [17]. The simulated time series consisted of n = 256 points where the

true values for the data are known before random noise according to a pre-specified

distribution is added.

Simulated fMRI data is constructed according to a general non-linear model as

described by Rowe and Logan (2005) which for the magnitude consists of an intercept

β0; a time trend coefficient β1; and a coefficient β2 for a reference function, related to

a block experimental design [18]. We also include regression coefficients on our phase

change which consists of γ0, γ1, and γ2. These specified γ’s are also determinant of

an intercept, trend, and a reference function. This allows the complex-valued data to

32
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have the following form,

yt = [(β0 + β1x1t + β2x2t) cos(θt) + ηRt] + i [(β0 + β1x1t + β2x2t) sin(θt) + ηIt](4.0.1)

where

θt = (γ0 + γ1u1t + γ3u2t) (4.0.2)

t = 1, . . . , n, and (ηRt, ηIt) ∼ N(0, I2σ
2). After creating the data we obtained the

respective phase time series by taking the four quadrant arctangent of the imaginary

component over the real component which we have previously shown to have the

complicated distribution given in Equation 3.1.2 which is normal for large SNR.

For the current simulations we looked at two basic cases for the fMRI phase time

series and fit both the standard OLS model along with the Fisher and Lee angular

model to the data. We looked at the two fits graphically and examined the parameter

estimates along with the variances of the parameter estimates for regression coeffi-

cients γ with each model. The two cases include a “control” case where there is no

“wrap-around” present and a “test” case where the issue of “wrap-around” is present,

both at equal SNR and magnitude parameters. We use the first time series to com-

pare the two models when OLS could be used with little concern and verify the Fisher

and Lee model is working properly. The latter phase time series will demonstrate to

the reader that the OLS model poorly fits the data when the stringent conditions are

not met. We will denote estimates under the unconstrained alternative hypothesis

for the OLS model to be γ̂OLS and those from the Fisher and Lee model with γ̂FL
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The first time series has an SNR=10 with the true values being (β0, β1, β2) =

(0.25, 0.008, 0.05), (γ0, γ1, γ2) = (0, 0.2, 8), and σ2 = 0.05. We obtain estimates for the

OLS model to be γ̂0OLS
= −0.011, γ̂1OLS

= 0.175, and γ̂2OLS
= 10.805. The estimates

for the Fisher and Lee angular regression are γ̂0FL
= −0.011, γ̂1FL

= 0.088, and

γ̂2FL
= 5.396. The respective variances are var(γ̂0OLS

) = 0.0001, var(γ̂1OLS
) = 0.0004,

and var(γ̂2OLS
) = 9.699 for the OLS model while they are var(γ̂0FL

) = 0.000072,

var(γ̂1FL
) = 0.0001, and var(γ̂2FL

) = 2.411 for the angular model. The OLS model

estimate σ̂2 was equal to 0.037 while the Fisher and Lee model estimate of 1/κ̂

equaled 0.0363. In Figure 4.1(a) the true phase signal is shown with the black line,

the observed time series (with noise) is plotted with cyan and the Fisher and Lee

fitted model is plotted as red. Since that the OLS and Fisher and Lee models gives

us identical curves when no “wrap-around” is present we omitted the overlapping plot

of the OLS curve. The decisions based on test the statistics for H0: γ2 = 0 vs H1:

γ2 6= 0 also agreed when using an asymptotic 5% two sided critical value of 1.96. The

test statistic values were 3.469 for the OLS model and 3.476 for the Fisher and Lee

model.

The second time series also has an SNR=10 with identical β and σ2 values as

the previous simulation but now with true values of (γ0, γ1, γ2) = (−1, 3.5, 40). We

obtained the estimates for the OLS model to be γ̂0OLS
= 0.351, γ̂1OLS

= 0.323,

and γ̂2OLS
= 17.127. The estimates for the Fisher and Lee angular regression are

γ̂0FL
= −1.012, γ̂1FL

= 2.951, and γ̂2FL
= 36.414. The respective variances are
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var(γ̂0OLS
) = 0.013, var(γ̂1OLS

) = 0.04, and var(γ̂2OLS
) = 874.597 for the OLS model

while they are var(γ̂0FL
) = .00042, var(γ̂1FL

) = 0.011, and var(γ̂2FL
) = 53.471 for the

Fisher and Lee angular model. The OLS model estimate σ̂2 was equal to 0.2997 while

the Fisher and Lee model estimate of 1/κ̂ equaled 0.1905. The decisions based on the

test statistics for H0: γ2 = 0 vs H1: γ2 6= 0 do not agree when using an asymptotic

two sided 5 % critical value of 1.96. The test statistic values were 0.579 for the OLS

model and 4.9792 for the Fisher and Lee model.

