
GENERATION OF CARDIAC CHAMBER MODELS USING
INTERPRETABLE GENERATIVE NEURAL NETWORKS

FOR ELECTROPHYSIOLOGY STUDIES

by

Sunil Mathew, B.Tech., M.S.

A Dissertation submitted to the faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

August 2023

ABSTRACT
GENERATION OF CARDIAC CHAMBER MODELS USING
INTERPRETABLE GENERATIVE NEURAL NETWORKS

FOR ELECTROPHYSIOLOGY STUDIES

Sunil Mathew, B.Tech., M.S.

Marquette University, 2023

An Electrophysiology study is conducted to diagnose and treat heart rhythm disorders,
such as arrhythmias (abnormal heartbeat) like atrial fibrillation. A catheter is inserted
into the chamber of interest to acquire 3D location and electrical information to create an
electroanatomical map. This dissertation explores the design of a mapping system based
on interpretable generative neural networks for generating patient specific cardiac models.
Chapter 1 provides an introduction to electroanatomical mapping, the need for
interpretability in neural networks and other relevant topics that are discussed in detail in
the chapters that follow. Neural networks are often very large models with millions of
parameters and can be difficult to train or draw inferences on compute constrained
devices. Chapter 2 explores a formal principled Bayesian technique to eliminate
parameters (connections) in a neural network. Prior information about the “weights” of
the connections is quantified in the form of prior distributions, combined with data
likelihoods, to yield a formal posterior distribution for the parameters of the model. From
this posterior distribution, formal hypothesis tests are performed to eliminate connections.
This makes the neural network smaller, simpler, and more explainable. Chapters 3 and 4
explores how approximate Bayesian inference can be utilized to model structures in
volumetric data (CT/MRI). We explore how a full Bayesian approach can quantify
uncertainty and help improve interpretability in results generated by neural network
models. In Chapter 5 we build an electroanatomical mapping system based on the
frameworks developed in the previous chapters that is capable of generating patient
specific cardiac chamber models that are interpretable and useful for navigation in
Electrophysiology studies.

i

ACKNOWLEDGEMENTS

Sunil Mathew, B.Tech., M.S.

I would like to express my deepest gratitude and appreciation to all those who have
supported and guided me throughout the journey of completing this dissertation.

First and foremost, I would like to thank God. Then, I extend my heartfelt thanks to my
advisor, Dr. Daniel B. Rowe, for his guidance, support, and encouragement throughout
my graduate studies. His expertise in Bayesian statistics has been instrumental in shaping
my research, and I could not have made this possible without his unwavering support and
guidance. I have learned a great deal from him, and I am particularly grateful for his
teaching notes on Bayesian statistics. His dedication to teaching and research serves as an
inspiration to me.

I also want to express my gratitude to Dr. Jasbir Sra, APNHealth, who introduced me
to the field of cardiac electrophysiology and electroanatomical mapping a decade ago. Dr.
Sra is one of the most renowned Electrophysiologists in the world, and I am grateful for
the opportunity to work with him. His guidance and support on this project have been
invaluable to me, and I am also deeply appreciative of his kindness. I would also like to
thank Dr. Sra for introducing me to Dr. Rowe and Dr. Merrill.

Furthermore, I would like to thank the other members of my committee, Dr. Bansal, who
has been a great mentor and a source of encouragement. Assisting him as a Teaching
Assistant for Data Science and Time Series courses has been a tremendously enriching
experience. I am thankful for his feedback, guidance, and support. Additionally, I express
my gratitude to Dr. Madiraju for facilitating my research with Dr.Sra at APNHealth during
my practical training. His feedback and support have been invaluable.

I would also like to thank all the professors, graduate students and staff in the Department
of Mathematics, Statistics, and Computer Science at Marquette University for their support
and friendship during this journey. I am also particularly grateful to Dr. Merrill for his
guidance and support.

I would also like to extend my thanks to David Krum, Director of Clinical Studies at
APNHealth, for his guidance and support. His expertise in electroanatomical mapping and
left atrial data has been of immense value to me, and I am grateful for the opportunity
to work with him. I also consider Dave a dear friend, and I am thankful to his family for
their hospitality and kindness. Additionally, I would like to thank David Geddam, Marcy
Solveson, and the rest of the APNHealth team for their support and guidance.

I am also indebted to Dr. Amit Mehndiratta and Dr. Anup Singh from the Indian Institute
of Technology, Delhi, for introducing me to the field of medical imaging. I express my
gratitude to my undergraduate research advisor, Dr. Joy M. Thomas from the Indian
Institute of Science, Bangalore, for his guidance and support. He played a significant role
in shaping my decision to pursue a career in research.

I would also like to thank my previous employer, Triassic Solutions Pvt Ltd., for introducing
me to the software industry and engaging projects, including the opportunity to work with

ii

APNHealth on Navik3D. I am grateful to my mentor, Aju George, who imparted invaluable
knowledge about software development. Those skills have been instrumental in my journey.

Furthermore, I want to express my appreciation to my previous employer, Neosoft LLC,
and my manager, Brian Rice, for giving me the opportunity to work in the field of Cardiac
MRI analysis using Deep Learning. I am thankful for their kindness, patience, and support.

I am deeply grateful to my family for their unwavering love and support. I would like to
thank my late father, George Mathew, for his unconditional love and support. I am grateful
for the sacrifices he made to ensure my brother and I had the best possible education and a
better life. I extend my thanks to my mother, Annamma Mathew, for her care and support.
She worked as a math teacher while managing all our needs. To my brother, Saju Mathew,
thank you for being my best friend and support system. I also want to acknowledge my wife,
Carolin, for her love and support. I could not have done this without her. Special thanks
to my friends Jesse Adikorley, Piyush Saxena, Sarthak Dabas, Paromita Nitu, Olawunmi
George, Rasha Atshan, and Manmeet Kaur for their suport and care.

I would also like to acknowledge the support and encouragement from my other family
members and friends. Their love, understanding, and patience have been crucial in maintaining
my motivation and mental well-being throughout my PhD journey.

I would also like to express my gratitude to Marquette University and the Department
of Mathematical and Statistical Sciences for providing me with financial support and the
opportunity to work as a Teaching Assistant.

To everyone mentioned above and those who have played a role in this dissertation but
remain unmentioned, I am truly thankful. Your contributions, whether big or small, have
made a significant impact on the completion of this research endeavor.

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1. INTRODUCTION 1

1.1 Motivation . 1

1.2 Research Aims . 2

1.2.1 Aim 1: Pruning neural networks using Bayesian inference. 2

1.2.2 Aim 2: Interpretable models for volumetric data. 2

1.2.3 Aim 3: Generation of patient specific anatomical models of cardiac
chamber models using interpretable generative models for electroanatomical
mapping. 2

1.3 Background . 3

1.3.1 Interventional Electrophysiology . 3

1.3.2 Artificial Neural Networks . 4

1.3.3 Bayesian Inference . 7

1.3.4 Supervised learning . 8

1.3.5 Unsupervised learning . 9

1.3.6 Generative Modeling . 10

1.3.7 Surface Reconstruction . 11

1.4 Left Atrial Dataset . 12

CHAPTER 2. PRUNING NEURAL NETWORKS USING BAYESIAN INFERENCE 13

2.1 Introduction . 13

2.2 Theory . 14

2.2.1 Neural Network Pruning . 15

2.2.2 Bayesian Hypothesis Testing . 17

iii

iv

2.3 Methods . 18

2.3.1 Pruning Neural Networks using Bayesian Inference 18

2.4 Experiments . 23

2.5 Results . 27

2.6 Discussion . 41

CHAPTER 3. AN INTERPRETABLEMODEL FOR VOLUMETRIC DATA USING
MCMC METHODS 42

3.1 Introduction . 42

3.2 Theory . 43

3.2.1 Latent variable models . 43

3.2.2 Approximate Bayesian Inference . 44

3.2.3 Markov chain Monte Carlo (MCMC) methods 45

3.3 Methods . 49

3.3.1 A Restricted Boltzmann Machine (RBM) for volumetric data 49

3.4 Results . 56

3.5 Discussion . 63

CHAPTER 4. AN INTERPRETABLE GENERATIVEMODEL FOR VOLUMETRIC
DATA USING VARIATIONAL INFERENCE 64

4.1 Introduction . 64

4.2 Theory . 65

4.2.1 Variational Inference . 65

4.2.2 Learning conditional distributions using CNNs 66

4.3 Methods . 68

4.3.1 A Variational Autoencoder (VAE) model for volumetric data 68

4.4 Results . 73

v

4.5 Discussion . 78

CHAPTER 5. GENERATION OF PATIENT SPECIFIC CARDIAC CHAMBER
MODELS USING INTERPRETABLEMODELS FOR ELECTROANATOMICAL
MAPPING 79

5.1 Introduction . 79

5.2 Theory . 80

5.2.1 Electroanatomical Mapping (EAM) Systems 81

5.3 Methods . 83

5.3.1 An EAM system based on Bayesian inference 83

5.4 Experiments . 90

5.5 Results . 91

5.6 Discussion . 94

CHAPTER 6. CONCLUSION 95

6.1 Summary of Presented Work . 95

6.2 Future Work . 95

BIBLIOGRAPHY 97

APPENDIX A: BAYESIAN PRUNING LEARNING CURVES 104

A.1 MNIST LEARNING CURVES . 104

A.2 MNIST FASHION LEARNING CURVES . 109

A.3 CIFAR-10 LEARNING CURVES . 114

APPENDIX B: MRI DATA PROCESSING 120

B.1 AFFINE TRANSFORMATIONS . 120

APPENDIX C: CONDITIONAL PROBABILITY DISTRIBUTIONS OF A RBM 123

A.1 POSTERIOR DISTRIBUTION OF A RBM 123

C.2 POSTERIOR CONDITIONAL DISTRIBUTION OF A RBM 124

vi

APPENDIX D: RBM SYSTEM PLOTS 126

APPENDIX D: VAE SYSTEM PLOTS 129

APPENDIX D: RBM, VAE COMPARISON PLOTS 132

LIST OF TABLES

1 Accuracy values at different sparsity levels 40

2 Dice scores for different number of hidden features for MSD dataset 58

3 RBM model sparsity and average dice scores for MSD dataset 63

4 VAE model sparsity and average dice scores for MSD dataset 78

5 Comparison of dice scores for RBM and VAE based systems for MSD dataset. 91

6 Task-based assessment of five patient datasets by three expert observers. . . 93

vii

LIST OF FIGURES

1 A feed forward neural network. 5

2 Neural network pruning. 15

3 Pruning system block diagram. 19

4 Fully connected neural network architecture 25

5 Convolutional neural network architecture 26

6 MNIST (FCN 75%) learning curves for the Bayesian pruning method. . . . 28

7 Validation loss of random pruning for different sparsity levels. 29

8 Validation loss of magnitude pruning for different sparsity levels. 29

9 MNIST (CNN 75%) learning curves for the Bayesian pruning method. . . . 30

10 Validation loss of random pruning for different sparsity levels. 30

11 Validation loss of magnitude pruning for different sparsity levels. 31

12 MNIST-Fashion (FCN 90%) learning curves for the Bayesian pruning method. 32

13 Validation loss of random pruning for different sparsity levels. 32

14 Validation loss of magnitude pruning for different sparsity levels. 33

15 MNIST-Fashion (CNN 90%) learning curves for the Bayesian pruning method. 33

16 Validation loss of random pruning for different sparsity levels. 34

17 Validation loss of magnitude pruning for different sparsity levels. 35

18 CIFAR-10 (FCN 90%) learning curves for the Bayesian pruning method. . . 35

19 Validation loss of random pruning for different sparsity levels. 36

20 Validation loss of magnitude pruning for different sparsity levels. 37

21 CIFAR-10 (CNN 90%) learning curves for the Bayesian pruning method. . . 37

22 Validation loss of random pruning for different sparsity levels. 38

23 Validation loss of magnitude pruning for different sparsity levels. 39

24 A latent variable model. 43

25 A Markov chain. 45

26 Gibbs sampling. 47

27 Structure of a Restricted Boltzmann machine 50

28 Single training step of the model . 52

viii

ix

29 3D RBM weights before(left) and after(right) pruning. 54

30 Correlation image of an RBM with 25 hidden nodes. 56

31 Correlation image of an RBM with 81 hidden nodes. 57

32 Reconstruction using RBM model wtih 625 hidden nodes for MSD dataset . 60

33 RBM model uncertainty for MSD dataset 61

34 RBM model (sparsity=80%) output for MSD dataset 62

35 3D Convolutions . 67

36 3D Variational Autoencoder Model . 69

37 VAE model output for MSD dataset . 74

38 VAE model uncertainty for MSD dataset . 75

39 3D Latent Space of a VAE trained on segmented left atrial data. 76

40 VAE model (sparsity=80%) output for MSD dataset 77

41 Navik3D electroanatomical mapping system. 81

42 ML output from data acquired by an electroanatomical mapping system. . 82

43 Generation of 3D cardiac chamber models 84

44 Segmented Left Atrial data . 87

45 A voxel with an isosurface facet. 88

46 3D Surface mesh generated using marching cubes on ML output. 89

47 Mean, mean +/- standard deviation surfaces generated using marching cubes. 89

48 RBM, VAE comparison plot with 25, 100 and 250 points in Roof view. . . . 92

49 RBM, VAE uncertainty comparison with 20, 50 and 100 points in PA view. 93

A1 MNIST (FCN 25%) learning curve for the Bayesian pruning method. 104

A2 MNIST (CNN 25%) learning curves for the Bayesian pruning method. . . . 105

A3 MNIST (FCN 50%) learning curves for the Bayesian pruning method. . . . 105

A4 MNIST (CNN 50%) learning curves for the Bayesian pruning method. . . . 106

A5 MNIST (FCN 75%) learning curves for the Bayesian pruning method. . . . 106

A6 MNIST (CNN 75%) learning curves for the Bayesian pruning method. . . . 107

A7 MNIST (FCN 90%) learning curves for the Bayesian pruning method. . . . 107

A8 MNIST (CNN 90%) learning curves for the Bayesian pruning method. . . . 108

A9 MNIST (FCN 99%) learning curves for the Bayesian pruning method. . . . 108

x

A10 MNIST (CNN 99%) learning curves for the Bayesian pruning method. . . . 109

A11 MNIST Fashion (FCN 25%) learning curves for the Bayesian pruning method.109

A12 MNIST Fashion (CNN 25%) learning curves for the Bayesian pruning method.110

A13 MNIST Fashion (FCN 50%) learning curves for the Bayesian pruning method.111

A14 MNIST Fashion (CNN 50%) learning curves for the Bayesian pruning method.111

A15 MNIST Fashion (FCN 75%) learning curves for the Bayesian pruning method.112

A16 MNIST Fashion (CNN 75%) learning curves for the Bayesian pruning method.112

A17 MNIST Fashion (FCN 90%) learning curves for the Bayesian pruning method.113

A18 MNIST Fashion (CNN 90%) learning curves for the Bayesian pruning method.113

A19 MNIST Fashion (FCN 99%) learning curves for the Bayesian pruning method.114

A20 MNIST Fashion (CNN 99%) learning curves for the Bayesian pruning method.114

A21 CIFAR-10 (FCN 25%) learning curves for the Bayesian pruning method. . . 115

A22 CIFAR-10 (CNN 25%) learning curves for the Bayesian pruning method. . . 115

A23 CIFAR-10 (FCN 50%) learning curves for the Bayesian pruning method. . . 116

A24 CIFAR-10 (CNN 50%) learning curves for the Bayesian pruning method. . . 116

A25 CIFAR-10 (FCN 75%) learning curves for the Bayesian pruning method. . . 117

A26 CIFAR-10 (CNN 75%) learning curves for the Bayesian pruning method. . . 118

A27 CIFAR-10 (FCN 90%) learning curves for the Bayesian pruning method. . . 118

A28 CIFAR-10 (CNN 90%) learning curves for the Bayesian pruning method. . . 119

A29 CIFAR-10 (FCN 99%) learning curves for the Bayesian pruning method. . . 119

A30 CIFAR-10 (CNN 99%) learning curves for the Bayesian pruning method. . . 120

A31 RBM system surface plot with 250 input points in AP view. 127

A32 RBM system mesh with 250 input points in AP view. 128

A33 VAE system surface plot with 250 input points in AP view. 130

A34 RBM system mesh with 250 input points in AP view. 131

A35 RBM, VAE comparsion plot with 25, 100 and 250 points in AP view. 132

A36 RBM, VAE comparsion plot with 25, 100 and 250 points in LAO view. . . . 133

A37 RBM, VAE comparsion plot with 25, 100 and 250 points in RAO view. . . 134

A38 RBM, VAE comparsion plot with 25, 100 and 250 points in LL view. 135

A39 RBM, VAE comparsion plot with 25, 100 and 250 points in RL view. 136

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

Millions of people worldwide are affected by cardiac arrhythmias (irregular heart rhythm),

such as atrial fibrillation (AF), which can lead to stroke and heart failure. Interventional

electrophysiologists commonly treat these conditions through interventional electrophysiology

procedures such as cardiac ablation procedures. During the procedure, the electrophysiologists

maps the cardiac chamber of interest, typically the left atrium, to identify the source of the

arrhythmia and isolate it in order to restore the heart’s normal rhythm. Fluoroscopy and

electroanatomical mapping systems are used to guide the procedure. Fluoroscopy provides

real-time 2D visualization of the mapping catheter, while the electroanatomical mapping

system provides live electrical and 3D location information of the catheter within the cardiac

chamber. This information is then used to construct a 3D electroanatomical map. This

procedure is time-consuming, taking 2-4 hours and exposes the patient to harmful radiation

from the fluoroscope. To mitigate these risks, an artificial neural network can be employed

to quickly approximate the cardiac chamber, which can significantly reducing the time

taken for electroanatomical mapping. However, the interpretability of neural networks is

often challenging. Understanding why a neural network works well or fails to perform

its designated task is not easily explainable. Therefore, it is important to understand

the learning process of neural networks and develop architectures that offer explainability,

particularly in critical applications like electroanatomical mapping. Probability can serve

as a means of interpretability in neural networks, wherein prior knowledge about the

modeled task can be incorporated into the learning process to enhance interpretability.

