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Abstract:

It is well known that fMRI voxel time series
are complex-valued with real and imaginary parts.
The complex-valued voxel time series are trans-
formed from real-imaginary rectangular coordinates
to equivalent information magnitude-phase polar co-
ordinates. Magnitude-only data models that discard
the phase portion of the data have dominated fMRI
analysis. However these analyzes discard half of the
data which may contain valuable biologic informa-
tion about the vasculature. When phase-only time
series defined within plus and minus pi that discard
the magnitude portion of the data have been an-
alyzed, ordinary least squares regression has been
the technique of choice. We have explored an angu-
lar regression alternative to the OLS model which
will account for the angular response of the phase.
We found an improvement in parameter estima-
tion along with modeling for the angular regression
method in experimentally acquired data. Finally, we
look at a map of statistics relating association of the
observed voxel phase time courses with a reference
function in our acquired data and show the possible
detection of biological information in the generally
discarded phase.

1. Introduction

Functional magnetic resonance imaging (fMRI) is
an invaluable tool used to investigate biological phe-
nomena in both animals and humans. However, the
results derived from fMRI crucially depend on the
model used to analyze the data. It is well known that
voxel time courses are complex-valued (Haacke et al.,
1999). Traditionally the real-imaginary voxel mea-
surements are converted to informationally equiva-
lent magnitude-phase measurements and the phase
portion of the data is discarded. Then, only the
magnitude portion of the data is analyzed for exper-
imental or task related changes (Bandettini et al.,
1993; Rowe and Logan, 2005). More recently, mod-
els that determine task related magnitude changes
within the complex-valued data have shown im-
provements over those that examine magnitude-only
data (Rowe and Logan, 2004; Rowe, 2005). How-
ever, the just mentioned methods look for magnitude

activations whether they be in magnitude-only data
or in complex data. There is evidence that the phase
portion of the data contains biological information
not contained in the magnitude portion of the data
indicative of vascularization (Menon, 2002; Nencka
and Rowe, 2005) or of possible direct detection of
neuronal firing (Borduka et al., 1999).

When modeling either magnitude-only or phase-
only data, an ordinary least squares (OLS) regres-
sion model is the current analysis standard. We
aim to improve modeling of the generally discarded
phase portion of the data by using a more appropri-
ate model than OLS. Specifically, we will implement
an angular regression model developed by Fisher and
Lee (1992) along with the standard OLS model on
both simulated and actual experimental fMRI time
series data. We will lay the framework for mak-
ing inferences about possible experimental task re-
lated phase changes. In doing this we will have ac-
counted for the angular nature of the response and
provided an improvement in dealing with the phase-
wrap around issue. In the past the only way to ac-
count for phase-wrap in the data was to artifically
unwrap it and proceed with an OLS analysis.

2. Background

As previously mentioned, the functional model of
the brain and distributional specifications are essen-
tial for fMRI analysis results. It is well established
that the real and imaginary parts of the complex-
valued voxel observations are normally distributed
(Gudbjartsson and Patz, 1995; Haacke et al., 1999)
provided the dominant noise is scanner related.

2.1 Real-Imaginary Data

The real and imaginary components (yR, yI) of
the complex-valued data in a voxel at a particular
time point have been described as

yR = ρ cos θ + ηR

yI = ρ sin θ + ηI (2.1)

where (ρ, θ) are the magnitude and phase from a
conversion to polar coordinates and (ηR, ηI) are the
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real and imaginary noise components (Rowe and Lo-
gan, 2004). Additionally, the real and imaginary
noise has been well characterized by a normal dis-
tribution with mean zero and covariance matrix Σ
denoted (ηR, ηI)′ ∼ N (0, Σ) where Σ = σ2I2. The
joint distribution of (yR, yI)′ is bivariate normal with
mean (ρ cos θ, ρ sin θ)′ and covariance matrix Σ. The
above description is for a single time point and a t
subscript for temporally ordered observations will be
omitted until specifically noted.