By looking at Figure 4.1(b) we can see that reference function or third column of

U has a strong correlation with the phase time series values and we would agree with

the Fisher and Lee decision that it is statistically significant. In Figure 4.1(b) the true

noiseless phase signal is shown with the black line, the simulated observed time series

(with noise) is plotted with cyan, the OLS fitted model is signified with blue, and the

Fisher and Lee fitted model is plotted as red. We see that the OLS and Fisher and

Lee models no longer give us consistent fits. The OLS model doesn’t fit the data well

and is situated between most of the observations. The estimated values for the γ’s

were much closer to the true values for the Fisher and Lee model compared with the

OLS model. Also, the variances for the Fisher and Lee estimates are much smaller

especially for γ̂2FL
which is the coefficient of primary interest. Further extending our

exploration of the γ2 estimates for both models we generated 10,000 random data

sets with the same parameter values and compared the estimates for γ2 using both

models. The sample mean for all 10,000 estimates using the Fisher and Lee model
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along with the OLS model were 32.41 and 9.64, respectively. The sample variance

for these 10,000 estimates of γ2 were 13.28 and 209.22 for the Fisher and Lee along

with the OLS model, respectively. This suggests that the Fisher and Lee angular

regression model is an improved alternative to OLS when modeling fMRI phase time

series because in has the potential for more accurate and precise estimates when

dealing with a reference function coefficient.
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Figure 4.1: Part a: True signal (Black), observed signal (Cyan), and Fisher and Lee

fitted line (Red). Part b: True signal (Black), observed signal (Cyan), OLS fitted line

(Blue), and Fisher and Lee fitted line (Red)
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Real Data Example

We now will compare the two models using actual data acquired during a sequential

bilateral finger tapping fMRI block design experiment. There are a total of 4096

voxel time series comprised of n=256 observations per voxel. These 256 observations

consists of alternating sets of 16 observations on and off. An axial slice through the

motor cortex is examined here. Scanning used a 1.5T GE Signa scanner, where 5

axial slices of 64×64 where acquired. Voxels were 3.125 × 3.125mm in plane and

5mm thick with TR=1000ms, TE=47ms, and filtering was applied to remove low

frequency and respiration noise. Before examining the phase-only data, we looked at

the magnitude-only data. The activation regions for the magnitude-only OLS model

can be seen in Figure 5.1.

If the phase-only data is to contain information regarding possible biological phe-

nomena in the brain we would like to see “phase” activations to be in similar locations
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as the “magnitude” activations. The association between magnitude-only and phase-

only time series observed by Menon for areas with large blood vessels would suggest

”phase” activations can be found in similar places as “magnitude” activations given

such blood vessels are present [14]. Any similarities between the statistics for the

magnitude-only and phase-only models would strengthen the idea that valuable in-

formation is discarded when magnitude-only data is analyzed solely.

We fit each time series with both an OLS regression and a Fisher and Lee angular

regression then compared the results. Due to the erratic nature of phase data outside

of the brain we observed an increased number of statistically significant “phase”

activations in this area with the Fisher and Lee model. These are observed with

the Fisher and Lee model and not with the OLS model because the Fisher and Lee

model is able to fit a more accurate model because of the lower SNR restriction.

These “phase” activations outside the brain are obviously not due to any biological

phenomena but solely the result of a more robust model fit.

An issue which arises when implementing the Fisher and Lee model with our given

link function is convergence of the γ estimates for a small number of voxel time series.

When a large concentration of the points in a given series are near ±π/2, the limits

of our arctangent function, the Fisher and Lee model does not always to converge.