Such interpretable models can reduce procedure time, thereby reduce radiation exposure

and improve patient outcomes.

2

1.2 Research Aims

1.2.1 Aim 1: Pruning neural networks using Bayesian inference.

Neural networks often possess a considerable number of parameters, particularly deep neural

networks. As a result, training them becomes computationally demanding and challenging

to deploy on compute constrained devices. Moreover, their excessive parameterization

renders them susceptible to overfitting, where the network becomes excessively proficient

in learning the training data but struggles to generalize to unseen data. Hence, it is

crucial to have a network that maintains a reasonable size, promotes interpretability, and

demonstrates robust generalization. In this exploration, we delve into how a Bayesian

framework can facilitate the pruning of a neural network. This approach aids in mitigating

overfitting, reducing computational resource requirements, and enhancing interpretability.

1.2.2 Aim 2: Interpretable models for volumetric data.

Patients are often subjected to imaging modalities such as Computed Tomography (CT)

or Magnetic Resonance Imaging (MRI) that acquires 3D image data (volumetric data) to

diagnose and treat their condition. Volumetric data acquired by such imaging modalities

are structured data on a uniform grid. Objects of interest are segmented by an expert for

various analysis and studies. Such segmented data can be modeled using generative neural

networks under a Bayesian framework to quantify uncertainty and provide interpretability

for data generated using the model. Such a model can be useful in data synthesis, data

augmentation, and many other applications. We explore the use of such a model in the

context of generating interpretable cardiac chamber models.

1.2.3 Aim 3: Generation of patient specific anatomical models of cardiac

chamber models using interpretable generative models for electroanatomical

mapping.

During electroanatomical mapping, electrical and 3D location data are collected, forming a

sparse and noisy 3D point cloud. Traditional surface reconstruction algorithms only work

well for dense uniform point clouds. We explore the use of interpretable generative models

to generate patient-specific anatomical models of cardiac chambers from sparse and noisy

3

3D point cloud data. We use generative models to generate a dense and uniform point cloud

from the noisy and sparse acquisitions. We then use a surface reconstruction algorithm to

generate a surface mesh from the dense and uniform point cloud. The surface mesh can

then be used to generate a 3D model of the cardiac chamber. The model can be used for

navigation in electrophysiology studies.

1.3 Background

The following sections provide a brief overview of the concepts and techniques used in this

dissertation.

1.3.1 Interventional Electrophysiology

Interventional electrophysiology, also known as cardiac electrophysiology, is a specialized

field of medicine that deals with the diagnosis and treatment of heart rhythm disorders,

also called arrhythmias. It involves the study of the electrical activity of the heart and the

use of various techniques to manage and correct abnormal heart rhythms.

The primary goal of interventional electrophysiology is to identify the source of arrhythmias

and provide targeted therapy to restore normal heart rhythm or control the heart rate.

This field combines elements of cardiology, electrophysiology, and interventional techniques

to achieve these objectives. The electrophysiologist uses a combination of diagnostic and

therapeutic procedures to treat arrhythmias. Diagnostic procedures include electrocardiogram

(ECG), echocardiogram, and electrophysiology study (EPS). After a study is performed,

the electrophysiologist may recommend a therapeutic procedure, such as catheter ablation,

to treat the arrhythmia.

The groundbreaking research on the initiation of atrial fibrillation by ectopic beats originating

in the pulmonary veins (Häıssaguerre et al., 1998) provided crucial insights into the mechanisms

underlying AF and paved the way for catheter ablation procedures targeting the pulmonary

veins.

Catheter ablation has emerged as a key intervention in interventional electrophysiology.

The expert consensus statement in Calkins et al. (2017) outlines the recommendations for

4

catheter and surgical ablation of AF. It serves as a comprehensive guideline for clinicians,

covering various aspects of AF ablation, including patient selection, procedural techniques,

and follow-up care.

Clinical trials have played a pivotal role in evaluating the efficacy of different treatment

modalities. The randomized controlled trial comparing antiarrhythmic drug therapy with

radiofrequency catheter ablation in patients with paroxysmal AF (Wilber et al., 2010)

demonstrated superior outcomes with catheter ablation, leading to a paradigm shift in the

management of paroxysmal AF.

Electroanatomical mapping is a crucial component of an electrophysiology study. It involves

the acquisition of electrical and 3D location data from the heart chamber using a catheter.

This data is then used to generate a 3D model of the chamber (Gepstein et al., 1997;

Mukherjee et al., 2014), which is used to guide the electrophysiologist during the cardiac

ablation procedure.

There appears to be a limited number of articles or research studies specifically addressing

the use of neural networks for building electroanatomical maps for electrophysiology studies.

The application of neural networks in this domain remains relatively unexplored. However,

there is a growing interest in the use of neural networks for medical image segmentation,

registration, and reconstruction tasks. These applications are closely related to electroanatomical

mapping and can be leveraged to develop novel solutions for electroanatomical mapping.

1.3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the functioning

of biological neural networks in animal brains (Rumelhart et al., 1986; LeCun et al., 2015).

ANNs are composed of interconnected artificial nodes or neurons, organized into layers.

These networks have the ability to learn and perform tasks by optimizing a cost function

based on provided examples (Goodfellow et al., 2016).

Figure 1 shows the structure of a feedforward neural network used for classification. Each

node in the network is a neuron that performs a linear transformation followed by a non-

5

Figure 1: A feed forward neural network.

linear activation function. The linear transformation is given by,

y =

n∑
i=1

wixi + b

where wi are the weights, xi are the inputs, and b is the bias. The non-linear activation

function,

a = f(y)

enables the neural network to learn complex functions. They are typically applied to the

output of each neuron. A commonly used activation function is the rectified linear unit

(ReLU),

f(y) = max(0, y)

which is a piecewise linear function that outputs the input without modification if it is

non-negative, and outputs zero otherwise. The output layer provides probabilities or class

labels for different classes, obtained using a softmax activation function (Bridle, 1990). For

a K-class classification problem, the softmax function is given by,

6

σ(z)j =
ezj∑K
k=1 e

zk

The output of the softmax function is a vector of probabilities that sum to one. The class

with the highest probability is selected as the predicted class. The network is trained by

minimizing a cost function, which is typically the cross-entropy loss function,

L(y, ŷ) = −
n∑

i=1

yi log(ŷi)

by comparing the predicted probabilities yi with the true labels ŷi. The network’s parameters

are updated using backpropagation, a method for computing the gradient of the cost

function with respect to the network’s parameters (Rumelhart et al., 1986). The gradient

is then used to update the parameters using an optimization algorithm such as gradient

descent (Ruder, 2016).

The selection of an appropriate number of parameters for an ANN is crucial for its performance.

Insufficient parameters can limit the network’s learning capacity, while an excessive number

of parameters can lead to overfitting (Hastie et al., 2009). Balancing the complexity of the

network with the requirements of the task is essential.

While non-linear activation functions enable ANNs to learn complex functions, they also

make them difficult to interpret. The non-linear transformations make it challenging to

understand how the network arrives at its predictions. This lack of interpretability is a

significant drawback of ANNs, particularly in the medical domain, where interpretability is

crucial for clinical decision-making.

Interpretability of neural networks has been a significant area of research in recent years.

Several methods have been developed for interpreting neural networks. (Yosinski et al.,

2015) proposes two visualization techniques that helps understand the features learned in

deep neural networks. It shows how initial layers of the network learns abstract features and

deeper layers show class features. (Simonyan et al., 2013) introduced a method to generate

saliency maps for deep neural networks, highlighting regions of input images that are most

7

responsible for the network’s output. Grad-CAM (Selvaraju et al., 2017) is another method

that produces visual explanations for CNN-based models. Another approach is to use a

Bayesian framework, which allows for the quantification of uncertainty in the network’s

predictions. This uncertainty can be used to generate explanations for the network’s

predictions.

1.3.3 Bayesian Inference

Bayesian inference is a powerful framework for reasoning under uncertainty and updating

beliefs based on observed data. It is founded on Bayes’ rule, a fundamental property of

conditional probability that yields the posterior probability of unknown parameters θ given

known data D (input-output pairs, x, y). Bayes’ rule can be expressed as:

P (θ| D) =
P (D|θ) · P (θ)

P (D)
= likelihood× prior

Here, P (D|θ) represents the likelihood of the parameters θ, P (θ) is the prior probability,

and P (D) is the sum over all possible values of θ (or
∫
P (D|θ) · P (θ)dθ if θ is continuous).

The denominator, known as evidence, is a normalizing constant that can be omitted when

considering the relationship:

P (θ| D) ∝ P (D|θ) · P (θ)

These formulas form the core of Bayesian inference. Given the training data, a model

or likelihood function based on the data, and prior information on the parameters or

weights, Bayes’ rule establishes a relationship between the parameters, the data, and existing

knowledge (Gelman et al., 2013).

Bayesian methods are particularly useful when data is limited. They allow for the sequential

updating of prior beliefs as new data becomes available. The posterior calculated with one

data point can serve as the prior for calculating the posterior with the next data point. This

sequential updating is achieved through the use of recursive Bayesian estimation (Brooks

8

et al., 2011):

Pk(θ) = P (θ| xk) =
P (xk|θ) · Pk−1(θ)

P (xk)

The denominator of Bayes’ formula is the marginal distribution of the observed data

D, also known as the prior predictive distribution. It represents the model’s prediction

before observing any data. The technique used to calculate this marginal distribution can

be employed to predict an observable D̂(xtest, ytest), known as the posterior predictive

distribution:

P (ytest| xtest, x, y) =
∫
P (ytest|xtest, x, y)P (θ|x, y)dθ

The training data D(x, y) provides information that is encapsulated in the parameters θ

after the training process. Bayesian inference provides a principled approach for incorporating

prior knowledge, updating beliefs based on observed data, and quantifying uncertainty. It

has applications in various fields, including machine learning, statistics, and decision-making

under uncertainty (MacKay, 2003). Bayesian inference is particularly useful in the context of

neural networks, where it can be used to quantify uncertainty and enhance interpretability.

1.3.4 Supervised learning

Supervised learning is a type of machine learning algorithm that uses labeled data to

train a neural network model. The training data {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi

represents the input features and yi represents the corresponding output or target variable,

the goal of supervised learning is to learn a function f(x) that can map an input x to

an output y based on the training examples. The function f(x) is then used to predict

the output for new inputs. The training data is used to learn the parameters of the

function f(x), and the performance of the model is evaluated on a separate set of test

data. Supervised learning is used in a wide range of applications, including classification,

regression, and ranking.

9

In cardiac segmentation and other forms of semantic segmentation (Long et al., 2015;

Ronneberger et al., 2015), supervised learning is used to train a model that can predict the

segmentation of a new image based on the training examples. The training data consists

of images with corresponding ground truth segmentations. Each pixel or voxel is assigned

a class label. The goal is to learn a function that can map an image to its segmentation.

The function is then used to predict the segmentation of a new image.

1.3.5 Unsupervised learning

Unsupervised learning (Hinton, 2009; Goodfellow et al., 2020) in contrast to supervised

learning aims at studying patterns from unlabeled data. The input-output pair in training

data {(x1, x1), (x2, x2), . . . , (xn, xn)} used to train an unsupervised machine learning model

is made up of the input image itself. It is useful in finding hidden patterns or intrinsic

structures in the data. In the context of medical imaging and voxel data, unsupervised

learning techniques can be valuable for extracting meaningful information and discovering

hidden patterns without relying on explicit labels or annotations.

One common application of unsupervised learning in medical imaging is clustering. Clustering

algorithms can group similar voxels or regions together based on their intensity values,

spatial proximity, or other features. This can help identify anatomical structures or detect

abnormalities by grouping together voxels with similar characteristics.

Another approach is dimensionality reduction, which aims to reduce the complexity of

voxel data while retaining its essential information. Techniques such asprincipal component

analysis (PCA) or autoencoders (Hinton and Salakhutdinov, 2006) can be used to identify

the most important features or latent representations in the data, allowing for efficient

representation and visualization of the voxel information.

Additionally, generative models such as Restricted Boltzmann Machines (RBM) (Smolensky,

1986; Freund and Haussler, 1991), variational autoencoders (VAE) (Kingma and Welling,

2019), Generative Adversarial Networks (GAN) (Goodfellow et al., 2020) can be employed

for unsupervised learning in medical imaging. These models learn to generate new samples

that resemble the distribution of the training data.

10

1.3.6 Generative Modeling

Generative models are unsupervised models that are a combination of neural networks

and probabilistic machine learning models. Generative modeling is an area of artificial

intelligence that focuses on the development of systems that can generate new data that is

similar to existing data. Generative models are used in a variety of applications, including

computer vision, natural language processing, and image generation.

The following equation represents the generative model, where x̃ is the generated data, f is

a function that maps a latent variable z to the generated data.

x̃ = f(z)

The prior distribution of the latent variable z is represented by the equation below.

z ∼ p(z)

The prior distribution is used to sample from the latent space to generate new data. A

new data point x can be used to update the prior distribution of the latent variable z using

Bayes’ rule. The posterior distribution is given by,

p(z | x) = p(x | z)p(z)
p(x)

where p(x | z) is the likelihood. The posterior distribution can be used to make inference

about the latent variable given the observed data. The posterior distribution is often

intractable due to the denominator term, and approximate inference methods like Markov

chain Monte Carlo (MCMC) and Variational Inference (VI) are used to approximate the

posterior distribution.

11

1.3.7 Surface Reconstruction

In electroanatomical mapping, surface reconstruction is used to reconstruct the endocardial

surface of the left atrium from the sparse point cloud data obtained from the mapping

catheter. The reconstructed surface is then used to visualize the electrical activation

patterns and identify the arrhythmogenic regions. The surface reconstruction problem in

electroanatomical mapping is challenging due to the sparse and noisy nature of the point

cloud data.

Surface reconstruction is the process of creating a continuous surface representation from a

sparse point cloud data. It is a fundamental problem in computer graphics and computer

vision, with applications in various fields such as 3D modeling, robotics, and augmented

reality. The goal is to reconstruct a smooth and accurate surface that captures the underlying

geometry of the object or scene. Traditional methods and neural network approaches have

been extensively explored in this area. In this section, we discuss both the traditional

methods and the recent advancements using neural networks. Traditional methods for

surface reconstruction typically fall into two main categories: Delaunay-based methods and

Poisson-based methods.

Delaunay-based methods leverage the Delaunay triangulation to reconstruct surfaces. Hoppe

et al. (1992) introduced the notion of surface reconstruction using Delaunay triangulation.

This method creates a tetrahedral mesh from the input point cloud and extracts a piecewise

linear surface from the mesh. Delaunay-based methods have been widely used due to

their simplicity and efficiency. Other notable works include the alpha shapes algorithm

by Edelsbrunner and Mücke (1994) and the Ball Pivoting algorithm by Bernardini et al.

(1999).

Poisson-based methods, on the other hand, utilize the Poisson equation to reconstruct

surfaces. Poisson surface reconstruction method (Kazhdan et al., 2006), which formulates

surface reconstruction as a Poisson problem. The method estimates a scalar function over

the input points and then extracts the surface using the marching cubes algorithm (Lorensen

and Cline, 1987a). Since its introduction, Poisson-based methods have achieved high-

12

quality surface reconstructions. Additional works, such as the screened Poisson surface

reconstruction (Kazhdan and Hoppe, 2013), have further improved the robustness and

accuracy of the technique.

1.4 Left Atrial Dataset

Left atrial data is three-dimensionally unique and highly variable in nature. The general

structure of left atrium consists of the left atrial cavity, pulmonary vein ostia and the

appendage. Two left pulmonary veins (LPVs) and two right pulmonary veins (RPVs)

(62.6%), two LPVs and three RPVs (17.3%), and one LPV and two RPVs (14.2%) make

up the three most common variants of the left atrium (Krum et al., 2013).

The left atrial data used in this study is derived from the Medical Segmentation Decathlon

(Antonelli et al., 2022), which was held during the 2018 Medical Image Computing and

Computer-Aided Interventions Conference in Granada, Spain. The dataset was originally

released through the Left Atrial Segmentation Challenge (Tobon-Gomez et al., 2015). It

consists of 20 segmented MRI scans with a voxel resolution of 1.25×1.25×2.7mm3, covering

the entire heart, acquired during a single cardiac phase with free breathing and respiratory

and ECG gating. The MRI scans were manually segmented by experts to obtain ground

truth segmentation labels. All the datasets in the study include four pulmonary veins,

which account for approximately 74% of the population. Fifteen of the 20 scans were used

for training, while the remaining five were used for testing.

Evaluation Metrics

The evaluation metrics used to compare the accuracy of reconstructions of the data in the

following chapters is the dice score. The dice score measures the similarity between the

ground truth and the generated data. The dice score is calculated as follows:

Dice =
2× |A ∩B|
|A|+ |B|

where A and B are the ground truth and the generated data, respectively. The dice score

is a value between 0 and 1, where 1 is the best possible score.

