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Abstract
Electroanatomical mapping is a technique used in cardiology to create a detailed 3D map of the electrical activity
in the heart. It is useful for diagnosis, treatment planning and real time guidance in cardiac ablation procedures to
treat arrhythmias like atrial fibrillation. A probabilistic machine learning model trained on a library of CT/MRI
scans of the heart can be used during electroanatomical mapping to generate a patient-specific 3D model of
the chamber being mapped. The use of probabilistic machine learning models under a Bayesian framework
provides a way to quantify uncertainty in results and provide a natural framework of interpretability of the model.
Here we introduce a Bayesian approach to surface reconstruction of cardiac chamber models from a sparse
3D point cloud data acquired during electroanatomical mapping. We show how probabilistic graphical models
trained on segmented CT/MRI data can be used to generate cardiac chamber models from few acquired locations
thereby reducing procedure time and x-ray exposure. We show how they provide insight into what the neural
network learns from the segmented CT/MRI images used to train the network, which provides explainability to
the resulting cardiac chamber models generated by the model.

1 Introduction

Electroanatomic mapping (EAM) is part of Electrophysiology
studies (EPS) which are minimally invasive procedures that are
useful for diagnosis, treatment planning and real time guidance
in cardiac ablation procedures to treat arrhythmias like atrial
fibrillation which affects millions of people in the United States.
It is estimated that over 12 million people in the United States
will be affected by atrial fibrillation by 2030 Colilla et al. (2013).
It is characterized by rapid and irregular beating of the atria (up-
per chambers of the heart) which can lead to blood clots, stroke,
heart failure and other heart-related complications. Cardiac abla-
tion is a procedure used to treat atrial fibrillation by eliminating
the heart tissue that causes the abnormal heart rhythm. EAM is
performed by an electrophysiologist prior to ablation to create
a 3D map of the heart’s electrical activity to identify the loca-
tion of the abnormal heart tissue. The electrophysiologist uses
this map to guide the catheter to the location of the abnormal
heart tissue and eliminate it using radiofrequency (RF) energy
or cryogenic energy.

During an RF ablation procedure, the electrode at the tip of the
catheter is placed in contact with the tissue causing the arrhyth-
mia, and high-frequency electrical energy is delivered to create a
localized lesion or scar. The goal of RF ablation is to disrupt the
abnormal electrical pathways in the heart causing the arrhythmia
and create a new pathway that follows the normal electrical con-
duction system of the heart, thus restoring normal heart rhythm
and reducing or eliminating the need for medication to control
the arrhythmia.

Minimizing the x-ray exposure from the fluoroscope to the pa-
tient is one of the electrophysiologist’s goals while performing
electroanatomical mapping. Using a probabilistic machine learn-
ing model in an electroanatomical mapping system can provide a
good approximation of the mapped chamber with a few acquired

locations from the mapping catheter in the chamber of interest.
This considerably reduces the time taken to map the chamber,
thus minimizing the x-ray exposure from the fluoroscope.

2 Electroanatomical mapping systems

An EAM system is a state-of-the-art medical device that is
used for navigation during cardiac ablation procedures and to
create a detailed and accurate map of the electrical activity in
a patient’s heart. The system typically consists of a computer,
high-definition monitors that are strategically positioned in front
of the electrophysiologist during the procedure, a specialized
catheter with electrodes in its distal end that captures electrical
information, and specialized software that is used to analyze
signals and create a 3D electroanatomical map of the chamber
of interest.

EAM systems vary based on the technology that is used to
capture the location of the catheter. The commonly used tech-
nologies are magnetic location tracking Gepstein et al. (1997),
impedance based location tracking and image processing Sra
et al. (2016). EAM systems that are based on magnetic location
tracking places a device under the patient table to generate a
magnetic flux which is used to locate the catheter. EAM systems
that use impedance based tracking utilizes body surface patches
to measure the impedance and locate the catheter. EAMs that use
image processing techniques tracks the catheter in fluoroscope
images to converts them to 3D location.

The high accuracy and precision of EAM systems have revolu-
tionized the diagnosis and treatment of various cardiac arrhyth-
mias. However the maps produced using modern electranatom-
ical systems do not produce anatomically accurate chamber
models when only few points are acquired. The shape produced
is representative of the points acquired and does not use any
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prior information pertaining to the shape of the chamber be-
ing mapped and may not produce an accurate anatomical model
Mukherjee et al. (2014). They only start resembling the chamber
of interest when a large number of points are acquired covering
all areas of the chamber. This is a major drawback of the cur-
rent electroanatomical mapping systems. We propose a surface
reconstruction method that uses probabilistic machine learning
models to generate a detailed anatomical model of the chamber
of interest from a few points acquired by the mapping catheter.
This will help in reducing the time taken to map the chamber
and thus reduce the x-ray exposure from the fluoroscope.