2.2 Magnitude-Phase Data

The above mentioned complex-valued data is
commonly transformed into magnitude and phase
polar coordinates r =

√
y2

R + y2
I and φ =

tan−1(yI/yR) with Jacobian r. It is important to
understand that the previous distributional speci-
fications were on the observed real and imaginary
parts of the data and not on the magnitude or phase
that the data are transformed to. The derivation of
the joint distribution of r and φ is presented in Rowe
and Logan (2004) and has the form

p(r, φ) =
r

2πσ2
e−

1
2σ2 [r2+ρ2−2ρr cos(φ−θ)](2.2)

where r, ρ, σ > 0 and −π < φ, θ ≤ π.

2.3 Magnitude-Only Data

The above joint magnitude and phase distribution
is then marginalized when considering magnitude-
only data. The phase data is integrated out or dis-
carded and the resulting magnitude distribution is
Ricean and given by

p(r) =
r

σ2
e−

r2+ρ2

2σ2

∫ 2π

0

e−
rρ

σ2 cos(α)dα (2.3)

where r, ρ, σ > 0. The integral term is generally de-
noted by I0(rρ/σ2), a zeroth order modified Bessel
function of the first kind. If we define signal-to-noise
ratio (SNR) to be ρ/σ we see that the magnitude
is Rayleigh distributed for SNR=0. If the SNR is
“large,” say greater than 10, then the Ricean distri-
bution approaches the normal distribution

p(r) = (2πσ2)−1/2e−
(r−ρ)2

2σ2 (2.4)

with population mean magnitude ρ and variance σ2

where r, ρ, σ > 0. There has been interest in deter-
mining SNR cut-off values in which the Rayleigh and
normal distributional approximations hold (Rowe,
2005). But even if these cut-off values are known
the voxel-wise SNR is not known a priori and may
fall within them. An alternative approximation to

the Ricean distribution valid for any SNR has been
explored (Rowe, 2005) that utilizes a Taylor series
expansion for the cosine in the exponent of the inte-
gral term.

2.4 Phase-Only Data

Similar to the magnitude-only case, the marginal
distribution for the phase can be derived to be

p(φ) = e
− ρ2

2σ2

2π

[
1 + ρ

σ

√
2π cos(φ − θ0)e

ρ2 cos2(φ−θ0 )
2σ2

×
∫ ρ cos(φ−θ0)

σ

z=−∞
e−z2/2
√

2π
dz

]

(2.5)
where −π < φ, θ ≤ π and ρ, σ > 0. Parallel with the
magnitude, the marginal distribution of the phase
approaches the normal distribution

p(φ) = [2π (σ/ρ)2]−1/2e
− (φ−θ)2

2(σ/ρ)2 (2.6)

with mean θ and variance (σ/ρ)2 for large SNR. Al-
though OLS can be applied to any set of data with-
out a distributional specification, this limiting distri-
bution allows not only OLS to be used to fit a model
to this data but also hypotheses to be tested. How-
ever, phase data lies within an interval of (−π, π]
which leaves it vulnerable to phase-wrap and can
cause the OLS model fit to be questionable as will be
shown later. We define phase-wrap to be the event
of successive phase measurement points crossing a
|π| boundary. Phase-wrap is detected by differenc-
ing pairs of temporally adjacent phase values and
defining a phase-wrap when the difference is greater
than |π|.

Introducing the subscript, t, for each time point
combined with the limiting distribution we are able
to model the phase

φt = tan−1

[
ρt sin(θt) + ηIt

ρt cos(θt) + ηRt

]
, t = 1, . . . , n, (2.7)

with a normal distribution and an OLS model. One
can see that the argument of the four quadrant in-
verse tangent is the ratio of noncentral normal vari-
ates. The ratio of noncentral normal variates has
been studied by Marsaglia (1965) who showed that
it can be symmetric, asymmetric, unimodal or bi-
modal.

3. Models

As previously noted, phase-only time series data
is rarely analyzed in fMRI, because it is sensitive
to physiologic noise. It has been argued that respi-
ration causes movement of internal organs which in
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turn alters the B-field and thus the phase. When
fMRI phase time seried data is analyzed, the OLS
model is utilized (Borduka et al., 1999). Before an
OLS model can be fit, the time series needs to be ar-
tificially unwrapped. The process of artificially un-
wrapping the data and then fitting an OLS model to
it will be described shortly. Menon (2002) looked at
phase time series after unwrapping and noticed an
approximate linear correlation with the magnitude
data which he believed was attributed to large blood
vessels. The OLS model will be briefly summarized
then an alternative model will be introduced along
with its advantages and disadvantages.