However, this issue is easily corrected by subtracting the angular mean from the entire

series for those particular voxels before fitting with the Fisher and Lee method. The

investigator is then able to obtain estimates and make inferences using this improved
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Figure 5.1: Part a shows the unthresholded OLS test statistics for H0: β2 = 0 using

the magnitude-only data. Part b shows the thresholded statistics
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Figure 5.2: Actual acquired fMRI phase time series (Cyan), OLS fitted values (Blue),

along with Fisher and Lee fitted values (Red).

model. An example which shows the robustness of the Fisher and Lee model can be

seen in Figure 5.2 where the observed phase time series from an actual experimental

voxel is shown in cyan while the fitted series for the OLS along with the Fisher and

Lee models are shown with blue and red, respectively. It is easily seen that the Fisher

and Lee angular regression accurately models the large “spikes” in the data during

the finger tapping task and stays within the boundaries of −π and π. Yet, the OLS

fit doesn’t accurately model the correct intensity of the “spikes” and actually has

fitted values below the range of −π. It should be noted that this figure is truly a

three dimensional cylinder instead of a two dimensional plot where the “spikes” are

observed jittering around the ±π boundary. In other words, the plot takes the long

way around the cylinder to connect points.
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Since we are interested in possible associations between the phase-only data and

a pre-defined reference function we constructed large sample asymptotic z-values to

make inference about γ2. We monitored these statistics for all 4096 voxels in both

the OLS and the Fisher and Lee models. In Figures 5.3(a) and 5.3(b) we show the

unthresholded statistics map for both OLS and the Fisher and Lee models. We see

the statistics within the brain appear to agree almost identically because the time

series don’t exhibit large variation similar to the region outside the brain. It should

be noted that some of the phase time series on the border of the brain had angular

means near the ±π/2 value and needed to be centered to obtain convergence. After

applying a threshold that was Bonferroni corrected for multiple comparisons as de-

scribed in Logan and Rowe (2004) with 5% family wise error (FWE) rate we present

the activation maps in Figures 5.3(c) and 5.3(d) [12]. Again we see similar conclu-

sions to the OLS model with the exception of additional “phase” activations outside

the brain. Again, we attribute this to the robustness of the Fisher and Lee model

when applied to very noisy data. Since the Fisher and Lee model more accurately

characterizes troublesome data we would expect more statistical significance to be

found for the reference function coefficient, γ2. Troublesome voxels can be seen in the

brain as well as seen by Figure 5.2 which is the “yellow” voxel from within the right

side of the region. The focal positive “magnitude” activations agree with those of the

“phase” activations which would imply valuable information in the phase-only data.
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Figure 5.3: Parts a and b Shows the unthresholded OLS and Fisher and Lee test sta-

tistics for H0: γ2 = 0 using the phase-only data. Parts c and d Shows the thresholded

test statistics for both OLS and Fisher and Lee models using the same hypothesis.
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Conclusion

Modeling fMRI phase time series with OLS regression results in some troublesome

phenomena which include poor fit, incorrect parameter estimation, and inaccurate

test statistics. Most of these problem arise from the issue of “wrap-around” in the

time series. We discussed three linear-circular regression techniques and concluded

that the model proposed by Fisher and Lee (1992) was the best choice for the problem

at hand. It allowed us to define a design matrix which could account for several

regressors including a linear trend and a reference function from which to make and

test hypothesis using a large sample asymptotic z statistic. We were able to implement

a numeric algorithm given by Fisher and Lee to obtain our coefficient estimates along

with the variances of the coefficient estimate and thus test hypotheses.

Simulations were performed for both a “control” case with no “wrap-around” and

a “test” case with “wrap-around” present. In the case of no “wrap-around” we found
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that the fitted line for the Fisher and Lee model was nearly identical to that of the

OLS model. The test statistics also were very similar and the conclusion for each

agreed. This would imply the models are equivalent under these conditions. In the

generated time series where “wrap-around” was present we noted that the estimates

for the Fisher and Lee model were much closer to the true values compared with the

OLS model. Also, the test statistics for the Fisher and Lee model differed from those

for the OLS model and led to different conclusions with respect to γ2 for the case

with “wrap-around.” We also showed during our second set of simulations that the

γ2 estimates were more accurate and precise when we compared the Fisher and Lee

model to the OLS model for the 10,000 simulated phase-only data sets created with

the same parameters. This should give the reader confidence in implementing this

model when the data contains “wrap-around.”