3 Method

There are four main steps involved in our approach to generate
a 3D cardiac chamber model from 3D location and electrical
information acquired by an electroanatomical mapping system.
The block diagram shown in figure 1 visualizes the information
flow in the system. The data collected by the 3D mapping system
is passed on to the Data processing step, then to the trained
Probabilistic Machine Learning Model, and the output of the
machine learning model is fed into the surface reconstruction
module in the last step to generate a patient specific cardiac
model. Each block is explained in detail in following sections.

Figure 1: Generation of 3D cardiac chamber models

3.1 Data processing

The points acquired during electroanatomical mapping are in
the coordinate space of the mapping system. The 3D location
information acquired during mapping is in a raw unstructured
format. The data is preprocessed to transform it into voxel data
Xu2 (2021) that can be fed into the machine learning model.
Voxels are the 3D equivalent of pixels in 2D images. They
are the smallest unit of a 3D image. The 3D location data is
transformed into voxel space using the following equation

v =
p − pmin

pmax − pmin
∗ n

where p is the 3D location of the point, pmin and pmax are the
minimum and maximum 3D location values defined by the field-
of-view (FOV), n is the number of voxels in each dimension and
v is the voxel location. The number of voxels in each dimension
is chosen based on the number of voxels in each dimension
of the training data used to train the machine learning model.
Mapping systems tend to match the FOV of the fluoroscope to
project 3D models onto the 2D fluoroscope image.

The next step is compute the convex hull of all acquired points.
A Delaunay 3D triangulation algorithm with an alpha value
which produces a closed surface can be used to get an alpha
shape Edelsbrunner and Mücke (1994). The alpha value is the
radius of a ball that determines whether a simplex (vertex, edge,

face or tetrahedron) in the Delaunay triangulation is part of the
alpha shape or not. An alpha value of zero results in a convex
hull. The resulting simplices of the Delaunay triangulation can
be used to estimate which voxels are inside versus outside the
alpha shape. The voxels inside are set to 1 and the voxels outside
are set to zero. Different values of alpha can be chosen to obtain
a concave hull that might produce different results, but they were
not explored as they may cause the surface to have holes with
higher values of alpha. The resulting voxels are then passed
onto the machine learning model to generate inference.

3.2 Probabilistic Machine Learning Model

Probabilistic Machine Learning models are models that use
probability theory and statistics to represent uncertainty and
variability in data and the learning processes. They can be used
for tasks such as classification, regression, clustering, anomaly
detection, generative modeling and reinforcement learning.
Unlike regular neural networks they are more interpretable.
Here they are used in the context of generative modeling.

Unlike a discriminative model which attempts to learn a bound-
ary between different kinds of data points, generative models
aim to learn the underlying structure and distribution of the data,
and then generate new data that resembles the original data.
They can capture complex and high-dimensional patterns in the
data that are difficult to model explicitly. The goal here is to
learn a representation of the chamber of interest (left atrium of
the heart). We will be using latent variable models for this pur-
pose. At the core of generative modeling is Bayesian inference,
which uses Baye’s rule to obtain the posterior distribution of the
parameters of the data model,

P(θ|D) =
P(D|θ).P(θ)

P(D)

where P(D|θ) is the data likelihood with parameters θ of the
model, P(θ) is the prior probability, and P(D) is the evidence
which can be computed as sum over all possible values of θ.
This distribution is then utilized to generate inference that can
provide insight into the learning process and the model. When
there is a large number of parameters in the model which is the
case in neural networks, the denominator term in (3.2) becomes
intractable.

This marginal likelihood is calculated using the sum and product
rule of probability. This denominator term known as evidence is
a normalizing constant which can be omitted to get the relation-
ship,

P(θ| D) ∝ P(D|θ)P(θ).