3.1 Ordinary Least Squares Regression

The OLS phase-only data model at time t for an
arbitrary voxel can be written as

φt = u′
tγ + δt, (3.1)

where φt is the observed phase angle measurements,
u′

t is a specific row of a design matrix U , an exam-
ple of which is presented in Eqn. 3.2, γ are the fixed
but unknown phase regression coefficients, and δt

is the measurement error. This measurement error
is assumed to originate from the normal distribu-
tion N (0, τ2

t ) where τ2
t = σ2/ρ2

t . For our example
that will be presented later U = (u1, ..., un)′ is con-
structed to have three covariates,

U =




1 1 1
1 2 1
...

...
...

1 17 −1
...

...
...

1 256 −1




. (3.2)

The above design matrix includes a column of 1’s to
model the intercept, a column of counting numbers
to account for a possible linear trend over time, and
a third column with alternating sets of 16 1’s and
−1’s to characterize a task related reference func-
tion. Sets of 16 are used in our matrix to coincide
with both our simulated and acquired experimental
data which have stimulus lengths of 16 observations.

The SNR at time t is defined to be ρt/σ =
(β0+β1t+β2u2t)/σ but β1t+β2u2t is generally very
small when compared to β0 within the brain and zero
outside the brain. The approximation ρt/σ ≈ β0/σ
is utilized and the variance in a given voxel becomes
constant over time. When the phase-only data is de-
scribed with the large SNR OLS model, hypotheses
can be tested using a d× (q + 1) phase contrast ma-
trix D where d is the number of constraints or rows

of D and q is the number of non baseline regressors.
Inferences can be drawn using standard linear con-
trast tests H0: Dγ = 0 vs H1: Dγ 6= 0. This testing
procedure leads to the unrestricted, (γ̂, τ̂2), and re-
stricted, (γ̃, τ̃2), maximum likelihood estimates for
γ and τ2 having the usual form. Then the gener-
alized likelihood ratio statistic −2 logλ for testing
task related phase changes is formed. This statistic
has a large sample χ2 distribution with d degrees of
freedom which is the difference in the number of con-
straints between the alternative and null hypotheses.
The degrees of freedom d is also equal to the full row
rank of D. We also may simplify the large sample
χ2 statistic using algebra to arrive at an exact F
statistic or t statistic provided d = 1.

The angular response of the phase-only OLS
model can cause modeling problems at the phase-
wrap junction if not accounted for properly, thus re-
sulting in poor parameter estimation and incorrect
inferences. When a combination of the three follow-
ing conditions are valid we can describe the phase
data with little concern using our standard OLS re-
gression model. These conditions are 1) a large SNR,
2) our baseline angle, γ0, is not near either the upper
boundary of π or the lower boundary of −π, and 3)
the linear trend is small enough that the data does
not rise or fall beyond π and −π. The large SNR as-
sumption makes the probability of a large difference
between successive measurements very small.

However, in real acquired experimental fMRI data
the SNR and mean phase in voxels varies greatly
over space. The above stringent conditions are, in
general, not met across an image. Often within an
fMRI data set phase angles are observed close to ±π.
As previously mentioned, the method generally used
to deal with this issue is “unwrapping.” Unwrapping
is the process of beginning with the first observation,
proceeding through the time series and flagging an
observation in which the next point in the time series
has an absolute difference greater than or equal to a
predefined value, generally π, then shifting the rest
of the time series by ±2π. This process is repeated
to the end of the time series. However, when the
assumption of high SNR becomes suspect, the model
fails and the investigator needs another model.

In many instances there is no phase-wrap and sim-
ply fitting an OLS regression line to the data is suf-
ficient. We implement an angular model procedure
to deal with the angular nature of the response will
allow us to relax the large SNR requirement.
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3.2 Linear-Circular Regression

Fitting an OLS regression model to artificially un-
wrapped data may not be an ideal method and is
especially poor for low and moderate SNR data. We
adopt the angular regression model by Fisher and
Lee (1992) for fMRI phase data.