13

CHAPTER 2. PRUNING NEURAL NETWORKS USING BAYESIAN
INFERENCE

2.1 Introduction

In artificial neural networks (ANN) and machine learning (ML), parameters represent what

the network has learned from the data. The number of parameters in a neural network

can determine its capacity to learn. With advancements in hardware capabilities, we can

now define larger models with millions of parameters. The ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) and its winners over the years demonstrate how the error

rate has decreased with an increase in the number of parameters and connections in neural

networks. For instance, in 2012, AlexNet (Krizhevsky et al., 2012), one of the convolutional

neural networks (CNNs), had over 60M parameters. The large language model, Generative

Pre-trained Transformer 3 (GPT-3) (Brown et al., 2020), comprises 175 billion parameters.

Even though deep neural networks with large number of parameters capture intricate

underlying patterns, the large number of parameters can introduce computational challenges,

overfitting, and lack of generalizability. To address these issues, various methods have been

developed.

Neural network pruning is a widely used method for reducing the size of deep learning

models, thereby decreasing computational complexity and memory footprint (LeCun et al.,

1989; Han et al., 2015b; Zhou et al., 2021). Pruning is crucial for deploying large models

on resource-constrained devices such as personal computers, mobile phones and tablets.

Pruning can also be used to reduce the carbon footprint of deep learning models by reducing

the computational requirements (Strubell et al., 2019). Pruning can also be used to improve

the interpretability of deep learning models by removing redundant neurons or connections.

Pruning methods can be classified into mainly three categories, weight pruning, neuron

pruning, and filter pruning (Han et al., 2015a; Srivastava et al., 2014; Li et al., 2017; He et al.,

2018). Weight pruning involves removing individual weights from the network based on

their magnitude or other criteria, neuron pruning and filter pruning involve removing entire

neurons or filters that are not important. Even though pruning methods can effectively

14

reduce network size and improve performance, they often lack a principled approach for

selecting the most important weights or neurons (Blalock et al., 2020).

In Bayesian neural networks, the weights of the network are treated as random variables

with a prior distribution, which can be updated to get a posterior distribution using Bayes’

rule. It allows us to quantify the uncertainty associated with each weight and select the most

important weights based on their relevance to the task the network is being trained for. The

posterior distribution reflects our updated belief about the weights based on the observed

data and can be used to calculate the probability of each weight being important for the

task at hand. Variational inference, which involves minimizing the Kullback-Leibler (KL)

divergence between the true posterior and an approximate posterior, is a common approach

for approximating the posterior distribution for neural network pruning (Dusenberry et al.,

2019; Blundell et al., 2015). Other approaches include Monte Carlo methods and Markov

chain Monte Carlo (MCMC) sampling (Molchanov et al., 2019). However, these methods

are computationally expensive and can prove to be difficult to be scaled to large networks.

In this chapter, we propose a Bayesian pruning algorithm based on Bayesian hypothesis

testing. It provides a principled approach for pruning a neural network to a desired size

without sacrificing accuracy. We compare two neural network models at every training

iteration, the original unpruned network, and the pruned network. This comparison helps

us to determine which model fits the data better. The ratio of the posterior probabilities of

the pruned network to the posterior probabilities of the unpruned network (Bayes factor)

can be then used to determine whether to prune the network further or skip pruning at

the next iteration. This approach enables us to implement this method in regular neural

networks without the need for additional parameterization as in the case of Bayesian neural

networks.

2.2 Theory

The following sections provide a brief overview of the theoretical concepts and techniques

used in this chapter.

15

2.2.1 Neural Network Pruning

Neural network pruning is a technique used to reduce the size and complexity of a neural

network by removing unnecessary connections and neurons. It is used to improve the

efficiency and computational performance of neural networks. The concept of sparsity is

central to neural network pruning. Sparsity refers to the proportion of connections (weights)

in a network that are zero. A sparse network has a high proportion of zero weights, while a

dense network has a low proportion of zero weights. Sparsity is desirable in neural networks

because it leads to computational and memory savings, as zero weights do not contribute

to the network’s output. There are various methods of neural network pruning, such as

weight pruning, neuron pruning, and filter pruning.

Figure 2: Neural network pruning.

Weight Pruning

Weight pruning is the simplest form of neural network pruning. Weight pruning involves

removing the connections between neurons. This method reduces the number of connections

in the network, which results in a smaller and more efficient network. The weights are

usually ranked based on their magnitudes, and the ones with the lowest magnitudes are

removed.

Weight pruning can be performed during training or after training based on a threshold

16

value or a predefined percentage of weights to prune. During training, the threshold value

is updated at each iteration based on the current weights. After training, the threshold

value is determined based on a validation set or a predefined percentage of weights to

prune. Weight pruning can be combined with regularization techniques such as L1 or L2

regularization to encourage sparsity during training.

Neuron Pruning

Neuron pruning involves removing entire neurons from the network. This method reduces

the size of the network by removing unnecessary neurons that do not contribute significantly

to the network’s output. Neuron pruning can be done in various ways, such as removing

neurons based on their activations or using clustering techniques. Dropout (Srivastava

et al., 2014) is a form of neuron pruning that is used during training to prevent overfitting.

Dropout randomly removes neurons from the network during training, which forces the

network to learn more robust features.

Filter Pruning

Filter pruning involves removing entire filters from convolutional neural networks (CNNs).

This method reduces the number of filters in the convolutional neural network, which results

in a smaller and more efficient network. The filters are usually ranked based on their

importance, and the ones with the lowest importance are removed.

Structural Pruning

Structural pruning involves removing entire neurons, layers, or even subnetworks from a

neural network. Structural pruning can be more effective than weight pruning in reducing

the network’s size and complexity, as it removes entire computational units rather than

individual weights. Structural pruning can be performed using various criteria, such as

the magnitude of the neuron’s output or the importance of the layer in the network’s

performance. Structural pruning can also be combined with weight pruning and regularization

techniques to achieve further reductions in size and complexity.

In this chapter, we use weight pruning to prune a neural network to a desired level of

17

sparsity. Rather than pruning the network based on a threshold that is calculated during

training or after training, we prune a percentage of the weights from each layer to achieve

the desired level of sparsity for the network as,

wnew = w ·m

where wnew is the new weight of layer, w is the original weight of the layer, and m is the

mask. The mask m is a binary vector that indicates which weights to prune. The mask

is calculated based on the percentage of weights to prune to achieve the desired level of

sparsity. We use Bayesian hypothesis testing to determine whether to prune or not prune

the network at each iteration. The following section provides an overview of Bayesian

hypothesis testing.

2.2.2 Bayesian Hypothesis Testing

In Bayesian hypothesis testing, hypotheses are expressed as probability distributions over

the parameters of interest. The prior distribution represents our initial beliefs about

the parameters before observing any data, while the posterior distribution represents our

updated beliefs after observing the data.

Bayes hypothesis testing serve as a Bayesian alternative to classical hypothesis testing. In

frequentist hypothesis testing, there exists an asymmetric relationship between the null

hypothesis (H0) and alternative hypothesis (H1). The decision to accept or reject the null

hypothesis over the alternative hypothesis is based on the collected data, utilizing only

the data likelihood P (D|H0) under the null hypothesis to generate a p-value that guides

the decision rule. Instead of making a binary decision (reject or fail to reject the null

hypothesis), we can compare the posterior probabilities of different hypotheses to assess the

strength of evidence in favor of one hypothesis over another.

For hypotheses representing two models, the null hypothesisH0 : θ =Mk and the alternative

hypothesis H1 : θ =Ml, the posterior probabilities are computed using Bayes’ rule as

18

P (H0 : θ =Mk|D) =
P (D|H0)P (H0)

P (D)

P (H1 : θ =Ml|D) =
P (D|H1)P (H1)

P (D)

where P (H0) and P (H1) are the prior probabilities of the null and alternative hypotheses,

P (D) is the marginal likelihood or evidence. If P (H0|D) > P (H1|D), there is more evidence

in favor of the null hypothesis. Conversely if P (H0|D) < P (H1|D), there is more evidence

in favor of the alternative hypothesis. The Bayes factor (Kass and Raftery, 1995), the ratio

of the posterior probability of the alternative hypothesis to the posterior probability of the

null hypothesis is calculated as

BF01 =
P (H1 : θ =Ml|D)

P (H0 : θ =Mk|D)
=
P (D|H1)P (H1)

P (D|H0)P (H0)

where P (H0) and P (H1) are the prior probabilities of the null and alternative hypotheses,

respectively. The Bayes factor quantifies how much more probable the data is under the

alternative hypothesis than it is under the null hypothesis. A Bayes factor greater than

1 indicates that the alternative hypothesis is more likely than the null hypothesis, while a

Bayes factor less than 1 indicates that the null hypothesis is more likely than the alternative

hypothesis. Interpreting the Bayes factor is subjective, depending on the field and context

of the study.

2.3 Methods

2.3.1 Pruning Neural Networks using Bayesian Inference

The pruning system, depicted in Figure 3, incorporates pruning into the training process.

The training data is divided into batches and processed by the neural network through a

forward pass, consisting of matrix multiplications and non-linear activations. The network’s

output is compared with the ground truth labels to compute the loss. The gradients of the

weights are then computed through backpropagation, and an optimizer such as SGD or

Adam (Kingma and Ba, 2015) is used to update the weights. After each epoch, the weights

19

are pruned using the pruning algorithm, and the pruned weights are used in the subsequent

epochs. The pruning algorithm leverages Bayesian hypothesis testing.

Figure 3: Pruning system block diagram.

To test the hypothesis that the pruned network fits the data better than the unpruned

network, we define the null hypothesis as the unpruned network fitting the data better

(θ = ψ) and the alternative hypothesis as the pruned network fitting the data better (θ = ϕ).

The Bayes factor, which is the ratio of the posterior probability of the alternative hypothesis

to the posterior probability of the null hypothesis, is computed as follows:

Bayes factor =
P (θ = ϕ|D)

P (θ = ψ|D)

Here, D represents the training data.

The posterior probability of the null hypothesis (P (θ = ψ|D)) is computed as:

P (θ = ψ|D) =
P (D|θ = ψ)P (θ = ψ)

P (D)

Similarly, the posterior probability of the alternative hypothesis (P (θ = ϕ|D)) is computed

as:

P (θ = ϕ|D) =
P (D|θ = ϕ)P (θ = ϕ)

P (D)

20

The Bayes factor is then calculated as the ratio of the posterior probabilities:

Bayes factor =
P (D|θ = ϕ)P (θ = ϕ)

P (D|θ = ψ)P (θ = ψ)

A Bayes factor greater than 1 indicates that the pruned network fits the data better, while

a value less than 1 indicates that the unpruned network fits the data better.

For a classification problem, the likelihood of the data is given by the categorical cross-

entropy loss function:

log p(ypred|ytrue) = log C(softmax(ypred))ytrue

Here, ypred represents the neural network’s predictions for the classes, and ytrue is the ground

truth. A Gaussian prior with mean µ and variance σ2 is used for weights:

p(w) = N (µ, σ2)

The log prior and log likelihood for the weight parameters are used to compute the log

posterior distribution of the weights:

log p(w|D) = log p(D|w) + log p(w)

The log posterior is calculated before and after weight pruning to compute the Bayes factor.

If the Bayes factor exceeds a predefined threshold, a certain percentage (r) of the weights

are pruned as,

wnew = wold ⊙m (1)

where ⊙ represents element-wise multiplication, wold is the old weight matrix, and m is

the binary mask indicating which weights should be pruned (i.e., have a value of 0) and

21

which weights should be kept (i.e., have a value of 1). The resulting matrix wnew has the

same dimensions as wold, but with some of its weights pruned. Algorithm 1 outlines the

Bayesian pruning process.

Algorithm 1 Bayesian Pruning Algorithm

Input: Trained neural network f(·, θ), pruning rate r, dataset D = (xi, yi)
n
i=1, β Bayes

factor threshold Output: Pruned neural network fr(·, θ)

Compute the posterior probability of the weights before pruning

3: if BF01 > β then

Prune r percentage of weights f(·, θ)

end if

6: Compute the posterior probability of the weights after pruning

Compute the Bayes factor using the posterior probabilities before and after pruning

In the following sections, we introduce two pruning algorithms that utilize this framework:

random pruning, which randomly selects weights for pruning, and magnitude pruning, which

prunes weights based on their magnitude.

Random pruning

Random pruning is a simple pruning algorithm that randomly selects weights to prune. Here

we set the pruning rate to be the desired level of sparsity that we are looking to achieve.

After an epoch, we count the number of non-zero parameters in the network and randomly

zero out just enough parameters to achieve the desired level of sparsity. The algorithm is

summarized in Algorithm 2.

22

Algorithm 2 Bayesian Random Pruning

1: f(·, θ): Neural network model with parameters θ
2: r: Desired sparsity level, β Bayes factor threshold
3: Calculate log posterior probability p(θ|D)
4: if BF01 > β then
5: for all weights wi ∈ θ do
6: n← size(wi)
7: number of weights to prune, k ← (n× r)
8: I ← indices of non zero weights
9: nz ← number of zero weights

10: k′ ← k − nz
11: J ← random sample(I, k′)
12: set elements in wi at indices J to zero
13: end for
14: end if
15: Calculate log posterior probability p(θ|D) after pruning
16: Calculate Bayes factor BF01

Magnitude-based pruning

Magnitude-based pruning is a pruning algorithm that selects weights to prune based on

their magnitude. This can be seen as pruning weights that are less important. Here we

set the pruning rate to be the desired level of sparsity that we are looking to achieve. The

lowest weights corresponding to the desired level of sparsity is pruned to get the pruned

network. The algorithm is summarized in Algorithm 3.

Algorithm 3 Bayesian Magnitude Pruning

1: f(·, θ): Neural network model with parameters θ
2: r: Desired sparsity level, β Bayes factor threshold
3: Calculate log posterior probability p(θ|D)
4: if BF01 > β then
5: for all weights wi ∈ θ do
6: n← size(wi)
7: number of weights to prune, k ← (n× r)
8: wi ← sort(wi)
9: set k elements in wi to zero

10: end for
11: end if
12: Calculate log posterior probability p(θ|D) after pruning
13: Calculate Bayes factor BF01

23

2.4 Experiments

To evaluate the performance of Bayesian Random Pruning and Bayesian Magnitude Pruning,

we conduct experiments on three datasets and two neural network architectures for five

different levels of desired sparsity. The five different levels of sparsity are 25%, 50%, 75%,

90% and 99%. We use the Adam optimizer with a learning rate of 0.001 and a batch size

of 64 for all experiments. We use the PyTorch DataLoader class to load and preprocess the

data. Preprocessing only consist of normalizing the dataset and does not include any data

augmentation like random cropping or flipping of images to have less confounding variables

in the studies we conduct to observe the effects of our pruning algorithm. We train the

network for 25 epochs on the training set and evaluate its performance on the test set. We

evaluate the performance of each method in terms of the accuracy of predictions it makes

for the target classes using the test set.

Datasets

The following sections describe the datasets and neural network architectures used in our

experiments.

MNIST dataset The MNIST dataset (LeCun et al., 1998) consists of 60,000 training

images and 10,000 test images of handwritten digits. Each image is 28 × 28 pixels and is

grayscale. The images are normalized to have zero mean and unit variance. The images

are flattened into a 784-dimensional vector and fed into the neural network. The network

is trained to classify the images into one of the 10 classes.

MNIST-Fashion dataset The MNIST-Fashion dataset (Xiao et al., 2017) consists of

60,000 training images and 10,000 test images of fashion items. Each image is 28×28 pixels

and is grayscale. The images are normalized to have zero mean and unit variance. The

images are flattened into a 784-dimensional vector to be fed into the fully connected neural

network. The network is trained to classify the images into one of the 10 classes.

CIFAR-10 dataset The CIFAR-10 dataset (Krizhevsky, 2009) consists of 50,000 training

images and 10,000 test images of 10 classes of objects. Each image is 32 × 32 pixels and

24

is RGB. The images are normalized to have zero mean and unit variance. The images are

flattened into a 3072-dimensional vector and fed into the neural network. The network is

trained to classify the images into one of the 10 classes.

Neural Network Architectures

The two neural network architectures used in our experiments are the Fully Connected

Network (FCN) and the Convolutional Neural Network (CNN). The same architectures are

used for all three datasets. The FCN consists of two hidden layers. The output of the last

fully connected layer is fed into a softmax layer to get the class probabilities. The CNN

consists of two convolutional layers with 32 and 64 filters respectively followed by two fully

connected layers. Each convolutional layer is followed by a max pooling layer with a kernel

size of 2 and stride of 2. The output of the second max pooling layer is flattened and fed

to the fully connected layers. The output of the fully connected layer is fed into a softmax

layer to get the class probabilities.

25

Figure 4: Fully connected neural network architecture

The network architecture of the fully connected network (FCN) is seen in Figure 4. Equation

2 describes the forward pass of the network.

h1 = ReLU(W1x+ b1)

h2 = ReLU(W2h1 + b2)

y = W3h2 + b3

(2)

where x is the input, h1 and h2 are the two hidden layers, y is the output, W1, W2 and

W3 are the weight matrices, b1, b2 and b3 are the bias vectors, and ReLU(·) is the rectified

linear unit activation function.

26

Figure 5: Convolutional neural network architecture

The network architecture of the convolutional neural network (CNN) is seen in Figure 5.

Equation 3 describes the forward pass of the network.

27

h1 = ReLU(Conv2d(x,W1) + b1)

h2 = MaxPool2d(h1)

h3 = ReLU(Conv2d(h2,W2) + b2)

h4 = MaxPool2d(h3)

h5 = ReLU(W3h4 + b3)

h6 = ReLU(W4h5 + b4)

y = W5h6 + b5

(3)

where x is the input, h1, h2, h3, h4 · · · h6 are the hidden layers, y is the output, W1,

W2, · · · W5 are the weight matrices, b1, b2, · · · b5 are the bias vectors, Conv2d(·) is the

convolutional layer, MaxPool2d(·) is the max pooling layer, and ReLU(·) is the rectified

linear unit activation function.