These formulas above form the core of Bayesian inference. The
posterior distribution is proportional to the product of the prior
and the likelihood. The prior distribution is the distribution of
the parameters before seeing the data. The likelihood is the
probability of the data given the parameters. The posterior
distribution is the distribution of the parameters after seeing the
data.
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In a generative model where latent variables z are a subset of
parameters θ. The following equation represents the generative
model, where x̃ is the generated data, f is a function that maps a
latent variable z to the generated data.

x̃ = f(z)

The prior distribution of the latent variable z is represented by
the equation below.

z ∼ p(z)

The prior distribution is used to sample from the latent space to
generate new data. A new data point x can be used to update the
prior distribution of the latent variable z using Bayes’ rule. The
posterior distribution is given by,

p(z | x) =
p(x | z)p(z)

p(x)

where p(x | z) is the likelihood. This posterior distribution is
intractable due the high dimensional integral posed by the large
number of parameters in the neural network. To address this
problem we employ approximate Bayesian inference techniques.
The two main techniques of approximate Bayesian inference are
Markov chain Monte Carlo (MCMC) methods and Variational
Bayes, also known as Variational Inference (VI). In the following
sections we describe how segmented CT/MRI images can be
modeled using approximate Bayesian inference techniques and
how the results compare in the context of generating patient
specific cardiac models. First we present the data and then the
two different approximate Bayesian inference techniques that
can be employed to generate patient specific cardiac models.

3.2.1 Training Data

In probabilistic machine learning, training data is essential for
building and fine-tuning models. The quality and quantity of
training data directly impact the performance of the model, in-
cluding its accuracy, precision, and generalizability. These mod-
els use training data to learn patterns and relationships between
the input features and the output variable.

Training data that is biased, incomplete, or inaccurate can nega-
tively impact the model’s performance. Therefore, it’s essential
to carefully select and preprocess the training data to ensure its
quality and relevance to the problem at hand. Left atrial anatomy
can be highly variable. Its important that every data point in
the dataset has the same amount of pulmonary vein segmented
along with the left atrial cavity. The datasets also needs to be
normalized as some scans may have a different field of view or
voxel size. Voxels belonging to both the left atrial cavity and the
myocardium need to be segmented together as one class.

The training data used to train the PML model consists of binary
voxels with zeros for the background and ones for the left atrium
and pulmonary veins. The individual slices stack up to become
a nx × ny × nz voxel grid to form one 3D data point.

Figure 2: Segmented Left Atrial data

3.2.2 Restricted Boltzmann Machine Model for Segmented
Left Atrial Data

Restricted Boltzmann Machines (RBM) Smolensky (1986);
Freund and Haussler (1991); Hinton (2002) are energy based
stochastic artificial neural networks that can learn a probability
distribution over its inputs. The structure of an RBM for seg-
mented left atrial data is shown below in Figure 3. It consist of

Figure 3: Structure of a Restricted Boltzmann machine

binary visible (v) and hidden (h) neurons connected by a m × n
weight matrix Wm×n. There are no interconnections between
the visible nodes or the hidden nodes and they form a bipartite
graph. There is a vector of bias am associated with the visible
nodes and another vector of bias bm associated with the hidden
nodes. The energy of a pair of v, h is given by the following,

E(v, h) = −
m∑

i=1

aivi −

n∑
j=1

b jh j −

m∑
i=1

n∑
j=1

wi jvih j

E(v, h) = −aT v − bT h − vT Wh.

Here the visible nodes represent the voxels of a segmented
CT/MRI data and the hidden nodes represent features learned
from the dataset. There can be three kinds of parameters intro-
duced into this network. The parameter wi j for strength between
a visible and hidden node, bi for every visible node, c j for every
hidden node. The joint probability distribution of this MRF
specifies the probability the network assigns to a pair of visible
and hidden vector and can be written as,

P(v, h) =
1
Z

e−E(v, h)

where the partition function sums over all such pairs of v, h,

Z =
∑

V

∑
H

e−E(v, h)
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and is the normalizing constant to make the probability distri-
bution sum to 1. The probability for an image data or visible
vector can be obtained by summing over all the possible hidden
vector configurations

P(v) =
1
Z

∑
H

e−E(v, h).

When there are more than a few hidden units, it becomes difficult
to compute the partition function as it will have exponentially
many terms. So Markov chain Monte Carlo methods such as
Gibbs sampling is used to obtain samples from the model starting
from a global configuration. The conditional distributions for
the hidden and visible units are used to construct a Markov
chain and run until it reaches its stationary distribution. The
probability of a global configuration at thermal equilibrium is an
exponential function of its energy. Since there are no connection
between nodes in a group they are independent. The conditional
probability for visible nodes given hidden nodes are

P(v|h) =
m∏
i

P(vi|h).

This probability values allow us to know how much of the current
configuration of hidden nodes are represented by the image and
conversely the conditional probability for hidden nodes given
the visible nodes are

P(h|v) =
n∏
j

P(h j|v).