The von Mises distribution, also known as the cir-
cular normal distribution is the underlying distribu-
tion in angular models (Jammalamadaka and Sen-
Gupta, 2001). This distribution specifically deals
with random variables on the interval of (−π, π].
The general von Mises distribution is the conditional
distribution of the phase given the magnitude. The
von Mises distribution is found by dividing the joint
distribution p(φ, r) in Eqn. 2.2 by the marginal p(r)
in Eqn. 2.3 as

p(φ|r) =
eκ cos(φ−θ)

2πI0(κ)
(3.3)

where κ = rρ/σ2, −π ≤ φ, θ < π, and 0 ≤ κ < ∞.
This derived conditional distribution is referred to as
a von Mises with mean θ and concentration κ (Jam-
malamadaka and SenGupta, 2001). Again I0(·) is
the zeroth order modified Bessel function of the first
kind. The von Mises distribution has a limiting nor-
mal distribution with mean θ and variance 1/κ when
κ is large. The linear-circular regression models uti-
lize the von Mises distribution conditional upon the
population and sample magnitudes being unity.

We adopt the model by Fisher and Lee (1992)
that allows for multiple predictor variables and re-
laxes the need for distributional assumptions on the
design matrix. Their model assumes the angular
observations φ1, . . . , φn are temporally independent
von Mises distributed with constant concentration
parameter κ. Each φt originates from a von Mises
distribution with mean θt and concentration κ. The
fixed concentration parameter model is

θt = γ0 + g(w′
tγ) (3.4)

where the design matrix W with the tth row w′
t =

(w1t, . . . , w(q+1)t) is comprised of all columns except
the first in the design matrix U as defined in the pre-
vious section. Of course, W can include additional
covariates, but we will focus on our particular choice.
There is no need to include the baseline column in
W , because the intercept is already estimated within
the model. The link function g(·) has the purpose of
mapping its argument to be in −π to π. The use of a
link function eliminates the non-identifiability prob-
lem of MLEs that is present in the Gould model.
One possible link function that given by Fisher and

Lee that we will use is

g(·) = 2 tan−1 (sgn(·) |·|ν) (3.5)

where sgn(·) is the operator that returns the sign
of its argument, tan−1(·) is a two quadrant inverse
tangent, and the transformation parameter ν can
be estimated from the data similar to the Box-Cox
transformation (Box and Cox, 1964; Fisher and Lee,
1992).

Fisher and Lee give us equations to obtain param-
eter estimates and draw inferences using the model
in Eq. 3.4 with the link function given in Eq. 3.5,
where ν = 1. Of course, the link function can be
chosen differently, but we will illustrate fitting the
Fisher and Lee model with this particular choice.
First, we define the natural log likelihood, denoted
logL

logL = −n log 2π − n log I0(κ)

+κ

n∑

t=1

cos(φt − γ0 − g(w′
tγ)). (3.6)

Second, the authors define the following

vt = sin(φt − γ0 − g(w′
tγ)),

v = (v1, . . . , vn)′,
W = (w1, . . . , wn)′

G = diag(g′(w′
1γ), . . . , g′(w′

nγ))

S =
1
n

n∑

t=1

sin(φt − g(w′
tγ))

C =
1
n

n∑

t=1

cos(φt − g(w′
tγ))

R = (S2 + C2)1/2.

In the above v is an n×1 vector and G is a n×n ma-
trix while S, C, and R are scalars. The function g′(·)
is defined to be the derivative of the link function
which in our example is g′(w′

tγ) = 2/[1 + (w′
tγ)2].

The MLEs are found by solving the following equa-
tions

W ′Gv = 0,

tan(γ̂0) = S/C,

A(κ̂) = R

where A(κ̂) = I1(κ̂)/I0(κ̂). The second equation
above involving the four quadrant tangent of γ̂0 is
found by utilizing the trigonometric addition for-
mula for γ0−(φt−g(w′

tγ)) in the log likelihood before
differentiation. We begin with an initial value for γ̂
and calculate values for S, C, and R from the above

319

ASA Biometrics Section (including ENAR and WNAR)



equations. An updated value of γ̂, denoted by γ̂∗ is
then found by solving the following equation for γ̂∗,

(W ′G2W )(γ̂∗ − γ̂) = W ′G2y (3.7)

where y = (y1, . . . , yn)′ and yt = vt/ [A(κ̂)g′(w′
tγ̂)].