2.5 Results

The following sections present the results of the experiments. The results are presented

in the following order: (1) MNIST dataset, (2) CIFAR-10 dataset, and (3) CIFAR-100

dataset. The results are presented in the form of learning curves, accuracy, and sparsity.

The learning curves show the training and validation loss as a function of the number of

epochs. The accuracy is the percentage of correctly classified images in the test set. The

sparsity is the percentage of weights that are pruned in the network. The sparsity levels

are 25%, 50%, 75%, 90%, and 99%. The results are presented for both random pruning

and magnitude pruning under a Bayesian framework. The results are compared to baseline,

which is the model trained without pruning. The results are presented for both FCN and

CNN architectures.

MNIST dataset

Figure 6 shows the learning curves for random pruning, magnitude pruning under a Bayesian

framework compared to baseline in a fully connected network (FCN) trained on the MNIST

dataset. Here the desired level of sparsity is 75%. The figure has two subplots. One shows

28

the training and validation loss as a function of the number of epochs, the other plot (right)

shows the Bayes factor, sparsity as a function of the number of epochs. More figures for

different sparsity levels are shown in Appendix A7.1.

Figure 6: MNIST (FCN 75%) learning curves for the Bayesian pruning method.

The training loss is the average loss over the training set, and the validation loss is the

average loss over the validation set. The figure shows that the training loss decreases as the

number of epochs increases, and the validation loss starts to decrease in about 5 epochs.

The training loss decreases faster than the validation loss, which indicates that the model

is overfitting the training data. As pruning begins, it affects the training and validation

loss of both random and magnitude pruning as seen the curves. There are large oscillations

in loss values for random pruning as seen in the figure. The Bayes factor begins to reduce

as the number of epochs increases and the sparsity of the network becomes stabilized for

magnitude pruning, but it remains fluctuating for random pruning and shows an increasing

trend for the Bayes factor suggesting that Bayesian random pruning fits the data better

during the training epochs.

29

Figure 7: Validation loss of random pruning for different sparsity levels.

Figure 7 shows the validation accuracy of random pruning for different sparsity levels. For

25% sparsity the validation accuracy seems to be the highest. Then as the sparsity level

increases the validation accuracy begins to decrease. Until 90% sparsity the validation

accuracy remains to have a downward trend and combats overfitting compared to the

baseline. The network only starts to become worse at 99% sparsity.

Figure 8: Validation loss of magnitude pruning for different sparsity levels.

Figure 8 shows the validation accuracy of magnitude pruning for different sparsity levels. For

25% sparsity the validation accuracy remains similar to the baseline. Then as the sparsity

level increases the validation accuracy starts to improve, but the network still overfits the

30

data until 99% of the parameters are pruned.

Figure 9: MNIST (CNN 75%) learning curves for the Bayesian pruning method.

Figure 9 shows the learning curves for random pruning, magnitude pruning under a Bayesian

framework compared to baseline in a convolutional neural network (CNN) trained on the

MNIST dataset. The number of parameters in the CNN are comparatively larger than that

of the FCN. This causes the effects of overfitting to be seen a little later in the training

period and less overfitting compared to the FCN at 75% sparsity. Bayes factor for random

pruning is higher than that of magnitude pruning, which suggests that Bayesian random

pruning fits the data better. More figures for different sparsity levels are shown in Appendix

A7.1.

Figure 10: Validation loss of random pruning for different sparsity levels.

31

Figure 10 shows the validation accuracy of random pruning for different sparsity levels.

As the number of parameters of the CNN is larger than that of the FCN, the validation

accuracy remains similar to the baseline until 90% sparsity. Then as the sparsity level

increases the validation accuracy begins to decrease.

Figure 11: Validation loss of magnitude pruning for different sparsity levels.

Figure 11 shows the validation accuracy of magnitude pruning for different sparsity levels.

Even pruning 99% of the parameters does not affect the validation accuracy of the CNN.

This is because the CNN has an enormous number of parameters and the network overfits

the data even after pruning 99% of the parameters.

MNIST Fashion

Figure 12 shows the learning curves for random pruning, magnitude pruning under a

Bayesian framework compared to baseline in a fully connected network (FCN) trained on

the MNIST Fashion dataset. Here the desired level of sparsity is 90%. The figure has two

subplots. One shows the training and validation loss as a function of the number of epochs,

the other plot (right) shows the Bayes factor, sparsity as a function of the number of epochs.

More figures for different sparsity levels are shown in Appendix A7.2.

32

Figure 12: MNIST-Fashion (FCN 90%) learning curves for the Bayesian pruning method.

The training loss is the average loss over the training set, and the validation loss is the

average loss over the validation set. The figure shows that the training loss decreases as the

number of epochs increases, and the validation loss starts to decrease in about 5 epochs.

The training loss decreases faster than the validation loss, which indicates that the model is

overfitting the training data. As pruning begins, it affects the training and validation loss

of both random and magnitude pruning as seen the curves. There are large oscillations in

loss values for random pruning. The Bayes factor begins to reduce as the number of epochs

increases and the sparsity of the network becomes stabilized for magnitude pruning, but

it remains fluctuating for random pruning. Bayesian random pruning model fits the data

better than magnitude pruning model.

Figure 13: Validation loss of random pruning for different sparsity levels.

33

Figure 13 shows the validation accuracy of random pruning for different sparsity levels.

Similar to the MNIST dataset, the validation loss is the lowest for 25% sparsity. Then as

the sparsity level increases the validation accuracy begins to decrease.

Figure 14: Validation loss of magnitude pruning for different sparsity levels.

Figure 14 shows the validation accuracy of magnitude pruning for different sparsity levels.

Higher levels of sparsity improves the validation accuracy of the FCN. The effects of

overfitting are reduced as the number of parameters are reduced.

Figure 15: MNIST-Fashion (CNN 90%) learning curves for the Bayesian pruning method.

Figure 15 shows the learning curves for random pruning, magnitude pruning under a

Bayesian framework compared to baseline in a convolutional neural network (CNN) trained

on the MNIST Fashion dataset. Here the desired level of sparsity is 90%. The figure has

34

two subplots. One shows the training and validation loss as a function of the number of

epochs, the other plot (right) shows the Bayes factor, sparsity as a function of the number

of epochs.

The number of parameters in the CNN are comparatively larger than that of the FCN. This

causes the effects of overfitting to be seen a little later in the training period. The trends

in the learning curves are similar to that of the FCN. The validation accuracy for random

pruning decreases at the beginning of training and starts to improve as training progresses.

The Bayes factor begins to reduce as the number of epochs increases and the sparsity of the

network becomes stabilized for magnitude pruning, but it remains fluctuating for random

pruning and shows an increasing trend for the Bayes factor. Bayesian random pruning

model fits the data better than magnitude pruning model.

Figure 16: Validation loss of random pruning for different sparsity levels.

Figure 16 shows the validation accuracy of random pruning for different sparsity levels. The

trends are similar to the MNIST dataset. The validation accuracy is better for 25% sparsity

and decreases as the sparsity level increases. Sparsity levels up to 90% helps in reducing

the effects of overfitting.

Figure 17 shows the validation accuracy of magnitude pruning for different sparsity levels.

Similar to the MNIST dataset, magnitude pruning helps in reducing the effects of overfitting.

35

Figure 17: Validation loss of magnitude pruning for different sparsity levels.

The validation loss continues to improve as 99% sparsity is achieved.

CIFAR-10 dataset

Figure 18 shows the learning curves for random pruning, magnitude pruning under a

Bayesian framework compared to baseline in a fully connected network (FCN) trained on

the CIFAR-10 dataset. Here the desired level of sparsity is set to 90%. The figure has

two subplots. One shows the training and validation loss as a function of the number of

epochs, the other plot (right) shows the Bayes factor, sparsity as a function of the number

of epochs. More figures for different sparsity levels are shown in Appendix A7.3.

Figure 18: CIFAR-10 (FCN 90%) learning curves for the Bayesian pruning method.

Unlike the MNIST, Fashion datasets the input images of CIFAR-10 dataset are of size

36

32x32x3. This causes the number of parameters in the FCN to be much larger than that of

the MNIST, Fashion datasets. This causes the effects of overfitting to be seen a little later

in the training period. The trends in the learning curves are similar to that of the MNIST,

Fashion datasets. The validation accuracy for random pruning decreases at the beginning

of training and starts to improve as training progresses. The Bayes factor begins to reduce

as the number of epochs increases and the sparsity of the network becomes stabilized for

both magnitude pruning and random pruning.

Figure 19: Validation loss of random pruning for different sparsity levels.

Figure 19 shows the validation accuracy of random pruning for different sparsity levels.

Due to the larger network size, the effects of overfitting are higher. The trends for random

pruning remains similar to that of the MNIST, Fashion datasets. The validation accuracy

is better for 25% sparsity and decreases as the sparsity level increases.

37

Figure 20: Validation loss of magnitude pruning for different sparsity levels.

Figure 20 shows the validation accuracy of magnitude pruning for different sparsity levels.

The trends remain the same as that of the MNIST, Fashion datasets. Both Bayesian ranom

and Bayesian magnitude pruning helps in reducing the effects of overfitting. The validation

loss continues to improve as 99% sparsity is achieved. Bayesian random pruning model fits

the data better than magnitude pruning model.

Figure 21: CIFAR-10 (CNN 90%) learning curves for the Bayesian pruning method.

Figure 21 shows the learning curves for random pruning, magnitude pruning under a

Bayesian framework compared to baseline in a convolutional neural network (CNN) trained

on the CIFAR-10 dataset. Here the desired level of sparsity is set to 90%. The figure has two

subplots. One shows the training and validation loss as a function of the number of epochs,

the other plot (right) shows the Bayes factor, sparsity as a function of the number of epochs.

38

The learning trends are similar to that of the FCN. The validation accuracy for random

pruning decreases at the beginning of training and starts to improve as training progresses.

The Bayes factor begins to increase for magnitude pruning and sparsity fluctuates as training

progresses. For random pruning the Bayes factor begins to reduce as the number of epochs

increases and the sparsity of the network becomes stabilized. More figures for different

sparsity levels are shown in Appendix A7.3.

Figure 22: Validation loss of random pruning for different sparsity levels.

Figure 22 shows the validation accuracy of random pruning for different sparsity levels. The

trends of random pruning is similar to that of the MNIST, Fashion datasets. The effects of

overfitting are reduced by pruning. The validation accuracy decreases as the sparsity level

increases to 99%.

39

Figure 23: Validation loss of magnitude pruning for different sparsity levels.

Figure 23 shows the validation accuracy of magnitude pruning for different sparsity levels.

The trends are similar to that of the MNIST, Fashion datasets. Magnitude pruning helps in

reducing the effects of overfitting. The validation loss continues to improve as 99% sparsity

is achieved.

40

Table 1: Accuracy values at different sparsity levels

Dataset Model Unpruned Sparsity Random Bayes Random Magnitude Bayes Magnitude

MNIST

FCN 0.9782

25.0% 0.9684 0.9747 0.9801 0.9759
50.0% 0.9684 0.9710 0.9791 0.9791
75.0% 0.9578 0.9706 0.9779 0.9812
90.0% 0.9624 0.9657 0.9768 0.9772
99.0% 0.9433 0.9439 0.9743 0.9767

CNN 0.9918

25.0% 0.9908 0.9835 0.9910 0.992
50.0% 0.9858 0.9906 0.9900 0.9901
75.0% 0.9872 0.9905 0.9905 0.9892
90.0% 0.9806 0.9791 0.9880 0.9888
99.0% 0.1135 0.1135 0.9826 0.9804

Fashion

FCN 0.8733

25.0% 0.8699 0.8739 0.8744 0.8778
50.0% 0.8659 0.8566 0.8725 0.8753
75.0% 0.8535 0.8558 0.8800 0.8799
90.0% 0.8416 0.8443 0.8750 0.8675
99.0% 0.8076 0.8212 0.8573 0.8573

CNN 0.9028

25.0% 0.8905 0.9030 0.8959 0.9002
50.0% 0.8957 0.9021 0.8906 0.8982
75.0% 0.8838 0.8773 0.8894 0.8974
90.0% 0.8520 0.8589 0.8986 0.9022
99.0% 0.7851 0.7083 0.8595 0.8768

CIFAR-10

FCN 0.4869

25.0% 0.5233 0.5227 0.4857 0.4908
50.0% 0.5136 0.5111 0.4981 0.5010
75.0% 0.4950 0.4972 0.5109 0.5086
90.0% 0.4643 0.4589 0.5314 0.5198
99.0% 0.4158 0.4381 0.4973 0.4932

CNN 0.6606

25.0% 0.6558 0.6574 0.6522 0.6557
50.0% 0.6732 0.6764 0.6391 0.6570
75.0% 0.6205 0.6526 0.6409 0.6528
90.0% 0.5169 0.5092 0.6467 0.6437
99.0% 0.1000 0.1000 0.5172 0.5537

41

The accuracy values at different sparsity levels for pruned networks are presented in Table

1. The networks were trained for 25 epochs, and the experiment was repeated 5 times with

different random seeds for averaging the results. The table demonstrates that the Bayesian

pruning method achieves higher sparsity levels without sacrificing accuracy. It outperforms

unpruned networks and shows comparable or better accuracy compared to traditional neural

network pruning techniques.

2.6 Discussion

Neural networks with a large number of parameters can learn complex functions but are

prone to overfitting and are unsuitable for compute-constrained devices. Neural network

pruning addresses both these challenges by reducing the network size. The iterative pruning

method that we have introduced allows for pruning to a desired level of sparsity without

losing any accuracy compared to the baseline. It allows for the network learn a function

with fewer connections in principled manner as it checks to see if the network configuration

is a good fit for the data. The extensive experiments conducted on three different datasets,

two different network types, show that it’s an effective method to train neural networks

with additional parameterization.

42

CHAPTER 3. AN INTERPRETABLE MODEL FOR VOLUMETRIC
DATA USING MCMC METHODS

3.1 Introduction

Medical imaging is an important step for diagnosis, treatment planning, intraoperative

navigation, and research. Advanced imaging techniques such as CT and MRI can provide

highly detailed images of internal organs, tissues, and bones, enabling doctors to diagnose,

plan and perform complex procedures with greater precision. With the availability of large

datasets of segmented CT and MRI data Simpson et al. (2019), there lies an opportunity to

leverage the power of neural networks to model medical image data for automated diagnosis,

treatment planning and interoperative navigation.

However, neural networks are often considered to be black boxes (Molnar et al., 2020),

making it difficult to know why they work well or fail sometimes. This can be problematic

in a healthcare setting (London, 2019), where the decisions made by a neural network can

have a significant impact on patient outcomes. For example, a neural network model that is

used to predict the location of the source of an arrhythmia, can guide an electrophysiologist

to perform ablation in that area. If the model is not transparent, it may be difficult to

determine whether the model is making an accurate prediction or if it is biased in some

way. In addition, neural networks are often trained on large datasets that may not be

representative of the population of interest. This can lead to models that are not accurate

for the population of interest, which can have serious consequences in clinical settings. So, it

is important to develop models that are interpretable and can provide valuable information

to stakeholders about the model’s performance and confidence in its predictions.

There is very limited research on the use of interpretable generative neural networks for

medical image data. In this chapter, we present a an interpretable model for volumetric

data using MCMC methods. These models are trained on segmented CT or MRI data

to learn the underlying patterns. Our method incorporates a fully Bayesian approach

to account for uncertainties in the model, providing valuable information to stakeholders

about areas within the volume where the model exhibits different levels of confidence. We

43

also introduce a method to visualize the uncertainty in the reconstructed volume, enabling

the identification of regions that are less certain compared to others. This can be useful

for many applications in medical imaging, including diagnosis, treatment planning, and

intraoperative navigation. The last chapter of this dissertation will discuss the application

of this method in cardiac ablation procedures.

3.2 Theory

The following sections provide a brief introduction to the theoretical concepts and frameworks

that are used in the methods section of this chapter.

3.2.1 Latent variable models

Latent variable models are a class of statistical models known as probabilistic graphical

models (PGM) that are widely used in machine learning, statistics, and other fields to model

complex systems and data. In a latent variable model, the observed data are modeled as

a function of unobserved or hidden variables, known as latent variables, which capture the

underlying patterns or structure of the data.

Figure 24: A latent variable model.

Figure 24 shows the structure of a latent variable model. Here there are a set of global

parameters θ that consists of weights and biases which are shared by the latent variables h

44

and the data v, which would be voxel data. Following is its joint probability distribution,

P (θ, h, v) = P (θ) ∗ P (h|v, θ) ∗ P (v|h, θ) (4)

where the joint probability of the global parameters θ, latent variables h, and data v is the

product of the prior distribution of the global parameters P (θ), the conditional distribution

of the latent variables given the data P (h|v, θ), and the conditional distribution of the data

given the latent variables P (v|h, θ). The prior distribution of the global parameters P (θ)

is a distribution over the global parameters θ that captures our prior beliefs about the

global parameters θ. The conditional distribution of the latent variables given the data

P (h|v, θ) is a distribution over the latent variables h that captures the relationship between

the latent variables h and the data v. The conditional distribution of the data given the

latent variables P (v|h, θ) is a distribution over the data v that captures the relationship

between the data v and the latent variables h.

3.2.2 Approximate Bayesian Inference

In many cases, the posterior distribution many not be analytically tractable. In case of

a latent variable which involves volumetric data, computing the partition function, also

known as the normalizing constant, involves summation over all possible configurations of

the data v and the hidden variables h, making it computationally expensive to calculate the

posterior distribution. Approximate Bayesian inference refers to a family of methods used

to approximate the posterior distribution in Bayesian inference when analytical solutions

are not feasible.