The actual phase time series we presented solidified our findings that the Fisher and

Lee model is an excellent choice for fitting with fMRI phase-only data. We showed

a specific voxel example where OLS was unable to match the modeling accuracy of

the Fisher and Lee model and actually contained fitted values not consistent with

the fMRI phase angular property. Fisher and Lee’s model is less suseptible to low

SNR problems and if applied to other real data examples with more noise we would

expect it to perform at as well as OLS. This newly implemented angular model does

detect temporal correlations between the phase time course and a reference function

in many of the same places the OLS model does. We suggest using the Fisher and
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Lee angular model as both a comparative tool along with a exploratory method for

fMRI phase data. It may be more beneficial for the investigator to implement this

new angular method on a voxel-wise basis where the fitted values can be compared to

both the observed data and the OLS fit allowing the appropriate modeling decision

to be made. Finally, as we have shown with simulated data the Fisher and Lee model

has less assumptions that need to be met and often times describes the data better

compared with OLS regression.
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Appendix

A.1 Joint and Marginal Distributions

We acquire complex valued data during magnetic resonance imaging (MRI) [17].

For notational purpose we will denote yR to be real component and yI to be the

imaginary component in a voxel at particular time. We also assume each component

is independently normally distributed such that yR = a + ηR and yI = b + ηI where

ηR and ηI ∼ N(0, σ2). Defining a and b to be ρ cos(θ) and ρ sin(θ), respectively.

We need to write out the joint distribution of yR and yI ,

f(yR, yI) = (2πσ2)−1e−
[yR−ρ cos(θ)]2−[yI−ρ sin(θ)]2

2σ2 (A.1.1)

and define our magnitude, r =
√

y2
R + y2

I , and our phase, φ = tan−1
(

yI

yR

)
. The

following Figure A.1 is a 3D histogram from random samples of the joint distribution
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of the magnitude and the phase for an SNR of 0.5, σ2 = 0.05, ρ = 0.5.

We define tan−1(·) as the four quadrant version. We now observe yR = r cos(φ)

and yI = r sin(φ) and the Jacobian of the transformation to be r.

Looking at the numerator of the exponent we substitute for yR and yI then expand

the squares,

[yR − ρ cos(θ)]2 = [r cos(φ) − ρ cos(θ)]2

= r2 cos2(φ) − 2rρ cos(φ) cos(θ) + ρ2 cos2(θ)

[yI − ρ sin(θ)]2 = [r sin(φ) − ρ sin(θ)]2

= r2 sin2(φ) − 2rρ sin(φ) sin(θ) + ρ2 sin2(θ)

then adding them together,

= r2
[
cos2(φ) + sin2(φ)

]
− 2rρ [cos(φ) cos(θ) + sin(φ) sin(θ)] + ρ2

[
cos2(θ) + sin2(θ)

]

= r2 + ρ2 − 2rρ [cos(φ) cos(θ) + sin(φ) sin(θ)] . (A.1.2)

Proceeding with the transformation,

f(r, φ) = (2πσ2)−1re−
r2+ρ2−2rρ(cos(φ) cos(θ)+sin(φ) sin(θ))

2σ2

= (2πσ2)−1re
−r2−ρ2

2σ2 e
−2rρ(cos(φ) cos(θ)+sin(φ) sin(θ))

2σ2 . (A.1.3)

Now that we have the joint distribution of r and φ we will obtain their marginal

distributions. First, we will look at the marginal distribution of the magnitude, r.

f(r) =
r

σ2
e

−r2−ρ2

2σ2

∫ 2π

φ=0

1

2π
e

−2rρ(cos(φ) cos(θ)+sin(φ) sin(θ))

2σ2 dφ (A.1.4)



APPENDIX A. APPENDIX 49

−1.88517

−0.628789

0.627596

0.0478689
0.0947659

0.141663
0.18856

0.235457
0.0478689

0

5

10

15

20

25

30

PhasesMagnitudes

Figure A.1: 3D histogram of joint distributions
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defining α = φ − θ we get,

f(r) =
r

σ2
e−

r2+ρ2

2σ2

∫ 2π−θ

−θ

e−
rρ cos(α)

σ2 dα. (A.1.5)

Next, we integrate over our new limits and recognize the integral as a zeroth order

modified Bessel function of the first kind. This resulting PDF is known as the Ricean

distribution which is,

f(r) =
r

σ2
e−

r2+ρ2

2σ2

∫ 2π

0

e−
rρ cos(γ)

σ2 dγ (A.1.6)

=
r

σ2
e−

r2+ρ2

2σ2 I0

(rρ

σ2

)
. (A.1.7)

It is known that the limiting distribution is normal with mean ρ and variance σ2 for

large SNR or as ρ → ∞. This can be seen in Figure A.2 where the exact distribution

is plotted for the following SNRs (0, 0.2, 0.5, 1, 2.5, 5, 10).