From the above probabilities we can also estimate the probability
of one of the visible or hidden node being activated. Since there
is no connection between visible nodes,

P(h j = 1|v) = σ(
m∑

i=1

wi jvi + b j )

P(h|v) =
n∏

j=1

σ(vT W: j + b j) = σ(vT W:i + b j)

where σ denotes the logistic sigmoid. Similarly,

P(vi = 1|h) = σ(
n∑

j=1

wi jh j + ai )

P(v|h) =
m∏

i=1

σ(vT W:i + ai).

3.2.3 Training the RBM Model

The goal of training a RBM to be a generative model is to maxi-
mize the likelihood of the training dataset of images. This may
prove to be difficult but Hinton (2002) showed that there is a
less obvious objective function than log likelihood of the data
to optimize called the Contrastive Divergence which is the dif-
ference between two KL divergences. It consists of performing
block Gibbs sampling and batch updates to the weights and
biases of the network similar to stochastic gradient descent in a
regular neural network that uses back propagation for training.
The weights and biases of the network are adjusted to lower the

Figure 4: Single training step of the model

energy of the training image and raise the energy of other images
which are low in energy, thereby making a large contribution to
the partition function.

The gradient of the log-likelihood with respect to the weights is
given by

∂

∂wi j
log P(v) = ⟨hiv j⟩data − ⟨hiv j⟩recon

where ⟨.⟩data and ⟨.⟩recon denote the expectation over the data and
the model distributions, respectively. The second term in this
equation is difficult to compute.

Algorithm 1 k-Contrastive Divergence algorithm
Require: v: visible units, W: weights, b: visible bias, c: hidden

bias, k: number of Gibbs sampling steps, α: learning rate
1: while not converged do
2: for i = 1 to nbatches do ▷ For each batch (v) of images
3: h← σ(W · v(i) + c) ▷ Positive phase
4: v0 ← v(i)

5: for j = 1 to k do ▷ Negative phase
6: v j ← σ(WT · h + b)
7: h← σ(W · v j + c)
8: end for
9: W←W + α · (v0 · hT − vk · hT

k )
10: b← b + α · (v0 − vk)
11: c← c + α · (h(0) − hk)
12: end for
13: end while

In contrastive divergence learning instead of starting with a
randomly initialized visible vector and running the Gibbs chain
for a large number of steps, a data point from the training set is
used as the initial value for the visible vector and k steps of Gibbs
sampling is used to get a reconstruction (k = 1 works well) to
get the second term from what is known as the negative phase
of contrastive divergence learning. The difference between the
positive and negative phase is used to update the weights and
biases. The algorithm is summarized in Algorithm 1. The update
rule seen in step (9) in the algorithm above can be written as,

∆wi j = ϵ
(
⟨vih j⟩data − ⟨vih j⟩recon

)
where ϵ is the learning rate, wi j is the weight connecting the
visible unit i and hidden unit j, ⟨vih j⟩data is the expected value



Preprint – Generation of patient specific cardiac chamber models using generative neural networks under a Bayesian
framework for electroanatomical mapping 5
of the product of the visible unit i and hidden unit j under the
data distribution, and ⟨vih j⟩recon is the expected value of the
product of the visible unit i and hidden unit j under the model
distribution. The update rule for the biases are given by,

∆bi = ϵ (⟨vi⟩data − ⟨vi⟩recon)

∆c j = ϵ
(
⟨h j⟩data − ⟨h j⟩recon

)
where ⟨vi⟩data is the expected value of the visible unit i under
the data distribution, and ⟨vi⟩recon is the expected value of the
visible unit i under the model distribution. The algorithm is
run until the weights and biases converge to produce accurate
reconstructions of the segmented data. The weights and biases
represent what the model has learned from the training data and
is utilized for inference.

3.2.4 Model Interpretability and Inference

After the training procedure, it is possible to examine each fea-
ture and infer what the model has learned from the training
dataset. As each voxel is connected to all nodes in the feature
vector, so we can represent the weights as a 3D voxel grid. Fig-
ure 5 shows weights of one of the hidden nodes represented as a
voxel grid, before and after pruning low magnitude weights. The
voxels in the cavity of the left atrium are of higher magnitude
suggesting that the model has more certainty on classifying them
as being part of the foreground or the left atrium.

Figure 5: 3D RBM weights before(left) and after(right) pruning.

Different nodes within the network learn distinct features, and
there may be correlations among these features. When there are
only few hidden nodes, each node has a more significant impact
on the representation of the volume data. The hidden nodes are
forced to work together and correlate their activity to reconstruct
the volume data effectively. Consequently, the features learned
by the RBM tend to have higher interdependence and can exhibit
strong correlations. However, as the number of hidden nodes
increases, each hidden node has more freedom to capture dif-
ferent aspects of the data independently. With more nodes, the
hidden layer can distribute the workload among them, allowing
different nodes to specialize in capturing different aspects of the
data. This can lead to a reduction in the correlation between
features and improve quality of reconstruction.