Two commonly used methods for approximating the posterior distribution are Markov chain

Monte Carlo (MCMC) methods and variational inference (VI). In this chapter we will use

MCMC methods to approximate the posterior distribution of the latent variable model.

Following sections will provide a brief introduction to MCMC methods.

45

3.2.3 Markov chain Monte Carlo (MCMC) methods

MCMCmethods provide numerical approximations to multi-dimensional integrals. A Markov

chain can be constructed to sample from an otherwise intractable posterior distribution.

This is done by constructing a Markov chain that progresses to a stationary state which

approximately resembles the desired posterior probability distribution. Once this stationary

state is achieved, states can be recorded as samples to compute the mean or variance of the

distribution. MCMC provides unbiased estimates, so we can get very accurate results as

the number of samples are increased.

Markov Chains

A Markov chain is a stochastic model which can be used to represent transitions from one

state to another in a system which can have infinitely many states. They satisfy the Markov

property of requiring only the knowledge of the present state and not on any of the past

states to move to next state. Markov chains solely depend on the present state and time

elapsed or number of steps taken after the initial state. Markov chains can be used to model

a lot of real world problems which satisfies the Markov property. In a latent variable model

we will use it to model learning latent representation of data and reconstructing the data

from the latent representation. The following section will provide a brief introduction to

Markov chains.

Figure 25: A Markov chain.

The transition probability of a Markov chain of n random variables X0, X1, X2, . . . Xn

satisfies the rule of conditional independence,

46

PXtXt+1 = P (Xt+1 = j| Xt = i) = P (Xt+1 = j| Xt = i, X0, . . . Xt−1)

For our purposes we will be looking at discrete-time time-homogenous Markov chains. In

such Markov chains each time step involves only one transition and the next state is also

independent of how much time has already gone by. In a time homogenous Markov chain

means that any state transition is independent of time.

P (Xt+1 = j| Xt = i) = P (Xt = i|Xt−1 = h)

These Markov chains become time invariant as time progresses to a point where the chain

stabilizes to achieve a stationary distribution. Subsequent transitions do not change the

probability distribution. The stationary distribution of a Markov chain can be represented

by a row vector π with its elements being probabilities that sum up to 1 and a transition

matrix P such that

π = π P (5)

We can think of X0 as an image from the training set. All the possible states Xt forms

the state space. We will be using Markov chains for stochastic simulation to sample from

intractable probability distributions using Monte Carlo methods.

Gibbs sampling

Gibbs sampling is a special case of the Metropolis-Hastings algorithm. It is an iterative

algorithm that generates a Markov chain of samples from a joint distribution, by sampling

from its conditional distributions, given the other variables in the joint distribution. Figure

26 shows how Gibbs sampling can be performed for a latent variable model to construct

a Markov chain. Here the chain is constructed to reconstruct the data v from features h

learned from it.

47

Figure 26: Gibbs sampling.

For the joint distribution P (θ, h, v), the Gibbs sampler generates samples of θ, h, v by

iteratively sampling from their conditional distributions, given the current values of the

other variables. Specifically, at each iteration t, the Gibbs sampler generates θ(t), h(t), v(t)

as follows:

θ(t) ∼ p(θ|h(t−1), v(t−1)),

h(t) ∼ p(h|θ(t), v(t−1)),

v(t) ∼ p(v|θ(t), h(t))

The resulting Markov chain has the joint distribution P (θ, h, v) as its stationary distribution,

and is guaranteed to converge to it, provided that certain conditions are satisfied. In

particular, the conditional distributions must be easy to sample from, and the joint distribution

must be such that the chain is irreducible, aperiodic, and positive recurrent.

Gibbs sampling has several advantages over other MCMC methods. First, it is simple to

implement and does not require any tuning parameters. Second, it can be more efficient

than other MCMC methods, especially when the dimensionality of the parameter space is

high which is the case of medical image data. Third, it can be easily parallelized, since the

conditional distributions can be sampled independently. Finally, it can be used to sample

from the posterior distribution of the latent variable model.

48

Model interpretability

Often neural network models don’t offer much insight into its learning process or provide

explanations for the results it generates. In a Bayesian framework, samples from the

posterior distribution of the latent variable model can be used to generate summary statistics

such as mean and variance, which can be used to quantify the uncertainty in the reconstructed

volume. This can be used to identify regions that are less certain compared to others.

Samples generated from the posterior distribution can also be used to visualize individual

features learned by the model. This can be done by sampling from the conditional distribution

of the latent variables given the data,

h ∼ P (h|v, θ) (6)

where h is a sample from the conditional distribution of the latent variables given the data

v and the global parameters θ. Examining the features learned by the model can provide

valuable insights into the model’s learning process and help identify potential problems

with the model. It can also be used to remove redundant features, which can improve the

performance of the model. Low magnitude weights or connections can be removed from the

model to enhance visual interpretation of the model. It also improves the performance of

the model by reducing the number of compute operations. This is specially useful when the

model is being trained on medical images which are high dimensional data.

Model uncertainty quantification

Model uncertainty refers to the uncertainty associated with the choice of a particular model

to represent the data. In machine learning and statistical modeling, model uncertainty arises

due to the fact that there are often multiple models that could potentially explain a given set

of data. Model uncertainty is particularly relevant in situations such as electroanatomical

mapping where the available data are limited or noisy, and where there may be multiple

plausible explanations for the data.

Bayesian inference provides a general framework for addressing model uncertainty by treating

49

the model itself as a parameter to be estimated. This allows for a probabilistic assessment

of the model uncertainty, which can be used to make predictions and conduct inference.

In a latent variable model for volumetric data, the model uncertainty can be quantified

by sampling from the posterior distribution of the latent variable model to reconstruct the

volume,

v̂ =
1

N

N∑
i=1

P (v|h(i), θ(i))

where v̂ is the mean reconstructed volume, N is the number of samples, h(i) is the ith

sample from the conditional distribution of the latent variables given the data v and the

global parameters θ, and θ(i) is the ith sample from the posterior distribution of the global

parameters θ.

The summary statistics such as mean and variance can be used to identify regions that

are less certain compared to others. This can be useful for many applications in medical

imaging, including diagnosis, therapy planning, and intraoperative navigation. We’ll use

this framework both in this chapter and the next chapter to quantify the uncertainty in the

reconstructed volume.

3.3 Methods

The following sections utilize the theoretical frameworks introduced in the previous sections

to construct a 3D anatomical model by utilizing a generative neural network models trained

on segmented CT or MRI data.

3.3.1 A Restricted Boltzmann Machine (RBM) for volumetric data

Restricted Boltzmann Machines (RBM) (Smolensky, 1986; Freund and Haussler, 1991;

Hinton, 2002) are energy based stochastic artificial neural networks that can learn a probability

distribution over its inputs. The structure of an RBM is shown below in Figure 27. It

consist of binary visible (v) and hidden (h) nodes connected by a m × n weight matrix

Wm×n. There are no interconnections between the visible nodes or the hidden nodes and

50

Figure 27: Structure of a Restricted Boltzmann machine

they form a bipartite graph. There is a vector of bias am associated with the visible nodes

and another vector of bias bm associated with the hidden nodes. The energy of a pair of v,

h is given by the following,

E(v, h) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
m∑
i=1

n∑
j=1

wijvihj

Here the visible nodes represent the voxels of a segmented CT/MRI data and the hidden

nodes represent features learned from the dataset. There can be three kinds of parameters

introduced into this network. The parameter wij for strength between a visible and hidden

node, bi for every visible node, cj for every hidden node. The joint probability distribution

of this MRF specifies the probability the network assigns to a pair of visible and hidden

vector and can be written as,

P (v, h) =
1

Z
e−E(v, h)

where the partition function sums over all such pairs of v, h,

Z =
∑
V

∑
H

e−E(v, h)

and is the normalizing constant to make the probability distribution sum to 1. The

probability for an image data or visible vector can be obtained by summing over all the

51

possible hidden vector configurations

P (v) =
1

Z

∑
H

e−E(v, h).

When there are more than a few hidden nodes, it becomes difficult to compute the partition

function as it will have exponentially many terms. So we use Markov chain Monte Carlo

methods such as Gibbs sampling to obtain samples from the model starting from a global

configuration. The conditional distributions for the hidden and visible nodes are used

to construct a Markov chain and run until it reaches its stationary distribution. The

probability of a global configuration at thermal equilibrium is an exponential function of

its energy. Since there are no connection between nodes in a group they are independent.

The conditional probability for visible nodes given hidden nodes are

P (v|h) =
m∏
i

P (vi|h).

This probability values allow us to know how much of the current configuration of hidden

nodes are represented by the image and conversely the conditional probability for hidden

nodes given the visible nodes are

P (h|v) =
n∏
j

P (hj |v).

From the above probabilities we can also estimate the probability of one of the visible or

hidden node being activated. Since there is no connection between visible nodes,

P (hj = 1|v) = σ(
m∑
i=1

wijvi + bj)

P (h|v) =
n∏

j=1

σ(vTW:j + bj) = σ(vTW:i + bj)

52

where σ denotes the logistic sigmoid. Similarly,

P (vi = 1|h) = σ(
n∑

j=1

wijhj + ai)

P (v|h) =
m∏
i=1

σ(vTW:i + ai).

Training the RBM

The goal of training an RBM to be a generative model is to maximize the likelihood of the

training dataset of images. This may prove to be difficult but (Hinton, 2002) showed that

there is a less obvious objective function than log likelihood of the data to optimize called

the Contrastive Divergence which is the difference between two KL divergences.

Figure 28: Single training step of the model

It consists of performing block Gibbs sampling as seen in Figure 28 and batch updates to the

weights and biases of the network similar to stochastic gradient descent in a regular neural

network that uses back propagation for training. The weights and biases of the network

is adjusted to lower the energy of the training image and raise the energy of other images

which are low in energy, thereby making a large contribution to the partition function. The

optimization process is done by taking the gradient of the log likelihood of the data with

respect to the weights and biases of the network. The gradient of the log-likelihood of the

data with respect to a weight is given by

∂

∂wij
logP (v) = ⟨hivj⟩data − ⟨hivj⟩model.

53

where ⟨.⟩data and ⟨.⟩model denote the expectation over the data and the model distributions,

respectively. The second term in this equation is difficult to compute. In contrastive

divergence learning instead of starting with a randomly initialized visible vector and running

the Gibbs chain for a large number of steps, a data point from the training set is used

as the initial value for the visible vector and k steps of Gibbs sampling is used to get

a reconstruction (k = 1 works well) to get the second term from what is known as the

negative phase of contrastive divergence learning.

∂

∂wij
logP (v) = ⟨hivj⟩data − ⟨hivj⟩recon

where ⟨.⟩recon denotes the expectation over the reconstruction distribution.

Algorithm 4 k-Contrastive Divergence algorithm

Require: v: visible nodes, W: weights, b: visible bias, c: hidden bias, k: number of Gibbs

sampling steps, α: learning rate

1: while not converged do

2: for i = 1 to nbatches do ▷ For each batch (v) of images

3: h← σ(W · v(i) + c) ▷ Positive phase

4: v0 ← v(i)

5: for j = 1 to k do ▷ Negative phase

6: vj ← σ(WT · h+ b)

7: h← σ(W · vj + c)

8: end for

9: W←W + α · (v0 · hT − vk · hT
k)

10: b← b+ α · (v0 − vk)

11: c← c+ α · (h(0) − hk)

12: end for

13: end while

The update rule seen in step (9) in the algorithm above can be written as,

54

∆wij = ϵ (⟨vihj⟩data − ⟨vihj⟩model)

where ϵ is the learning rate, wij is the weight connecting the visible unit i and hidden unit j,

⟨vihj⟩data is the expected value of the product of the visible unit i and hidden unit j under

the data distribution, and ⟨vihj⟩model is the expected value of the product of the visible unit

i and hidden unit j under the model distribution. The biases are updated in a similar way.

Model Interpretability and Inference

After the training procedure, it is possible to examine each feature and infer what the model

has learned from the training dataset. As each voxel is connected to all nodes in the feature

vector, so we can represent the weights as a 3D voxel grid. Figure 29 shows weights of one

of the hidden nodes represented as a voxel grid, before and after pruning low magnitude

weights. The voxels in the cavity of the left atrium are of higher magnitude suggesting that

the model has more certainty on classifying them as being part of the foreground or the left

atrium.

Figure 29: 3D RBM weights before(left) and after(right) pruning.

Different nodes within the network learn distinct features, and there may be correlations

among these features. When there are only few hidden nodes, each node has a more

significant impact on the representation of the volume data. The hidden nodes are forced

55

to work together and correlate their activity to reconstruct the volume data effectively.

Consequently, the features learned by the RBM tend to have higher interdependence and

can exhibit strong correlations. However, as the number of hidden nodes increases, each

hidden node has more freedom to capture different aspects of the data independently. With

more nodes, the hidden layer can distribute the workload among them, allowing different

nodes to specialize in capturing different aspects of the data. This can lead to a reduction

in the correlation between features and improve quality of reconstruction.

After training the RBM, we can obtain the posterior predictive distribution by sampling

from the posterior distribution of the hidden nodes.

The posterior probabilities of hidden nodes given visible nodes, trained weights, hidden

biases are calculated as

p(hj = 1|v,W, c) = σ

(∑
i

Wijvi + cj

)

where hj is the j-th hidden unit.

A binary sample from the posterior distribution of hidden nodes are drawn as

hsij ∼ Bernoulli (p(hj = 1|v,W, c))

where hsij is the i-th sample of the j-th hidden unit.

A sample of a hidden vector is drawn as

hs ∼ Bernoulli(p(h|v,W, c))

The posterior probabilities of visible nodes given hidden nodes are calculated as

p(vi = 1|hs,W, b) = σ

∑
j

Wijhsij + bi

 .

56

The mean and standard deviation of the posterior predictive distribution are calculated as

vmean =
1

n

n∑
s=1

p(v|hs,W, b)

vstd =
1

n

√√√√ n∑
s=1

(p(v|hs,W, b)− vmean)
2.

where n is the number of samples drawn from the posterior distribution of the hidden

nodes. The mean and standard deviation of the posterior predictive distribution are used

to reconstruct the volume and quantify the uncertainty in the reconstruction.

3.4 Results

The results in this section are generated using the MSD test set.

Figure 30: Correlation image of an RBM with 25 hidden nodes.

Figure 30 shows the correlation matrix (left) of the hidden nodes or features learned from

the MSD train set which consists of 15 patient datasets. The correlation image (right)

which is derived from the correlation matrix, provides a quick glance of how one feature

57

correlates with all the other features.

Features that are correlated show up as bright pixels and those with low correlation appears

as dark pixels in the correlation matrix image. The correlation matrix, correlation image can

also be used as a lookup table for features that are correlated. Visualizing highly correlated

features can help in understanding the model and the training dataset. Higher correlation

suggests that the model has overfit to the data. We can use that information to update the

training strategy. Pruning the model can combat overfitting and reduce correlation between

features. This can help in reducing the number of parameters in the model and also reduce

the computation time for training and inference.

When there are fewer hidden nodes as seen in Figure 30, each hidden node has a more

significant impact on the representation of the volume data. In other words, the hidden

nodes are forced to work together and correlate their activity to reconstruct the volume

data effectively. Consequently, the features learned by the RBM tend to have higher

interdependence and can exhibit strong correlations.

Figure 31: Correlation image of an RBM with 81 hidden nodes.

However, as the number of hidden nodes increases, each hidden node has more freedom

58

to capture different aspects of the data independently. With more nodes, the hidden layer

can distribute the workload among them, allowing different nodes to specialize in capturing

different features or patterns. This increased capacity for specialization leads to a reduction

in interdependence among the hidden nodes, and thus, the features they represent become

less correlated as seen in Figure 31.

Intuitively, you can think of it as each hidden node having a limited capacity to represent

information. When there are only a few nodes, they have to collectively capture as much

relevant information as possible, leading to correlated features. But as the number of nodes

grows, they can divide the task and capture different aspects independently, reducing the

correlation.

This property can be advantageous because it allows RBMs with larger hidden layers to

capture more diverse and fine-grained features, leading to better representations of complex

data. However, it’s important to strike a balance and avoid an excessive number of hidden

nodes, as it can lead to overfitting or decreased generalization performance if the model

becomes too complex for the given task or dataset.

Table 2: Dice scores for different number of hidden features for MSD dataset

Features P1 P2 P3 P4 P5 Avg. Dice

25 0.81 0.74 0.78 0.73 0.81 0.774

81 0.81 0.77 0.78 0.76 0.81 0.786

625 0.88 0.86 0.82 0.81 0.92 0.858

1000 0.89 0.88 0.84 0.84 0.93 0.876

Table 2 shows the dice scores for different number of hidden nodes for the five patient

dataset (test set) and the average dice score obtained by averaging the dice scores of all the

five patients. It is evident that the accuracy of reconstruction improves as the number of

features learned increases.

Figure 32 shows the reconstruction thresholded at 0.5 for each of the five patient datasets

in the MSD test set. Each reconstruction is the mean of 100 samples from the posterior

distribution of latent variable. Each voxel in the reconstruction is color coded to represent

the probability of the voxel belonging to the foreground. The model is able to capture the

59

distribution of the data. Voxels that are part of the left atrial cavity are reconstructed

with high probability. Voxels that are part of the pulmonary veins and appendage are

reconstructed with lower probabilities.

Figure 33 shows the mean and standard deviations of the reconstruction for the five patients

in the MSD test set. The model is able to capture the aleatoric and epistemic uncertainty

in the reconstruction. The uncertainty is high in the pulmonary veins and appendage. The

uncertainty is low in the left atrial cavity.