The limiting distribution for zero SNR or ρ = 0 is Rayleigh which has the following

density function,

f(r) =
r

σ2
e−

r2

2σ2 . (A.1.8)

Nearly all fMRI analysis are done with magnitude-only data, however it is important

to explore the phase distribution because it contains the other half of the data. Models

can be developed using the phase-only but first we need to derive its distribution.

Starting with the same joint distribution we must integrate out the magnitude, r.

f(φ) =
1

2πσ2
e−

ρ

2σ2

∫ ∞

0

e−
1

2σ2 (r2−2ρr cos(φ−θ))dr (A.1.9)

=
1

2πσ2
e−

ρ

2σ2 e
1

2σ2 (ρ cos(φ−θ))2
∫ ∞

0

re−
1

2σ2 (r−ρ cos(φ−θ))2dr. (A.1.10)
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Figure A.2: Ricean distribution for a variety of different SNR values left to right [0,

0.2, 0.5, 1, 2.5, 5, 10].
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Defining z2 = (r−ρ cos(φ−θ))2

σ2 we get,

f(φ) =
1

2πσ2
e−

ρ

2σ2 e
1

2σ2 (ρ cos(φ−θ))2
∫ ρ cos(φ−θ)

σ

−∞
(zσ + ρ cos(φ − θ)) e−

z2

2 dz σ

=
1

2πσ2
e−

ρ

2σ2 e
1

2σ2 (ρ cos(φ−θ))2

×

(∫ ρ cos(φ−θ)
σ

−∞
z σ2e−

z2

2 dz +

∫ ρ cos(φ−θ)
σ

−∞
σρ cos(φ − θ)e−

z2

2 dz

)

=
1

2π
e−

ρ2

2σ2 (1−cos(φ−θ)2) (A.1.11)

×
(
−e−

ρ2 cos(φ−θ)2

2σ2 +
ρ

σ
cos(φ − θ)Φ

(
ρ cos(φ − θ)

σ

))

=
e−

ρ2

2σ2

2π

(
1 +

ρ cos(φ − θ)

2πσ
e

ρ2 cos2(φ−θ)

2σ2 Φ

(
ρ cos(φ − θ)

σ

))

where Φ(·) is the cumulative density function for the standard normal distribution.

It has been shown that this distribution has a limiting normal density when SNR is

large or ρ → ∞ with mean θ and variance
(

σ
ρ

)2

[17]. The following Figure A.3 shows

the exact phase distribution for the following SNR values (0, 0.2, 0.5, 1, 2.5, 5), notice

the distribution limiting to a normal with θ = π
6
.

A.2 Conditional Distribution

We will show and verify that the conditional distribution of the phase is a general

Von Mises (Circular Normal) distribution. To derive the conditional distribution we

need both the joint distribution, f(φ, r) and the marginal, f(r) which were derived

by Rowe and Logan (2004).

f(φ, r) = (2πσ2)−1re−
r2+ρ2

2σ2 e−
rρ cos(φ−θ)

σ2 (A.2.12)
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Figure A.3: Phase distribution for a variety of different SNR values from lowest peak

to highest [0, 0.2, 0.5, 1, 2.5, 5].
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We set σ2 = 1
κ

to obtain a more standard notation and get,

f(φ, r) =

(
2π

κ

)−1

re−
(r2+ρ2)κ

2 erρκ cos(φ−θ). (A.2.13)

By definition of conditional distributions we need to divide by the marginal distrib-

ution of r

f(φ|r) =
1
2π

e−
κ
2
(r2−2ρr cos(φ−θ)+ρ2)

re−
κ
2
(r2+ρ2)I0(rρκ)

=
e

2κ∗
2

cos(φ−θ)

2πI0(κ∗)
. (A.2.14)

where κ∗ = rρκ. This derived conditional distribution known distribution of a Von