After training the RBM, we can obtain the posterior predictive
distribution by sampling from the posterior distribution of the
hidden nodes.

The posterior probabilities of hidden nodes given visible nodes,
trained weights, hidden biases are calculated as

p(h j = 1|v,W, c) = σ

∑
i

Wi jvi + c j


where h j is the j-th hidden unit.

A binary sample from the posterior distribution of hidden nodes
are drawn as

hsi j ∼ Bernoulli
(
p(h j = 1|v,W, c)

)
where hsi j is the i-th sample of the j-th hidden unit.

A sample of a hidden vector is drawn as

hs ∼ Bernoulli(p(h|v,W, c))

The posterior probabilities of visible nodes given hidden nodes
are calculated as

p(vi = 1|hs,W, b) = σ

∑
j

Wi jhsi j + bi

 .
The mean and standard deviation of the posterior predictive
distribution are calculated as

vmean =
1
n

n∑
s=1

p(v|hs,W, b)

vstd =
1
n

√√ n∑
s=1

(p(v|hs,W, b) − vmean)2.

where n is the number of samples drawn from the posterior dis-
tribution of the hidden nodes. The mean and standard deviation
of the posterior predictive distribution are used to reconstruct
the volume and quantify the uncertainty in the reconstruction.

Figure 6: True surface (left)mean(blue), mean+std (green),
mean-std (red) surfaces from RBM model output

Figure 6 shows the mean, mean +/- standard deviation surfaces
reconstructed using posterior probability distribution of the hid-
den nodes of an RBM.

3.2.5 A Variational Autoencoder (VAE) model for volumetric
data

MCMC methods allow for the computation of posterior distri-
butions with high accuracy, as they asymptotically converge to
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the true posterior distribution. They are able to sample from
complex, high dimensional distributions with multiple modes
and non-convex shapes. However, they come with significant
computational costs, that is where Variational Inference (VI)
techniques can prove to be useful. Variational Inference Peter-
son and Anderson (1987); Jordan et al. (1999) aims at posing the
intractable inference problem as one of optimization. It approxi-
mates the posterior distribution of a latent variable model by an
easy to sample distribution such as a Gaussian distribution.

A Variational Autoencoder (VAE) Kingma and Welling (2014);
Rezende et al. (2014) is a generative model that learns a com-
pressed latent representation of the data by mapping it to a latent
space defined by a prior probability distribution. It consists of
an encoder network that maps the data to latent variables, and
a decoder network that reconstructs the data from the latent
variables. The main difference between a VAE and a standard
autoencoder Hinton and Salakhutdinov (2006) is that the latent
space in a VAE is stochastic. The output of the encoder is a
distribution over the latent vectors, rather than a single vector.
This allows the VAE to generate new data points by sampling
from the latent space.

VAEs are trained to minimize the difference between the input
and the reconstructed output, and the divergence between the
learned latent variable and a known prior distribution. Several
methods and architectures have been developed to use a VAE
for 3D data. One of the most popular methods is the 3D Convo-
lutional VAE (3D-CVAE) Wu et al. (2016) used for modeling
volumetric objects. The 3D-CVAE is similar to a traditional
VAE, but uses 3D convolutions instead of 2D convolutions to
process 3D data. They are good at capturing local spatial infor-
mation in the image data. Figure 7 shows the block diagram of
a VAE that is used to reconstruct segmented CT or MRI data.

Figure 7: 3D Variational Autoencoder Model

Here we try to learn a compressed representation of segmented
CT or MRI data x that is optimized to match a multivariate Gaus-
sian distribution with mean µ and variance σ. This is achieved
by introducing a latent variable z that represents the compressed
representation of the volume (eg: left atrium), and training the
VAE to learn a conditional probability distribution pθ(x|z) that
maps the compressed representation z to the input data x. The pa-
rameters θ of the conditional probability distribution are learned
during training.

The goal is to learn a compressed representation z that maxi-
mizes the joint probability pθ(x|z)p(z) of the data x given the
compressed representation z and the prior distribution p(z) over
the compressed representation. Maximizing this joint proba-
bility ensures that the learned representations are both good at
reconstructing the original data (pθ(x|z) is high) and align well
with our prior belief about what z should be like (p(z) is high).