60

F
ig
u
re

32
:
R
ec
on

st
ru
ct
io
n
u
si
n
g
R
B
M

m
o
d
el

w
ti
h
62

5
h
id
d
en

n
o
d
es

fo
r
M
S
D

d
at
as
et

61

F
ig
u
re

33
:
R
B
M

m
o
d
el

u
n
ce
rt
ai
n
ty

fo
r
M
S
D

d
at
as
et

62

Effects of pruning

The RBM model performs better with more hidden nodes as seen in table 2. However, more

hidden nodes also means more parameters to train and more computation time. Pruning

the weights of the model can help in reducing the number of parameters in the model and

also reduce the computation time for inference. Figure 34 shows the results from RBM

model with 80% sparsity. The model is able to capture the distribution of the data.

Figure 34: RBM model (sparsity=80%) output for MSD dataset

Table 3 shows the average dice scores obtained at different levels of sparsity for the RBM

model. The dice score is calculated between the ground truth and the model output. The

dice score is a measure of how well the model is able to capture the distribution of the data.

The dice score is calculated for each class and then averaged over all the classes

63

Table 3: RBM model sparsity and average dice scores for MSD dataset

Sparsity P1 P2 P3 P4 P5 Avg. Dice

0% 0.88 0.86 0.82 0.81 0.92 0.858

20% 0.88 0.86 0.82 0.81 0.92 0.858

40% 0.87 0.86 0.82 0.8 0.91 0.852

60% 0.88 0.85 0.8 0.79 0.91 0.846

80% 0.85 0.83 0.8 0.77 0.89 0.828

90% 0.65 0.62 0.6 0.57 0.65 0.618

For a RBM model with 625 hidden nodes and 5000000 parameters, the average dice scores

only started to deteriorate after 40% of the parameters were dropped. The model only

started to produce unacceptable results after 90% of the parameters were dropped. This

shows that the model is able to capture the distribution of the data with only 20% of the

parameters. This is a significant reduction in the number of parameters and computation

time for inference.

3.5 Discussion

It is often difficult to sample from the posterior distribution of the parameters of neural

network as they pose an intractable inference problem. The combination of latent variable

models and approximate Bayesian inference techniques like Markov chain Monte Carlo

offers an interpretable solution to neural network based volumetric reconstruction. The

RBM model discussed in this chapter is able to capture basic features like the left atrial

cavity with low number of features. It is able to create accurate representations when it

is trained with higher number of features. It is also able to capture the uncertainty in

reconstruction at various regions of interests. Pruning such models can be beneficial for

deployment in compute constrained environments. A pruned RBM model with only 20% of

the parameters is able to capture the data distribution well. This is a significant reduction

in the number of parameters and computation time for inference which can be essential for

use in real-time applications. We will see how such a model can be used for cardiac ablation

procedures in the last chapter of this dissertation.

64

CHAPTER 4. AN INTERPRETABLE GENERATIVE MODEL FOR
VOLUMETRIC DATA USING VARIATIONAL INFERENCE

4.1 Introduction

Variational inference (Peterson and Anderson, 1987; Jordan et al., 1999), an approximate

Bayesian inference technique, aims at posing the intractable inference problem as one

of optimization. An easier to sample from distribution such as a Gaussian is used to

approximate the true posterior distribution of the generative model. It has shown remarkable

success in tasks such as image synthesis (Kingma and Welling, 2014; Rezende et al., 2014),

text generation (Balasubramanian et al., 2020), and audio synthesis (Yamamoto et al.,

2020). However, applying variational inference to volumetric data poses unique challenges

due to their high-dimensional nature and complex spatial dependencies.

Using variational inference, we can learn a latent representation that captures meaningful

and interpretable features from the data. Interpretability is another crucial aspect when

dealing with generative models, especially in domains such as healthcare where the generated

results need to be comprehensible and explainable. In medical imaging, for example,

interpretability is essential for understanding the generated structures and providing insights

into the underlying anatomy.

Motivated by the need for both realistic generation and interpretability in volumetric data,

this chapter explores an interpretable generative model using variational inference that is

trained on segmented CT or MRI data. Our approach aims to capture the underlying

structure present in the volumetric data while allowing for meaningful interpretations of

the generated results. We also propose a novel method for visualizing n-dimensional latent

space of the model, which enables us to gain insights into the learning process.

Through this work, we seek to contribute to the advancement of generative models for

volumetric data, bridging the gap between realistic generation, interpretability and scalability.

By providing an interpretable model that can generate high-quality reconstructions of

volumetric data, our approach holds great potential for applications in medical imaging,

65

computer graphics, and other fields that rely on volumetric data analysis and synthesis.

4.2 Theory

The following sections provide a brief overview of theoretical framework which will be used

in methods section of this chapter.

4.2.1 Variational Inference

One of the main advantages of VI over MCMC is its speed and scalability. MCMC methods

often require a large number of iterations to converge, and the computational cost of each

iteration can be very high, especially for high-dimensional models. In contrast, VI can often

converge much faster, and the computational cost of each iteration is usually lower than

that of MCMC. This makes VI a more practical method for large-scale inference problems.

The idea behind variational inference is to approximate the posterior distribution of a latent

variable model by a simpler distribution such as a Gaussian that is easier to compute. This

is done by choosing a family of distributions that is easy to work with, and then finding

the member of that family that is closest to the true posterior distribution. This is done by

minimizing the KL divergence between the approximate distribution and the true posterior.

Exact computation of the posterior distribution is often intractable, due to the complexity of

the model or the size of the dataset. VI provides a method for approximating the posterior

distribution using a simpler distribution q(z) from a family of distributions known as the

variational family. The goal of VI is to find the member of the variational family that is

closest to the true posterior distribution in terms of the KL divergence:

q(z) = argminq∈QKL(q(z)||p(z|X)), (7)

where Q is the variational family and KL(q(z)||p(z|X)) is the KL divergence between q(z)

and the true posterior distribution.

The optimization problem in equation 7 is typically formulated as a maximization problem

by introducing a lower bound on the log-likelihood of the observed data known as the

66

evidence lower bound (ELBO):

log p(X) ≥ L(q) = Eq(z)[log p(X, z)− log q(z)].

The ELBO can be seen as a compromise between the complexity of the model and the

fit to the data. Maximizing the ELBO with respect to the variational parameters q(z) is

equivalent to minimizing the KL divergence in equation 7.

The ELBO can be computed in closed form for many models, including the Gaussian

mixture model (GMM) and the latent Dirichlet allocation (LDA) model. For more complex

models, the ELBO can be approximated using Monte Carlo methods. The most common

method for approximating the ELBO is the variational expectation-maximization (EM)

algorithm, which alternates between an E-step, where the ELBO is maximized with respect

to the variational parameters q(z), and an M-step, where the ELBO is maximized with

respect to the model parameters θ. Here we use variational inference in the context of

reconstruction of a 3D volume from a point cloud. We use neural networks to learn the

parameters of the approximate posterior distribution and the generative model.

4.2.2 Learning conditional distributions using CNNs

Convolutional Neural Networks (CNN) (LeCun et al., 1998) have been well established as

a powerful tool for learning representations of images and videos.

A convolutional neural network learns a set of filters that are applied to the input image to

extract features. Equation 8 describes the convolution operation in 3D,

C = A ∗B or C(i, j, k) =
∑
m

∑
n

∑
p

A(m,n, p) ·B(i−m, j − n, k − p) (8)

where A is the input image, B is the filter, and C is the output of the convolution.

The filters are applied in a sliding window fashion, and the output of the convolution is

a feature map. Feature maps are then passed through max-pooling layers to reduce the

dimensionality of the feature maps. The following equation describes the max-pooling

67

Figure 35: 3D Convolutions

operation,

MaxPooling(x) = max(x)

where x is a feature map. The output of the max-pooling layers is then passed through

fully connected layers to produce the final output of the network.

In this section, we describe the use of 3D CNNs for learning conditional distributions in

the context of 3D reconstruction from point cloud data. Similar to 2D convolutions, 3D

convolutions are used to extract features from the input data. However, instead of using a

2D kernel to extract features from a 2D image, a 3D kernel is used to extract features from

a 3D volume. The 3D kernel is applied to the input volume in a sliding window fashion as

seen in Figure 35, and the output of the convolution is a 3D feature map. The 3D feature

map is then passed through a non-linear activation function to produce the output of the

convolutional layer.

Multiple such layers are stacked together to form a 3D CNN. Such 3D CNNs can be used

to learn conditional distributions that form the approximate posterior distribution of the

latent variables in a probabilistic graphical model such as a variational autoencoder. The

input to the 3D CNN is a 3D volume, and the output represents the parameters of the

approximate posterior distribution.

68

They are also used to learn the parameters of the generative model, which is used to

generate samples from the learned distribution. The generative model is typically a 3D

CNN that takes as input the parameters of the approximate posterior distribution and

generates a 3D volume. The parameters of the generative model are learned by minimizing

the reconstruction error between the generated volume and the input volume.

4.3 Methods

4.3.1 A Variational Autoencoder (VAE) model for volumetric data

A Variational Autoencoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) is a

generative model that learns a compressed latent representation of the data by mapping it to

a latent space defined by a prior probability distribution. It consists of an encoder network

that maps the data to latent variables, and a decoder network that reconstructs the data

from the latent variables. The key difference between a VAE and a standard autoencoder

(Hinton and Salakhutdinov, 2006) is that the latent space in a VAE is stochastic. The

encoder outputs a distribution over the latent vectors, rather than a single vector. This

allows the VAE to generate new data by sampling the latent space.

The VAE is trained to minimize the difference between the input and the reconstructed

output, as well as the divergence between the learned latent variable and a prior distribution.

The key difference between a VAE and a standard autoencoder is that the latent space in

a VAE is stochastic, meaning that it is not a fixed, deterministic encoding of the input.

Instead, the VAE learns to generate a distribution of latent vectors that can represent the

input data. This is achieved through the introduction of a reparameterization trick, which

allows the VAE to backpropagate through the stochastic latent space.

Several methods and architectures have been developed to use a VAE for 3D data. One of

the most popular methods is the 3D Convolutional VAE (3D-CVAE) (Wu et al., 2016) used

for modeling volumetric objects. The 3D-CVAE is similar to a traditional VAE, but uses

3D convolutions instead of 2D convolutions to process 3D data. They are good at capturing

local spatial information in the image data. Figure 36 shows the block diagram of a VAE

that is used to reconstruct segmented CT or MRI data.

69

Figure 36: 3D Variational Autoencoder Model

Here we try to learn a compressed representation of segmented CT or MRI data x that is

optimized to match a multivariate Gaussian distribution with mean µ and variance σ. This

is achieved by introducing a latent variable z that represents the compressed representation

of the volume (eg: left atrium), and training the VAE to learn a conditional probability

distribution pθ(x|z) that maps the compressed representation z to the input data x. The

parameters θ of the conditional probability distribution are learned during training.

The goal is to learn a compressed representation z that maximizes the joint probability

pθ(x|z)p(z) of the data x given the compressed representation z and the prior distribution

p(z) over the compressed representation. Maximizing this joint probability ensures that the

learned representations are both good at reconstructing the original data (pθ(x|z) is high)

and align well with our prior belief about what z should be like (p(z) is high).

However, this joint distribution is intractable, as it involves integrating over all possible

values of z. To overcome this problem, the VAE introduces an approximate posterior

distribution qϕ(z|x) which can be used to approximate the true posterior distribution p(z|x).

The VAE learns the parameters ϕ of the approximate posterior distribution qϕ(z|x) by

minimizing the KL divergence between the approximate posterior and the true posterior.

The KL divergence is defined as:

KL(qϕ(z|x)||p(z|x)) =
∫
qϕ(z|x) log

qϕ(z|x)
p(z|x)

dz

Minimizing the KL divergence ensures that the approximate posterior distribution is as

close as possible to the true posterior distribution. The loss function for the VAE is the

70

sum of two terms: the reconstruction loss and the KL divergence loss. The reconstruction

loss measures the difference between the input data and the data reconstructed from the

compressed representation z using the decoder. It is defined as:

Lrec(θ, ϕ;x) = −Eqϕ(z|x)[log pθ(x|z)].

The KL divergence loss measures the difference between the approximate posterior distribution

and the prior distribution:

LKL(ϕ;x) = KL(qϕ(z|x)||p(z)).

The total loss function is the sum of the reconstruction loss and the KL divergence loss:

L(θ, ϕ;x) = Lrec(θ, ϕ;x) + LKL(ϕ;x).

which is equivalent to maximizing the ELBO:

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||p(z)).

During training, the parameters θ and ϕ are learned by minimizing the total loss function

with respect to these parameters:

θ, ϕ = argmin
θ,ϕ

L(θ, ϕ;x).

This results in a model that can learn meaningful representations of the left atrium from

segmented CT or MRI data. The model can then be used to generate approximations of

patient-specific left atrium by sampling from the learned latent space.

71

Reparameterization Trick

The reparameterization trick is a technique that can be used to train VAEs more efficiently.

It involves reparameterizing the latent variable z as a function of a random noise variable

ϵ that is sampled from a standard normal distribution. Specifically, we can express z as

z = µ+ σ ⊙ ϵ

where µ and σ are the mean and standard deviation of the approximate posterior distribution

qϕ(z|x), and ⊙ denotes element-wise multiplication.

By reparameterizing z in this way, we can sample from the approximate posterior distribution

qϕ(z|x) using a simple and differentiable transformation. This allows us to backpropagate

through the sampling process, which is necessary for training the VAE using stochastic

gradient descent.

Sampling from the VAE

Once the VAE is trained, we can use it to generate new data points by sampling from the

learned latent variable z. The figure below shows few elements from the 3D latent space of

a VAE trained on segmented MRI images of the left atrium of the heart.

We can generate a new data point x by first sampling a latent variable z from the prior

distribution p(z), and then passing it through the decoder to get a generated output x̃

z ∼ p(z), x̃ = pθ(x|z).

Samples from pθ(x|z) can be used to obtain a mean surface as well as a measure of

uncertainty. The mean surface is obtained by taking the mean of the samples, and the

uncertainty is obtained by taking the standard deviation of the samples

x̃ = µz∼p(z)(pθ(x|z)), σz∼p(z)(pθ(x|z)).

72

Visualizing the Latent Space in 3D

The latent space of a VAE is typically high-dimensional, when a latent space is 2D or 3D,

it can be visualized by sampling from a uniform 2D or 3D grid. When the latent space is

of higher dimensionality we can sample from a n dimensional uniform grid based on how

many elements of the latent space we wish to visualize. A standard normal distribution can

be used to sample k equally spaced elements from each dimension of the latent space.

di = q(linspace(a, b, k))

where q(·) is the quantile function of the standard normal distribution, a and b are the lower

and upper bounds of each dimension of the latent space, k is the number of linearly spaced

points obtained by the following equation,

linspace(a, b, k) = {a, a+ (b− a)
k − 1

, a+ 2
(b− a)
k − 1

, . . . , b}

Suppose we have an n-dimensional latent space, D1, D2, . . . , Dn, then a Cartesian product

of the n elements from each dimension can be taken to obtain all the possible ordered

combinations of the n elements from each dimension.

Cartesian Product(D1, D2, . . . , Dn) = {(d1, d2 . . . , dn) | d1 ∈ D1, . . . , dn ∈ Dn}

A random set or linearly spaced set of points can be sampled from the Cartesian product

to obtain a set of points in the latent space which can then be passed through the decoder

to obtain a visualization of the latent space. The latent space provides insights into the

distribution of the data and the learning process, and can be used to identify outliers and

anomalies.

73

4.4 Results

Figure 37 shows the output of the VAE model for the five patient left atrial data from

the MSD test set. Each reconstruction was obtained by averaging 100 samples from the

posterior distribution of the latent variables. Figure 38 shows the uncertainty of the model

with three reconstructions, mean(blue), mean - 3σ (red) and mean + 3σ. The uncertainty

is high in regions where the model has not seen much data.

74

F
ig
u
re

37
:
V
A
E

m
o
d
el

ou
tp
u
t
fo
r
M
S
D

d
at
as
et

75

F
ig
u
re

38
:
V
A
E

m
o
d
el

u
n
ce
rt
ai
n
ty

fo
r
M
S
D

d
at
as
et

76

Figure 39 shows the latent space of a VAE trained on segmented left atrial data. The latent

space is 3D and the points are sampled from a uniform grid. The latent space is able to

capture the distribution of the data. The colormap represents the probability for each voxel

to be part of the left atrium. The latent space can be used to generate new data points by

sampling from distribution p(z) and passing it through the decoder.

Figure 39: 3D Latent Space of a VAE trained on segmented left atrial data.

Inclusion of different types of left atrial volumes would result in a latent space that is able

to capture the distribution of the data better.

Effects of pruning

Figure 40 shows the results from VAE model with 80% sparsity. Even after pruning 80%

of the parameters, the model is able to generate reconstructions that are similar to the

77

reconstructions from the original model.

Figure 40: VAE model (sparsity=80%) output for MSD dataset

Table 4 shows the average dice scores obtained at different levels of sparsity for the VAE

model. The dice score is calculated between the ground truth and the model output. The

dice score is a measure of how well the model is able to capture the distribution of the data.

The dice score is calculated for each class and then averaged over all the classes

For a VAE model with an encoder with 8,209,286 and a decoder with 2,628,161 parameters,

the average dice scores only started to deteriorate after 60% of the parameters were dropped.

The model only started to results that has 5% decrease in dice score after 80% of the

parameters were dropped. This shows that the model is able to learn a compressed

representation of the data that is robust to pruning.