Mises (Circular Normal) with mean θ and concentration of rρκ. [9]

A.3 Linear Model and Hypothesis

We can characterize both the magnitude and phase as a linear model and construct

generalized linear hypothesis tests. The models can be written as

φ = Uγ + δ, (A.3.15)

where δ ∼ N(0, Inσ2). The likelihood function of (γ, σ2) is given by

L(γ, σ2) = (2πσ2)−
n
2 e−

(φ−Uγ)′(φ−Uγ)

2σ2 . (A.3.16)

The maximum likelihood estimate (MLE) for γ can be found as follows,

log L = −n

2
log(2πσ2) − (φ − Uγ)′(φ − Uγ)

2σ2
(A.3.17)
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∂ log L

∂γ
|γ=γ̂ = − 1

2σ2
(−2Uφ + 2U ′Uγ̂) (A.3.18)

= 0 (A.3.19)

which implies

γ̂ = (U ′U)
−1

U ′φ. (A.3.20)

The MLE for σ2 is obtained by the following,

log L = −n

2
log(2π) − n

2
log(σ2) − (φ − Uγ)′(φ − Uγ)

2σ2

(A.3.21)

∂ log L

∂σ2
|σ2=σ̂2,γ=γ̂ = − n

2σ2
+

(φ − Uγ)′(φ − Uγ)

2(σ2)2
= 0 (A.3.22)

σ̂2 =
(φ − Uγ̂)′(φ − Uγ̂)

n
. (A.3.23)

We are interested in constructing linear hypothesis dealing with the γ parameters so

we use a likelihood ratio contrast test with the following null hypothesis, Dγ = b. To

account for this parameter restriction we will need to use a Lagrangian multiplier.

The estimates which maximize the unrestricted likelihood the are the usual MLE’s.

We need to minimize the following function to obtain estimates which maximize the

restricted likelihood,

S(γ, λ) = (φ − Uγ)′(φ − Uγ) + 2λ′(Dγ − b). (A.3.24)

We now proceed with the respective derivatives,

∂S(γ, λ)

∂γ
|γ=γ̃,λ=λ̃,σ2=σ̃2 = −2U ′φ + 2U ′Uγ̃ + 2Dλ̃
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γ̃ = γ̂ − (U ′U)−1Dλ̃ (A.3.25)

∂S(γ, λ)

∂λ
|γ=γ̃,λ=λ̃,σ2=σ̃2 = 2D′γ̂ − 2b. (A.3.26)

The implication from the last line is as follows,

b = Dγ̃ (A.3.27)

= D′(γ̂ − (U ′U)−1Dλ̃′) (A.3.28)

b − D′γ̂ = −D′(U ′U)−1Dλ̃ (A.3.29)

λ̃′ = (D′(U ′U)−1D)−1(D′γ̂ − b)). (A.3.30)

By setting b = 0 we get

λ̃′ = (D′(U ′U)−1D)−1D′γ̂. (A.3.31)

Substituting this into our estimate of γ we obtain,

γ̃ = γ̂ − (U ′U)−1D(D′(U ′U)−1D)−1D′γ̂ (A.3.32)

=
(
I − (U ′U)−1D(D′(U ′U)−1D)−1D′) γ̂ (A.3.33)

= Ψγ̂, (A.3.34)

where Ψ = I − (U ′U)−1D′(D(U ′U)−1D′)−1D. The only remaining estimate we need

for the restricted likelihood is σ̃2 stated below,

σ̃2 =
(φ − Uγ̃)′(φ − Uγ̃)

n
. (A.3.35)

To complete our likelihood ratio test we must take the ratio of the restricted likelihood

divided by the unrestricted likelihood as follows,
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Λ =
σ̃2−

n
2 e

− (φ−Uγ̃)′(φ−Uγ̃)/2

(φ−Uγ̃)′(φ−Uγ̃)/n

σ̂2−
n
2 e

− (φ−Uγ̂)′(φ−Uγ̂)/2

(φ−Uγ̂)′(φ−Uγ̂)/n

(A.3.36)

=
(σ̃2) −n

2

(σ̂2) −n
2

(A.3.37)

−2 log(Λ) = n log

(
σ̃2

σ̂2

)
. (A.3.38)

where −2 log(Λ) has an asymptotic χ2
w distribution, where w is the full row rank of

D.
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