However, this joint distribution is intractable, as it involves inte-
grating over all possible values of z. To overcome this problem,
the VAE introduces an approximate posterior distribution qϕ(z|x)
which can be used to approximate the true posterior distribution
p(z|x).

The VAE learns the parameters ϕ of the approximate posterior
distribution qϕ(z|x) by minimizing the KL divergence between
the approximate posterior and the true posterior. The KL diver-
gence is defined as:

KL(qϕ(z|x)||p(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
p(z|x)

dz

Minimizing the KL divergence ensures that the approximate
posterior distribution is as close as possible to the true posterior
distribution. The loss function for the VAE is the sum of two
terms: the reconstruction loss and the KL divergence loss. The
reconstruction loss measures the difference between the input
data and the data reconstructed from the compressed representa-
tion z using the decoder. It is defined as:

Lrec(θ, ϕ; x) = −Eqϕ(z|x)[log pθ(x|z)].

The KL divergence loss measures the difference between the
approximate posterior distribution and the prior distribution:

LKL(ϕ; x) = KL(qϕ(z|x)||p(z)).

The total loss function is the sum of the reconstruction loss and
the KL divergence loss:

L(θ, ϕ; x) = Lrec(θ, ϕ; x) +LKL(ϕ; x).

which is equivalent to maximizing the ELBO:

L(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z)] − KL(qϕ(z|x)||p(z)).

During training, the parameters θ and ϕ are learned by minimiz-
ing the total loss function with respect to these parameters:

θ, ϕ = arg min
θ,ϕ

L(θ, ϕ; x).

Training via backpropagation is made possible in VAEs using
the reparameterization trick. It involves reparameterizing the
latent variables z as a function of a random noise variable ϵ that
can be sampled from a standard normal distribution. Specifically,
we can express z as

z = µ + σ ⊙ ϵ

where µ andσ are the mean and standard deviation of the approx-
imate posterior distribution qϕ(z|x), and ⊙ denotes element-wise
multiplication.

By reparameterizing z in this way, we can sample from the
approximate posterior distribution qϕ(z|x) using a simple and
differentiable transformation. This allows us to backpropagate
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through the sampling process, which is necessary for training
the VAE using stochastic gradient descent.

This results in a model that can learn meaningful representations
of the left atrium from segmented CT or MRI data, which then
can be used to generate patient-specific models of the left atrium
by sampling from the learned latent space when presented with
seed points acquired during mapping.

We can generate a new data point x by first sampling a latent
variable z from the prior distribution p(z), and then passing it
through the decoder to get a generated output x̃

z ∼ p(z), x̃ = pθ(x|z).

Samples from pθ(x|z) can be used to obtain a mean surface as
well as a measure of uncertainty. The mean surface is obtained
by taking the mean of the samples, and the uncertainty is ob-
tained by taking the standard deviation of the samples

x̃ = µz∼p(z)(pθ(x|z)), σz∼p(z)(pθ(x|z)).

Visualizing the Latent Space in 3D

The Figure 8 shows few representations from the 3D latent
space of a VAE trained on segmented MRI images of the left
atrium of the heart. The latent space of a VAE is typically
high-dimensional, when a latent space is 2D or 3D, it can be
visualized by sampling from a uniform 2D or 3D grid. Similarly
when the latent space has a dimensionality greater than three we
can use the following method to visualize the latent space from
a n-dimensional uniform grid.

Figure 8: 3D Latent Space of a VAE trained on segmented left
atrial data.

A standard normal distribution is used to sample k equally
spaced elements from each dimension of the latent space defined
by the n-dimensional grid.

di = q(linspace(a, b, k))

where q(·) is the quantile function of the standard normal distri-
bution, a and b are the lower and upper bounds of each dimen-
sion of the latent space, k is the number of linearly spaced points
obtained by the following equation,

linspace(a, b, k) = {a, a +
(b − a)
k − 1

, a + 2
(b − a)
k − 1

, . . . , b}

Suppose we have an n-dimensional latent space, D1,D2, . . . ,Dn,
then a Cartesian product of the n elements from each dimension
can be taken to obtain all the possible ordered combinations of
the n elements from each dimension.

Cartesian Product(D1,D2, . . . ,Dn) = (d1, d2 . . . , dn) |
d1 ∈ D1, . . . , dn ∈ Dn

From these ordered combinations, a linearly spaced set of points
are sampled to obtain a set of points in the latent space which
is then be passed through the decoder to obtain a visualization
of the latent space. The latent space provides insights into the
distribution of the data and the learning process. It can be used to
identify outliers and anomalies in results generated by the model.
This can guide the practitioner to either update the training data
or update the model itself.