78

Table 4: VAE model sparsity and average dice scores for MSD dataset

Sparsity P1 P2 P3 P4 P5 Avg. Dice

0% 0.84 0.8 0.77 0.79 0.85 0.810

20% 0.84 0.8 0.77 0.79 0.85 0.810

40% 0.85 0.8 0.78 0.79 0.86 0.816

60% 0.85 0.77 0.79 0.77 0.86 0.808

80% 0.8 0.72 0.73 0.67 0.84 0.752

90% 0.64 0.54 0.59 0.51 0.67 0.590

4.5 Discussion

Variational inference converts the problem of intractable inference into one of optimization.

It provides a way to train a generative model that can be used to generate new data points.

The model is able to capture the distribution of the data and generate new data points that

are similar to the training data. The model is also able to generate uncertainty estimates

for the generated data points. The uncertainty estimates can be used to identify data points

that are not similar to the training data and possibly added to the training set. A realistic

anatomical model of any organ or object can be generated by training a VAE on a dataset

of segmented images of the organ or object. There can be numerous applications that can

be built on top of this. One such application is the generation of patient specific cardiac

chamber models for use in cardiac ablation procedures.

79

CHAPTER 5. GENERATION OF PATIENT SPECIFIC CARDIAC
CHAMBER MODELS USING INTERPRETABLE MODELS FOR

ELECTROANATOMICAL MAPPING

5.1 Introduction

Cardiovascular disease is one of the leading causes of death worldwide, early detection and

treatment can greatly improve patient outcomes. Electrophysiology studies are performed

to study the electrical activity of the heart. Electroanatomical mapping (EAM) is an

integral part of Electrophysiology studies (EPS) which are minimally invasive procedures

that are useful for diagnosis, treatment planning and real time guidance in cardiac ablation

procedures to treat arrhythmias such as atrial fibrillation which affects millions of people

in the United States. It is estimated that more than 12 million people in the United States

will be affected by atrial fibrillation by 2030 (Colilla et al., 2013). It is characterized by

rapid and irregular beating of the atria which can lead to blood clots, stroke, heart failure

and other complications.

Before starting electroanatomical mapping, several catheters with multiple electrodes are

inserted into the patient’s heart through blood veins starting from the shoulder or groin

area. Imaging techniques such as fluoroscopy or echocardiography, are used to guide the

catheters to the heart. A catheter called the mapping catheter is used to navigate to

different regions of the chamber of interest and record 3D locations and associated electrical

information when the distal end of the catheter makes contact with the myocardial tissue.

Other catheters are used as references to calculate important information such as local

activation time (LAT) or voltage at the point of contact between the mapping catheter

and the myocardial tissue. One common reference used is an electrode from the Coronary

Sinus (CS) catheter, as it maintains consistent contact with a specific location in the heart

and is thus a suitable reference point. Different electroanatomical maps, such as activation,

voltage, and fractionation, can be created based on the electrical information to study the

electrical activity of the patient’s heart.

During an RF ablation procedure, the electrode at the tip of the catheter is placed in contact

80

with the tissue causing the arrhythmia, and high-frequency electrical energy is delivered to

create a localized lesion or scar. The goal of RF ablation is to disrupt the abnormal electrical

pathways in the heart causing the arrhythmia and create a new pathway that follows the

normal electrical conduction system of the heart, thus restoring normal heart rhythm and

reducing or eliminating the need for medication to control the arrhythmia.

Minimizing the x-ray exposure from the fluoroscope to the patient is one of the electrophysiologist’s

goals while performing electroanatomical mapping. Using a probabilistic machine learning

model in an electroanatomical mapping system can provide an approximation of the mapped

chamber with a few acquired locations from the mapping catheter in the chamber of interest.

This considerably reduces the time taken to map the chamber, thus minimizing the x-ray

exposure from the fluoroscope. The model can also be used to generate a realistic anatomical

model of the chamber of interest for use in cardiac ablation procedures which would not be

possible using regular convex hull algorithms with sparse point cloud data.

Left atrial (LA) surface reconstruction from medical imaging data can provide important

information for diagnosis and treatment planning. However, accurate LA surface reconstruction

is challenging due to the complex geometry of the LA and the sparsity, noise and variability

in location information captured by electroanatomical mapping systems.

In this chapter, we propose a novel method for LA surface reconstruction from a sparse

3D point cloud obtained during electroanatomical mapping, using approximate Bayesian

inference based models introduced in previous chapters for volumetric data. We simulate

electroanatomical mapping by sampling surface points from left atrial test sets and record

reconstructions obtained from our system. We then compare our results to ground truth

data to evaluate the accuracy of our method. We also provide a task based assessment of

our results evaluated by three expert observers.

5.2 Theory

The following sections provide a brief overview of theoretical concepts related to electroanatomical

mapping systems, surface reconstruction from 3D point cloud data that are used to develop

methods described in this chapter.

81

5.2.1 Electroanatomical Mapping (EAM) Systems

Non-fluoroscopic, catheter based, electroanatomical mapping was introduced by (Gepstein

et al., 1997). The key aspects of an electroanatomical system are mapping catheters,

localization technology, real-time mapping and visualization aided by a CPU and associated

software suite. Mapping catheters are specialized catheters with multiple electrodes are

inserted into the patient’s heart chambers and interfaced with the mapping systems’ computer.

These catheters record electrical signals from various locations, allowing the system to create

a comprehensive map of the heart’s electrical activity. The electrodes in contact with the

endocardium record electrical information and transmit it to the mapping system. Figure 41

shows the Navik 3D (APNHealth LLC, Waukesha, WI) electroanatomical mapping system.

Figure 41: Navik3D electroanatomical mapping system.

Electroanatomical mapping systems use localization technology to track the position and

orientation of the mapping catheters within the heart. This can be achieved through

techniques such as electromagnetic tracking or impedance-based mapping. The system

continuously updates the catheter’s position in relation to the patient’s anatomy, enabling

accurate mapping and visualization. The system displays real-time electrical signals as

color-coded maps on a monitor or workstation. These maps represent the activation and

propagation of electrical signals within the heart, helping clinicians identify areas of interest,

such as abnormal conduction pathways or arrhythmia substrates. The ability to visualize

82

the electrical patterns in real-time assists in diagnosing arrhythmias and planning treatment

strategies.

These maps are created using surface reconstruction algorithms that generate a 3D model

of the heart chamber from the acquired points. The surface reconstruction algorithms are

based on convex hull algorithms that generate a convex hull mesh model of the chamber.

The convex hull mesh model is a good approximation of the chamber but does not represent

the chamber accurately. The convex hull mesh model is also not suitable for use in

cardiac ablation procedures as it does not represent the chamber accurately. The surface

reconstruction algorithms are also computationally expensive and take a long time to

generate the surface mesh model. The surface reconstruction algorithms are also not suitable

for real-time use in electroanatomical mapping systems.

Surface Reconstruction from 3D Point Cloud Data

Based on the type of electroanatomical mapping system used, the amount of points acquired

by a electroanatomical mapping system during mapping varies significantly. The CARTO

system (Biosense Webster, California), the EnSite system (St. Jude Medical, Minnesota),

and the Rhythmia system (Boston Scientific, Massachussets) are all capable of acquiring

thousands of points in a study. The points acquired by the electroanatomical mapping

system are sparse and noisy. They are also not uniformly distributed on the surface of the

chamber. Points are only acquired in regions where the catheter has been navigated to. The

points captured can also be distorted due to cardiac and respiratory motion. Most mapping

systems compensate for cardiac and respiratory motion. Only the points acquired when the

catheter is in contact with the myocardial tissue are used for surface reconstruction.

Figure 42: ML output from data acquired by an electroanatomical mapping system.

Most surface reconstruction algorithms (Lorensen and Cline, 1987b) require dense point

83

cloud that has a low amount of noise to generate smooth surfaces. The surface reconstruction

algorithms also require the points to be uniformly distributed on the surface of the chamber.

The points acquired by the electroanatomical mapping system do not satisfy these requirements.

The surface reconstruction algorithms also take a long time to generate the surface mesh

model. This is not suitable for real-time use in electroanatomical mapping systems.

Using a machine learning model that can generate a dense noise free 3D point cloud from

the sparse noisy 3D point cloud acquired by the electroanatomical mapping system can help

in generating a surface mesh model of the chamber. Figure 42 shows the points acquired by

an electroanatomical mapping system being passed on to ML model to generate an uniform

dense point cloud that is suitable for surface reconstruction algorithms to generate a smooth

surface of the chamber of interest.

5.3 Methods

5.3.1 An EAM system based on Bayesian inference

The high accuracy and precision of EAM systems have revolutionized the diagnosis and

treatment of various cardiac arrhythmias. However, the maps produced using modern

electroanatomical systems do not produce anatomically accurate chamber models when

only few points are acquired. The shape produced is representative of the points acquired

and does not use any prior information pertaining to the shape of the chamber being mapped

(Mukherjee et al., 2014). They only start resembling the chamber of interest when large

number of points are acquired covering all areas of the chamber. This is a major drawback

of the current electroanatomical mapping systems. We propose a surface reconstruction

method that uses probabilistic machine learning models to generate a detailed anatomical

model of the chamber of interest from a few points acquired by the mapping catheter. This

will help in reducing the time taken to map the chamber and thus reduce the x-ray exposure

from the fluoroscope.

There are four main blocks involved in our approach to generate a 3D cardiac chamber model

from 3D location and electrical information acquired by an electroanatomical mapping

system. The 3D location and electrical information is obtained when the distal end of the

84

mapping catheter inserted into the patient’s chamber of interest (usually the left atrium)

makes contact with the myocardial tissue.

Figure 43: Generation of 3D cardiac chamber models

A block diagram shown in Figure 43 visualizes the information flow in the system. The

sparse point cloud data accumulated by mapping the chamber of interest forms the input

data to the system. The data is preprocessed so that it can be fed into the machine learning

model to generate inference. The output of the machine learning model is then fed into the

surface reconstruction module to generate a patient specific cardiac model. Each block is

explained in detail in following sections.

In this algorithm, we first input electroanatomical data that contains 3D location and

associated electrical information. We then transform the 3D coordinates to voxel space

and compute the convex hull. After that, we iterate over all voxels in the voxel space and

set each voxel value to one or zero, depending on whether it is inside or outside the hull.

We then input the voxel data to a neural network to obtain a probability map, which we

threshold to classify each voxel as inside or outside. Finally, we use the marching cubes

algorithm to obtain the surface of the cardiac chamber.

Data processing

The points acquired during electroanatomical mapping are in the coordinate space of

the mapping system. The 3D location information acquired during mapping is in a raw

unstructured format. The data is preprocessed to transform it into voxel data (Xu et al.,

2021) that can be fed into the machine learning model. Voxels are the 3D equivalent of

pixels in 2D images. They are the smallest unit of a 3D image. The 3D location data is

85

transformed into voxel space as,

v =
p− pmin

pmax − pmin
∗ n (9)

where p is the 3D location of the point, pmin and pmax are the minimum and maximum

3D location values defined by the field of view (FOV), n is the number of voxels in each

dimension and v is the voxel location. The number of voxels in each dimension is chosen

based on the number of voxels in each dimension of the training data used to train the

machine learning model. Mapping systems tend to match the FOV of the fluoroscope.

The next step in data processing is crucial at the beginning of mapping when there are only

a few acquisitions, and the point density is low. It involves computing the convex hull of all

acquired points to mark all voxels inside the convex hull as acquisitions, thereby increasing

the point density.

To obtain an convex hull, a Delaunay 3D triangulation algorithm with an alpha value can

be used (Edelsbrunner and Mücke, 1994). The alpha value represents the radius of a ball

that determines whether a simplex (vertex, edge, face, or tetrahedron) in the Delaunay

triangulation is part of the alpha shape or not. An alpha value of zero results in a convex

hull. The resulting simplices of the Delaunay triangulation can be utilized to estimate which

voxels are inside or outside the alpha shape. Voxels inside the shape are assigned a value

of 1, while voxels outside are assigned a value of 0. Different alpha values can be chosen

to obtain a concave hull, potentially producing different results, but this approach was not

explored as it may cause the surface to have holes. The resulting voxels are then passed

on to the machine learning model to generate inference. The data processing algorithm is

summarized in Algorithm 5.

86

Algorithm 5 Data Processing

Require: Point cloud data acquired during electroanatomical mapping

Require: Field of view (FOV) defined by minimum (pmin) and maximum (pmax) 3D

location values

Require: Number of voxels in each dimension (n)

Ensure: Voxel data for machine learning model

1: Transform Point Cloud to Voxel Space:

2: for each point p in the point cloud data do

3: Calculate voxel location v using the equation: v = (p−pmin)
(pmax−pmin)

× n

4: Assign p’s corresponding voxel location v to voxel data

5: end for

6: Increase Point Density:

7: Compute the convex hull of all acquired points in the voxel data

8: Mark all voxels inside the convex hull as acquisitions

9: Generate Convex hull:

10: Perform Delaunay 3D triangulation on the voxel data

11: Choose an alpha value (e.g., radius of a ball) to determine the alpha shape

12: Select simplices (vertex, edge, face, or tetrahedron) within the alpha shape based on

the chosen alpha value

13: Mark Voxels Inside and Outside Alpha Shape:

14: for each voxel v in the voxel data do

15: if v is inside the alpha shape then

16: Set the voxel value to 1

17: else

18: Set the voxel value to 0

19: end if

20: end for

21: Return the resulting voxel data for machine learning model

87

Probabilistic Machine Learning Model

The next step in our system is probabilistic machine learning model that have been discussed

in detail in chapters 3, 4. The voxels from the Data processing step is provided to the

machine learning model to generate inference. The inference generated is in the form of

a 3D probability map. The probability map is a 3D image where each voxel is assigned

a probability value between 0 and 1. The probability value represents the probability of

the voxel being inside the chamber of interest. The probability map is then thresholded

to classify each voxel as inside or outside the chamber of interest. The voxels classified

as inside the chamber of interest are then used to generate the surface of the chamber of

interest.

Figure 44: Segmented Left Atrial data

In probabilistic machine learning, the quality and quantity of training data directly impact

the performance of the model, including its accuracy, precision, and generalizability. With

more training data, the model has a better chance of identifying meaningful patterns and

relationships, leading to more accurate predictions. Training data can also help address

issues of overfitting or underfitting in the model. Overfitting occurs when a model is too

complex and memorizes the training data instead of learning the underlying patterns. With

more training data, the model has a better chance of learning the underlying patterns and

avoiding overfitting. Underfitting occurs when a model is too simple and cannot capture

the complexity of the underlying patterns. In this case, increasing the quantity and quality

of training data can help the model better understand the underlying patterns.

It’s important to note that the quality of the training data is equally important as the

quantity. Training data that is biased, incomplete, or inaccurate can negatively impact the

model’s performance. Therefore, it’s essential to carefully select and preprocess the training

88

data to ensure its quality and relevance to the problem at hand. Left atrial anatomy can be

highly variable. It’s important that every data point in the dataset has the same amount

of pulmonary vein segmented along with the left atrial cavity. The datasets also needs to

be normalized as some scans may have a different field of view or voxel size. A7.1 describes

transformations that help achieve this goal.

Figure 44 shows an example of segmented left atrial data from the MSD dataset used for

training. The training data consists of binary voxels with zeros for the background and

ones for the left atrium myocardium and cavity. The individual slices stack up to become

a nx × ny × nz voxel grid to form one 3D data point that is used for training the model.

Surface Reconstruction

The next step in our system is Surface Reconstruction. The dense point cloud generated by

the ML model is used to generate a 3D surface mesh model of the chamber of interest. The

surface reconstruction algorithm used in our system is the 3D Marching Cubes algorithm

(Lorensen and Cline, 1987b). The 3D Marching Cubes algorithm is a popular method for

generating a 3D surface mesh from volumetric data.

v6

v2v3

v7

v5

v1

v0

v4

e1

e2

e3

e4

e5e6

e7
e8

e9

e10

e11

e12

Figure 45: A voxel with an isosurface facet.

The algorithm works by dividing the volume into small cubes, each of which is then examined

to determine whether it contains any surface geometry. The algorithm considers each of

the eight vertices of the cube and determines whether they lie inside or outside the surface.

The scalar value at each vertex (voxel value) to a threshold value. If the scalar value is

greater than the threshold, the vertex is considered to be inside the surface, otherwise it is

outside. The algorithm then uses the results of these tests to determine which edges of the

89

cube are intersected by the surface and connects them to form a triangle as seen in Figure

45. The algorithm then repeats this process for each cube in the volume.

Figure 46: 3D Surface mesh generated using marching cubes on ML output.

The resulting triangles are then connected to form a surface mesh. Figure 46 shows a 3D

surface mesh generated using marching cubes on the output of the machine learning model.

Here the output is the mean from the posterior distribution of the latent variable model.

Other summary statistics such as variance can be used to visualize the uncertainty in the

model prediction. This can be useful for guiding the electrophysiologist to regions of the

chambers where more points need to acquired to get a better approximation of the chamber.

Figure 47: Mean, mean +/- standard deviation surfaces generated using marching cubes.

Figure 47 shows the mean, mean +/- standard deviation surfaces generated using marching

cubes on the output of the machine learning model for a left atrial model.

90

Post processing

Post processing is an important step in 3D mesh generation pipeline, as it can significantly

improve the quality and usability of the mesh. Here the 3D mesh generated from the 3D

marching cubes algorithm is first passed through a filter which removes small, isolated mesh

components. Then it is passed through a smoothing filter and finally checked for holes and

filled if any is found to get a watertight mesh that represents the left atrium.

5.4 Experiments

For all experiments, the MSD dataset was cropped and downsampled to be a 20× 20× 20

3D array of voxels. The system was trained for 100 epochs with a batch size of 1 for

both the RBM and VAE based systems to generate inference. Point acquisition by the

electroanatomical mapping system was simulated by randomly sampling points from the

test data. The simulation involved generating the true surface using marching cubes, then

sampling n vertices from the resulting surface meesh. The vertices are then compared to

voxel locations that were used to generate the mesh by measuring their Euclidean distance.