We also find an updated estimate for γ0 at each itera-
tion by computing γ̂0 from the four quadrant inverse
tangent tan−1(S/C) and κ from A(κ). The updated
estimate of γ̂∗ is recursively placed back into formu-
las for a set number of iterations or until the iterative
values differ by less than some pre-defined amount.
When it is a priori known that κ is “large” then the
approximation

A(κ) =
(

1 − 1
2κ

− 1
8κ

− · · ·
)

can be utilized while if it is a priori known that κ is
“small” then the approximation

A(κ) =
κ

2

(
1 − κ2

8
+

κ4

48
− · · ·

)

can be utilized (Jammalamadaka and SenGupta,
2001). When κ is above 1.25, the large κ approx-
imation works well and one can simply approximate
κ̂ by

κ̂ =
1 +

√
3 − 2R

4(1 − R)
(3.8)

while if κ is below .75, then one can simply approx-
imate κ̂ by

κ̂ = 2R . (3.9)

for intermediate values, a simple average works well.
Fisher and Lee also give the large sample variance

of the estimated coefficient vector,

var(γ̂) =
1

κ̂A(κ̂)

{(
W ′G2W

)−1 +

(
W ′G2W

)−1
W ′gg′W

(
W ′G2W

)−1

(
n − g′W (W ′G2W )−1

W ′g
)



 ,

which allows inferences on our γ’s where g is a vector
whose elements are the diagonal elements of G. They
also describe the large sample variance for γ̂0 and κ̂
to be [(n − q)κ̂A(κ̂)]

1
2 and 1/(nA′(k̂)), respectively,

where A′(κ) = 1 − A(κ)/κ − A2(κ) is the derivative
of the ratio of the Bessel functions with respect to κ.
The variance of the large sample normal limiting dis-
tribution of the von Mises is 1/κ (Jammalamadaka
and SenGupta, 2001).

The fitted phase time course can then be plotted
to compare to the observed time course utilizing

φ̂t = tan−1

[
sin(γ̂0 + g(w′

tγ̂))
cos(γ̂0 + g(w′

tγ̂))

]

because, although g(·) is within −π to π, the ad-
dition of γ̂0 may shift it out of this interval. We
can then use a normal approximation to test the
hypothesis, H0: γm = 0 verses H1: γm 6= 0 us-
ing the constructed test statistics, γ̂m/

√
var(γ̂m).

Alternatively, one could set up linear contrast hy-
pothesis tests and obtain the likelihood ratio statis-
tic −2 log λ, then use the large sample χ2

d distribu-
tion to draw inferences.

4. Experimental Data

A bilateral sequential finger tapping experiment
was performed in a block design with 16s off followed
by eight epochs of 16s on and 16s off. Scanning was
performed using a 1.5T GE Signa in which 5 axial
slices of size 96 × 96 were acquired with a gradi-
ent echo pulse sequence having a FA = 90◦ and a
TE = 47ms. In image reconstruction, the acquired
data was zero filled to 128 × 128. After Fourier im-
age reconstruction, each voxel has dimensions in mm
of 1.5625× 1.5625× 5. Observations were taken ev-
ery TR= 1000ms so that there are 272 in each voxel.
Data from a single axial slice through the sensorimo-
tor cortex was selected for analysis. Pre-processing
included the removal of the first three points to omit
magnetic field equalization effects followed by the
use of an ideal 0/1 frequency filter to remove respira-
tion, scanner drift, and low frequency physiological
noise.

Before examining the phase-only data, we looked
at the magnitude-only data. An OLS model is
fit to the magnitude-only time series in each voxel
with design matrix X = U as previously described
and magnitude-only regression coefficients β =
(β0, β1, β2)′. We computed activation t-statistics in
each voxel testing the hypothesis of the coefficient
corresponding to the reference function in the last
column of X being zero. The bilateral activation
in the motor cortex regions for the magnitude-only
OLS model can be seen in Fig. 1a along with the ac-
tivation along the midline in the supplemental motor
area. In Fig. 1a are t-statistics with a threshold that
was Bonferroni corrected for multiple comparisons,
as described in Logan and Rowe (2004), at a 5%
family wise error (FWE) rate.