Surface Reconstruction

The next step in our system is Surface Reconstruction. The dense
point cloud generated by the ML model is used to generate a
3D surface mesh model of the chamber of interest. The surface
reconstruction algorithm used in our system is the 3D Marching
Cubes algorithm Lorensen and Cline (1987), which is a popular
method for generating a 3D surface mesh from volumetric data.
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Figure 9: A voxel with an isosurface facet.

The dense 3D point cloud voxel data is divided into small cubes,
each of which is then examined to determine whether it contains
any parts of the left atrial surface. The algorithm considers each
of the eight vertices of the cube to determine whether it lies
inside or outside the surface. The scalar value at each vertex
(voxel value) is compared to a threshold value. If the scalar
value is greater than the threshold, the vertex is considered to
be inside the surface, otherwise it is marked to be outside. The
algorithm then uses the results to determine which edges of the
cube are intersected by the surface and connects them to form
a triangle as seen in Figure 9. The algorithm then repeats this
process for each cube in the volume.
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Figure 10: 3D Surface mesh generated using marching cubes on
ML output.

The resulting triangles are then connected to form a surface
mesh. Figure 10 shows a 3D surface mesh generated using
marching cubes on the output of the machine learning model.
Here the output is the mean from the posterior distribution of the
latent variable model. Other summary statistics such as variance
can be used to visualize the uncertainty in the model prediction.
This can be useful for guiding the electrophysiologist to regions
of the chambers where more points need to acquired to get a
better approximation of the chamber.

Post processing

Post processing is an important step in 3D mesh generation
pipeline, as it can significantly improve the quality and usability
of the mesh. Here the 3D mesh generated from the 3D marching
cubes algorithm is first passed through a filter which removes
small, isolated mesh components. Then it is passed through a
smoothing filter and finally checked for holes and filled if any is
found to get a watertight mesh that represents the left atrium.

Evaluation Metrics

The evaluation metrics used to compare the accuracy of recon-
structions of the data is the dice score. The dice score measures
the similarity between the ground truth and the generated data.
The dice score is calculated as follows:

Dice =
2 × |A ∩ B|
|A| + |B|

where A and B are the ground truth and the generated data,
respectively. The dice score is a value between 0 and 1, where 1
is the best possible score.

4 Left Atrial Dataset

Left atrial anatomy can be highly variable across patients. While
size and shape can vary, the main feature that can be used to
categorize them is the number of pulmonary veins (PV). The
most common type of left atrium has 2 left (LPV) and 2 right
(RPV), other variants are 2 LPVs and 3 RPVs, and 1 LPV and 2
RPVs. Krum et al. (2013).

The data used in the experiments in the following sections are
from Task02 Heart dataset Simpson et al. (2019) of the Med-
ical Segmentation Decathlon held as part of the Medical Im-
age Computing and Computer Aided Interventions (MICCAI)
Conference 2018 at Granada, Spain. This dataset was origi-
nally released through the Left Atrial Segmentation Challenge
(LASC) 2013. The dataset has 20 segmented MRI scans with

a voxel resolution of 1.25 × 1.25 × 2.7mm3 covering the entire
heart acquired during a single cardiac phase (free breathing with
respiratory and ECG gating). The MRI scans were segmented
by experts to obtain ground truth segmentation labels. All of the
datasets have four pulmonary veins ( 74% of the population).
Out of the total of 20 scans, 15 were employed for training
purposes, while the remaining 5 scans were utilized for testing.

4.1 Experiments

For all experiments, the MSD dataset was cropped and down-
sampled to be a 20×20×20 3D array of voxels. The system was
trained for 100 epochs with a batch size of 1 for both the RBM
and VAE based systems to generate inference. Point acquisi-
tion by the electroanatomical mapping system was simulated
by randomly sampling points from the test data. The simula-
tion involved generating the true surface using marching cubes,
then sampling n vertices from the resulting surface mesh. The
vertices are then compared to voxel locations that were used
to generate the mesh by measuring their Euclidean distance.
The closest voxel location is then recorded as a point acquired
during mapping. Algorithm 2 summarizes the steps involved in
simulating electroanatomical mapping.

Algorithm 2 EAM Simulation
Require: 3D data point (voxel data) from the test set
Require: Number of points to be acquired (n)
Ensure: Points acquired during mapping

1: Generate true surface:
2: Generate true surface strue using marching cubes
3: Sample points from true surface strue:
4: vn ← sample n random points from the vertices of strue
5: for each point p in the vertex list vn do
6: for each point pv in the voxel data do
7: Calculate Euclidean distance d between p and pv
8: if d <= threshold then
9: Add pv to points list

10: end if
11: end for
12: end for
13: Return the points list

Three EP studies were simulated, the first where n = 25 points
were acquired, the second where n = 100 points were acquired,
and the third where n = 100 points were acquired. The points
were then passed on to the system to generate a 3D surface mesh
model of the left atrium. The 3D surface mesh model was then
compared to the ground truth data using dice scores to evaluate
the accuracy of the system.

5 Results

The results from the three simulated experiments are discussed
in this section. Table 1 shows the dice scores generated by the
two systems for 20, 100, 250 points,

From Table 1, we can observe that the dice score increases as
the number of points acquired increases. We can also observe
that the RBM based system performs better than the VAE based
system. This is because the RBM based system is able to gener-
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Figure 11: RBM, VAE comparison plot with 25 (left), 100 (middle) and 250 (right) points in Roof view.

Table 1: Comparison of dice scores for RBM and VAE based
systems.

Model 20 points 100 points 250 points
RBM 0.79 0.89 0.92
VAE 0.76 0.83 0.88

ate a more accurate approximation of the ground truth data than
the VAE based system.

Figure 11 shows comparison of surface reconstruction results
using the RBM, VAE systems for a patient data from the test set
in Roof view. The first row shows the surface reconstructed us-
ing the ground truth data and the points that were sampled from
it for the reconstructions in the second and third row. The first
column shows reconstructions using 25 points, second column
shows reconstructions using 100 points, and the third column
shows reconstructions using 250 points. The RBM based sys-
tem is able to generate a more accurate approximation of the
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Figure 12: RBM, VAE uncertainty comparison with 20, 50 and 100 points in PA view.

chamber compared to the VAE system even though they don’t
differ much in dice scores. As expected and seen from the dice
scores in table 1, the reconstructions are better with more points
acquired.

The Figure 12 shows the uncertainty of the RBM, VAE model
outputs in the Posterior-Anterior (PA) view. 100 samples were
generated to reconstruct the mean, mean +/- standard deviation
surfaces. It can be observed that both RBM, VAE models exhibit

more uncertainty in the areas where fewer points were acquired.
There is also high uncertainty in areas where the pulmonary
veins are located in the model. This is due to the high variability
of pulmonary veins across patients in the training set.

Table 2 shows task-based assessment of the surface reconstruc-
tions of the five patient datasets by three expert observers. Ob-
servers individually scored the visual quality and conformity
with the true anatomy of the generated meshes on a scale of 1 to
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Table 2: Task-based assessment of five patient datasets by three
expert observers.

Patient RBM VAE
data Visual quality Match w true Visual quality Match w true

25 100 250 25 100 250 25 100 250 25 100 250
1 3.0 3.3 4.0 2.3 3.6 4.6 2.3 3.3 3.3 2.0 3.6 5.0
2 3.6 3.6 4.0 3.0 3.3 4.6 2.6 3.3 4.3 3.3 3.0 4.0
3 3.0 3.3 4.6 2.0 3.3 4.0 2.3 3.0 3.3 2.3 3.6 4.3
4 3.0 3.0 5.0 2.6 3.6 3.6 2.0 4.0 3.6 3.0 3.3 3.6
5 2.3 3.6 4.3 2.0 4.0 4.3 1.6 3.0 4.0 2.3 3.0 4.0
Average 3.0 3.4 4.4 2.4 3.6 4.2 2.2 3.3 3.7 2.6 3.3 4.2

5, where 1 is the worst possible score and 5 is the best possible
score. The table shows the average score of the three observers
for the two systems. The table shows that both systems are ca-
pable of producing useful reconstructions with the RBM based
system performing slightly better than the VAE based system.
The table also shows that the reconstructions improve with the
number of points acquired.

6 Conclusion

Generating anatomical models of the left atrium from a sparse
point cloud of acquired locations is a challenging task, but one
that is essential for Electrophysiology studies. A probabilistic
machine learning approach to the problem provides a way to
bring uncertainty quantification and interpretability to a neural
network solution to the problem. A Bayesian approach pro-
vides greater insight into the model which incorporates prior
knowledge from CT/MRI data. Such a model can be useful for
navigation during electroanatomical mapping.

The results of the conducted experiments show that the proposed
system is capable of generating anatomically accurate models
of the left atrium from a sparse point cloud of few acquired
locations. This can enable creating quick maps during electro-
physiology studies and reduce the time taken for mapping during
a study, thereby reducing the patient’s exposure to radiation from
the fluoroscope.
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