If the phase-only data contains no information re-
garding possible biological phenomena in the brain
we would anticipate seemingly random activations
above the threshold. If the phase-only data is to con-
tain information regarding possible biological phe-
nomena in the brain we would anticipate seeing
phase activations with some sort of pattern. One
possible pattern is to be in similar locations as the
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magnitude-only activations. The association be-
tween magnitude-only and phase-only time series ob-
served by Menon for areas with large blood vessels
would suggest phase activations can be found in sim-
ilar places as magnitude activations, given that such
blood vessels are present (Menon, 2002; Nencka and
Rowe, 2005). Any similarities between the statis-
tics for the magnitude-only and phase-only models
would strengthen the idea that valuable temporal
phase information is discarded when magnitude-only
data is analyzed.

Although as seen in Fig. 1 b-d the three models
produce similar thresholded phase-only activation
maps with focal positively associated voxel time se-
ries within the primary motor cortex which is where
the difuse magnitude-only activations were found.
Even though the three phase-only models produce
similar activation maps, the parameter estimates are
radically different. As seen in Fig. 2a-c, the es-
timated baseline phase angles, the γ0’s are similar
within the brain for the OLS model in Fig. 2a, the
unwrapped OLS model in Fig. 2b, and the Fisher-
Lee model in Fig. 2c, except for about a dozen vox-
els with the OLS model along two vertical waivey
lines bordering a baseline ±π transition, but are all
very diferent outside the brain. In Fig. 2d-f, the
linear trend coefficients, the γ1’s are similar within
the brain for the OLS model in Fig. 2d, the un-
wrapped OLS model in Fig. 2e, and the Fisher-Lee
model in Fig. 2f, except for a few dozen voxels with
the OLS model along two waivey lines of obviously
different values which are along a baseline ±π tran-
sition, but are all very diferent outside the brain.
In Fig. 2g-i, the reference function coefficients, the
γ2’s are similar within the brain for the OLS model
in Fig. 2g, the unwrapped OLS model in Fig. 2h,
and the Fisher-Lee model in Fig. 2i, except for a few
dozen voxels with the OLS model along two waivey
lines of obviously different values which are along a
baseline ±π transition, but are very diferent outside
the brain. In Fig. 2j-l the variance estimates, the
σ2’s are similar within the brain for the OLS model
in Fig. 2j, the unwrapped OLS model in Fig. 2k,
and the Fisher-Lee model in Fig. 2l, except for a few
dozen voxels with the OLS model along two waivey
lines of obviously different values which are along a
baseline ±π transition, but are very diferent outside
the brain. Further note that the variance estimate
for many voxels is lower with the Fisher-Lee model
as compared to the other two models.
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(c) UNW Phase-only
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(d) FL Phase-only

Figure 1: Phase-only thresholded activations.
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We fit each time series with two OLS regressions
(with and without unwrapping) and the Fisher-Lee
angular regression, then compared the results. The
OLS models fit the data poorly as seen by their
estimated parameter values even though the phase
activation statistics are similar. The unwrapped
OLS model performs similarly to the OLS model
within the brain with some false positives outside
the brain. Outside the brain the OLS model without
unwrapping the data does not pick up false positives.
The Fisher-Lee model performs similarly within the
brain to the OLS models and also outside the brain
with about the same small number of false positives
as with the unwrapped OLS model.

5. Conclusion

Modeling fMRI phase time series with OLS re-
gression results in some troublesome phenomena,
which include poor fit, incorrect parameter estima-
tion, and potentially inaccurate test statistics, even
after being unwrappped. Most of these problem
arise from the issue of phase-wrap in the time se-
ries. We implemented a model by Fisher and Lee
(1992). It allowed us to define a design matrix
which could account for several regressors including
a linear trend and a reference function from which
to make and test hypothesis using a large sample
asymptotic z statistic.

The actual phase time series we presented solid-
ified our findings that the Fisher-Lee model is an
excellent choice for fitting with fMRI phase-only
data. We showed a specific voxel example where
OLS was unable to match the modeling accuracy of
the Fisher-Lee model and actually contained fitted
values not consistent with the fMRI phase angular
property. Fisher and Lee’s model is less suseptible
to low SNR problems, and if applied to other real
data examples with more noise, we would expect it
to perform as well as OLS. In real fMRI data that is
of a higher resolution with smaller voxels, we expect
there to be a larger difference between the two mod-
els. This newly implemented angular model does
detect temporal correlations between the phase time
course and a reference function in many of the same
places as the OLS models.
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Figure 2: Estimated parameters for the three models.
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