The closest voxel location is then recorded as a point acquired during mapping. Algorithm

6 summarizes the steps involved in simulating electroanatomical mapping.

Algorithm 6 EAM Simulation

Require: 3D data point (voxel data) from the test set
Require: Number of points to be acquired (n)
Ensure: Points acquired during mapping
1: Generate true surface:
2: Generate true surface strue using marching cubes
3: Sample points from true surface strue:
4: vn ← sample n random points from the vertices of strue
5: for each point p in the vertex list vn do
6: for each point pv in the voxel data do
7: Calculate Euclidean distance d between p and pv
8: if d <= 1 then
9: Add pv to points list

10: end if
11: end for
12: end for
13: Return the points list

Three studies were simulated, the first where n = 25 points were acquired, the second

91

where n = 100 points were acquired, and the third where n = 100 points were acquired.

The points were then passed on to the system to generate a 3D surface mesh model of the

left atrium. The 3D surface mesh model was then compared to the ground truth data to

evaluate the accuracy of the system. The dice score was used to evaluate the accuracy of

the system.

5.5 Results

The results from the three experiments are discussed in this section. The first experiment

involved simulating electroanatomical mapping with 25 points, the second experiment involved

simulating electroanatomical mapping with 100 points, and the third experiment involved

simulating electroanatomical mapping with 250 points. Table 5 shows the dice scores

generated by the two systems for 20, 100, 250 points,

Table 5: Comparison of dice scores for RBM and VAE based systems for MSD dataset.

Model 20 points 100 points 250 points

RBM 0.79 0.89 0.92

VAE 0.76 0.83 0.88

From Table 5, we can observe that the dice score increases as the number of points acquired

increases. We can also observe that the RBM based system performs better than the VAE

based system. This is because the RBM based system is able to generate a more accurate

approximation of the ground truth data than the VAE based system.

Figure 48 shows the comparison of the 3D data generated by the two systems in a roof

view of one of the patient data. The Anterior-Posterior(AP), Posterior-Anterior(PA), Left

Anterior Oblique (LAO), Right Anterior Oblique (RAO), Left Lateral (LL), Right Lateral

(RL) and Inferior views for the patient can be found in Appendix A11. The data generated

by the RBM is shown in the second row and the data generated by the VAE is shown in

the third row. The first row shows the ground truth data. The first column shows the data

generated by the two systems with 25 points, the second column shows the data generated

by the two systems with 100 points, and the third column shows the data generated by the

92

two systems with 250 points.

Figure 48: RBM, VAE comparison plot with 25, 100 and 250 points in Roof view.

The Figure 49 above shows the uncertainty of the RBM, VAE models. 100 samples were

generated to generate the mean, mean +/- standard deviation surfaces. We can observe

that the model is most uncertain in the region where the pulmonary veins are located. This

is because the pulmonary veins are highly variable in left atrial data. The model is most

certain in the region of the left atrial cavity appendage.

93

Figure 49: RBM, VAE uncertainty comparison with 20, 50 and 100 points in PA view.

Table 6: Task-based assessment of five patient datasets by three expert observers.

Patient RBM VAE
data Visual quality Match w true Visual quality Match w true

25 100 250 25 100 250 25 100 250 25 100 250

1 3.0 3.3 4.0 2.3 3.6 4.6 2.3 3.3 3.3 2.0 3.6 5.0

2 3.6 3.6 4.0 3.0 3.3 4.6 2.6 3.3 4.3 3.3 3.0 4.0

3 3.0 3.3 4.6 2.0 3.3 4.0 2.3 3.0 3.3 2.3 3.6 4.3

4 3.0 3.0 5.0 2.6 3.6 3.6 2.0 4.0 3.6 3.0 3.3 3.6

5 2.3 3.6 4.3 2.0 4.0 4.3 1.6 3.0 4.0 2.3 3.0 4.0

Average 3.0 3.4 4.4 2.4 3.6 4.2 2.2 3.3 3.7 2.6 3.3 4.2

94

Table 6 shows Task-based assessment of five patient datasets by three expert observers.

Observers individually scored the visual quality and conformity with the true anatomy of

the generated meshes on a scale of 1 to 5, where 1 is the worst possible score and 5 is the

best possible score. The table shows the average score of the three observers for the two

systems. The table shows that both systems are capable of producing useful reconstructions

with the RBM based system performing slightly better than the VAE based system. The

table also shows that the reconstructions improve with the number of points acquired.

5.6 Discussion

Generating anatomical models of the left atrium from a sparse point cloud of acquired

locations is a challenging task, but one that is essential for Electrophysiology studies. A

probabilistic machine learning approach to the problem provides a way to bring uncertainty

quantification and interpretability to a neural network solution to the problem. A full

Bayesian approach provides greater insight into the model which incorporates prior knowledge

from CT/MRI data. Such a model can be useful for navigation during electroanatomical

mapping. More points can be acquired in regions where the model is uncertain and less

points can be acquired in regions where the model is certain.

The experiments conducted and reported in this chapter show that the proposed system is

capable of generating anatomically accurate models of the left atrium from a sparse point

cloud of acquired locations. The system is capable of generating anatomically accurate

models with few acquisitions. This can enable creating quick maps during electrophysiology

studies and reduce the time taken for mapping during a study, thereby reducing the patient’s

exposure to radiation from the fluoroscope.

95

CHAPTER 6. CONCLUSION

6.1 Summary of Presented Work

Probabilistic machine learning models provide a way to bring interpretability and uncertainty

quantification to neural network models. In Chapter 2, we introduced a novel iterative

pruning method that utilizes a principled Bayesian approach to pruning a neural network,

achieving high levels of sparsity without any loss in accuracy. This allows for fitting large

networks on devices that have constrained compute resources. In Chapters 3 and 4, we

showed how approximate Bayesian inference can be utilized to gain insight into the learning

process and create models that are interpretable and capable of quantifying uncertainty. In

Chapter 5, we introduced a novel probabilistic machine learning approach to the problem

of surface reconstruction of the left atrium from sparse point cloud data obtained during

electroanatomical mapping. We demonstrated that a Bayesian approach to the problem

incorporates prior knowledge from CT/MRI data. Moreover, we showed that a Bayesian

approach not only provides patient-specific cardiac models that are realistic in appearance

but also offers a means to quantify uncertainty in the model, which can aid in guiding

cardiac ablation procedures.

6.2 Future Work

In addition to the advancements made in Chapters 3 and 4 regarding approximate Bayesian

inference models for volumetric data, there are several exciting directions for future research

and application. One promising avenue is to extend these models to other organs beyond

the left atrium, such as the liver, kidney, spleen, and more. By applying the same principles

and techniques, we can potentially reconstruct the surfaces of these organs from sparse

point cloud data obtained through various keyhole procedures.

Furthermore, the developed models can be employed in addressing other convex hull surface

reconstruction problems beyond organ reconstruction and medical domain. These problems

may involve different types of objects or structures where accurate surface reconstruction is

critical for further analysis or intervention. By adapting and applying the Bayesian inference

96

methods presented, we can tackle these challenges and extend the benefits of interpretability

and uncertainty quantification to a broader range of applications.

Another promising area for exploration is the integration of activation, fractionation, and

other electroanatomical information onto anatomical models as an overlay. By incorporating

these additional data sources into the probabilistic machine learning framework, we can

enhance the visual representation of cardiac activity and provide a more comprehensive

understanding of the underlying electrophysiological processes. This integrated approach

can assist clinicians and researchers in analyzing and interpreting complex cardiac data,

leading to improved insights and decision-making in various cardiac procedures, including

cardiac ablation.

These advancements have the potential to revolutionize medical imaging and intervention

techniques, providing more accurate and reliable models while preserving interpretability

and uncertainty quantification. This can lead to improved patient outcomes and reduced

costs, as well as a better understanding of the underlying biological processes.

97

BIBLIOGRAPHY

Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman, B. A.,

Litjens, G., Menze, B., Ronneberger, O., Summers, R. M., et al. (2022). The medical

segmentation decathlon. Nature communications, 13(1):4128.

Balasubramanian, V., Kobyzev, I., Bahuleyan, H., Shapiro, I., and Vechtomova, O. (2020).

Polarized-vae: Proximity based disentangled representation learning for text generation.

arXiv preprint arXiv:2004.10809.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. (1999). The ball-

pivoting algorithm for surface reconstruction. In IEEE transactions on visualization and

computer graphics, pages 349–359. IEEE.

Blalock, D. W., Ortiz, J. J. G., Frankle, J., and Guttag, J. V. (2020). What is the state of

neural network pruning? CoRR, abs/2003.03033.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty

in neural network. In International conference on machine learning, pages 1613–1622.

PMLR.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network

outputs, with relationships to statistical pattern recognition. In Soulié, F. F. and

Hérault, J., editors, Neurocomputing, pages 227–236, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011). Handbook of Markov chain

Monte Carlo. CRC press.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,

Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.

Advances in neural information processing systems, 33:1877–1901.

Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S.-A.,

Crijns, H. J. G. M., Damiano Jr, R. J., Davies, D. W., DiMarco, J., et al. (2017).

98

2017 hrs/ehra/ecas/aphrs/solaece expert consensus statement on catheter and surgical

ablation of atrial fibrillation. Heart Rhythm, 14(10):e275–e444.

Colilla, S., Crow, A., Petkun, W., Singer, D. E., Simon, T., and Liu, X. (2013). Estimates of

current and future incidence and prevalence of atrial fibrillation in the us adult population.

The American journal of cardiology, 112(8):1142–1147.

Dusenberry, M. W., Tran, D., Hafner, D., Brunel, L.-P., Ho, D., and Erhan, D. (2019).

Bayesian compression for deep learning. In Advances in Neural Information Processing

Systems, pages 3294–3305.

Edelsbrunner, H. and Mücke, E. P. (1994). Three-dimensional alpha shapes. ACM Trans.

Graph., 13(1):43–72.

Freund, Y. and Haussler, D. (1991). Unsupervised learning of distributions on binary vectors

using two layer networks. In Moody, J., Hanson, S., and Lippmann, R., editors, Advances

in Neural Information Processing Systems, volume 4. Morgan-Kaufmann.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.

(2013). Bayesian data analysis. CRC press.

Gepstein, L., Hayam, G., and Ben-Haim, S. A. (1997). A novel method for nonfluoroscopic

catheter-based electroanatomical mapping of the heart. Circulation, 95(6):1611–1622.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., and Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM,

63(11):139–144.

Han, S., Mao, H., and Dally, W. J. (2015a). Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149.

Han, S., Pool, J., Tran, J., and Dally, W. (2015b). Learning both weights and connections

for efficient neural network. Advances in neural information processing systems, 28.

99

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning:

data mining, inference, and prediction. Springer Science & Business Media.

Häıssaguerre, M., Jäıs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue,

S., Le Mouroux, A., Le Métayer, P., and Clémenty, J. (1998). Spontaneous initiation

of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England

Journal of Medicine, 339(10):659–666.

He, Y., Zhang, X., and Sun, J. (2018). Channel pruning for accelerating very deep neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1389–1398.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.

Neural Comput., 14(8):1771–1800.

Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5):5947.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. science, 313(5786):504–507.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1992). Surface

reconstruction from unorganized points. ACM SIGGRAPH Computer Graphics,

26(2):71–78.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to

variational methods for graphical models. Machine learning, 37(2):183–233.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the american statistical

association, 90(430):773–795.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In

Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06,

page 61–70, Goslar, DEU. Eurographics Association.

Kazhdan, M. and Hoppe, H. (2013). Screened poisson surface reconstruction. ACM Trans.

Graph., 32(3).

100

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.

Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders.

Foundations and Trends® in Machine Learning, 12(4):307–392.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and Weinberger,

K., editors, Advances in Neural Information Processing Systems, volume 25. Curran

Associates, Inc.

Krum, D., Hare, J., Gilbert, C., Choudhuri, I., Naoyo, M., and Sra, J. (2013). Left

atrial anatomy in patients undergoing ablation for atrial fibrillation. Journal of Atrial

Fibrillation, 5(6):36–43.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Denker, J., and Solla, S. (1989). Optimal brain damage. Advances in neural

information processing systems, 2.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2017). Pruning filters for

efficient convnets. arXiv preprint arXiv:1608.08710.

London, A. J. (2019). Artificial intelligence and black-box medical decisions: accuracy

versus explainability. Hastings Center Report, 49(1):15–21.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic

segmentation. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 3431–3440.

101

Lorensen, W. E. and Cline, H. E. (1987a). Marching cubes: A high resolution 3d surface

construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169.

Lorensen, W. E. and Cline, H. E. (1987b). Marching cubes: A high resolution 3d surface

construction algorithm. ACM siggraph computer graphics, 21(4):163–169.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge

University Press.

Molchanov, D., Ashukha, A., and Vetrov, D. (2019). Variational dropout sparsifies

deep neural networks. In Proceedings of the 36th International Conference on Machine

Learning, pages 5234–5243.

Molnar, C., Casalicchio, G., and Bischl, B. (2020). Interpretable machine learning–a brief

history, state-of-the-art and challenges. In Joint European conference on machine learning

and knowledge discovery in databases, pages 417–431. Springer.

Mukherjee, J. M., Mukherjee, A., Mathew, S., Krum, D., and Sra, J. (2014). Generation of

patient-specific 3d cardiac chamber models for real-time guidance in cardiac ablation

procedures. In Linguraru, M. G., Oyarzun Laura, C., Shekhar, R., Wesarg, S.,

González Ballester, M. Á., Drechsler, K., Sato, Y., and Erdt, M., editors, Clinical

Image-Based Procedures. Translational Research in Medical Imaging, pages 50–58, Cham.

Springer International Publishing.

Peterson, G. E. and Anderson, C. R. (1987). A mean field theory learning algorithm for

neural networks. Complex Systems, 1(3):995–1019.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and

approximate inference in deep generative models. In Proceedings of the 31st International

Conference on Machine Learning (ICML-14), pages 1278–1286.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for

biomedical image segmentation. In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October

5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer.

102

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088):533–536.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017).

Grad-cam: Visual explanations from deep networks via gradient-based localization. In

Proceedings of the IEEE international conference on computer vision, pages 618–626.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional

networks: Visualizing image classification models and saliency maps. arXiv preprint

arXiv:1312.6034.

Simpson, A. L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken, B., Kopp-

Schneider, A., Landman, B. A., Litjens, G., Menze, B. H., Ronneberger, O., Summers,

R. M., Bilic, P., Christ, P. F., Do, R. K. G., Gollub, M., Golia-Pernicka, J., Heckers, S.,

Jarnagin, W. R., McHugo, M., Napel, S., Vorontsov, E., Maier-Hein, L., and Cardoso,

M. J. (2019). A large annotated medical image dataset for the development and evaluation

of segmentation algorithms. CoRR, abs/1902.09063.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of

harmony theory. Parallel Distributed Process, 1.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal of

machine learning research, 15(1):1929–1958.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considerations for

deep learning in nlp. arXiv preprint arXiv:1906.02243.

Tobon-Gomez, C., Geers, A. J., Peters, J., Weese, J., Pinto, K., Karim, R., Ammar, M.,

Daoudi, A., Margeta, J., Sandoval, Z., Stender, B., Zheng, Y., Zuluaga, M. A., Betancur,

J., Ayache, N., Chikh, M. A., Dillenseger, J.-L., Kelm, B. M., Mahmoudi, S., Ourselin,

S., Schlaefer, A., Schaeffter, T., Razavi, R., and Rhode, K. S. (2015). Benchmark for

103

algorithms segmenting the left atrium from 3d ct and mri datasets. IEEE Transactions

on Medical Imaging, 34(7):1460–1473.

Wilber, D. J., Pappone, C., Neuzil, P., De Paola, A., Marchlinski, F., Natale, A., Macle,

L., Daoud, E. G., Calkins, H., Hall, B., et al. (2010). Comparison of antiarrhythmic

drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial

fibrillation: a randomized controlled trial. JAMA, 303(4):333–340.

Wu, J., Zhang, C., Xue, T., Freeman, W. T., and Tenenbaum, J. B. (2016). Learning

a probabilistic latent space of object shapes via 3d generative-adversarial modeling.

In Proceedings of the 30th International Conference on Neural Information Processing

Systems, NIPS’16, page 82–90, Red Hook, NY, USA. Curran Associates Inc.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms.

Xu, Y., Tong, X., and Stilla, U. (2021). Voxel-based representation of 3d point clouds:

Methods, applications, and its potential use in the construction industry. Automation in

Construction, 126:103675.

Yamamoto, R., Song, E., and Kim, J.-M. (2020). Parallel wavegan: A fast waveform

generation model based on generative adversarial networks with multi-resolution

spectrogram. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 6199–6203. IEEE.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H. (2015). Understanding neural

networks through deep visualization. arXiv preprint arXiv:1506.06579.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2021). Rethinking the value of

network pruning. arXiv preprint arXiv:2104.06937.

104

APPENDICES

APPENDIX A: BAYESIAN PRUNING LEARNING CURVES

A.1 MNIST LEARNING CURVES

The following figures show the learning curves for the Bayesian pruning method on the

MNIST dataset for a FCN, CNN at different sparsity levels.

Figure A1: MNIST (FCN 25%) learning curve for the Bayesian pruning method.

Figure A1 shows the learning curves for the Bayesian pruning method on the MNIST dataset

for a FCN at 25% sparsity. Both the baseline and Bayesian magnitude methods validation

loss deteriorate as training progresses. Only Bayesian random pruning is able to maintain

a low validation loss. Pruning only 25 % of the weights with the lowest magnitude does

not help combat overfitting as there is still sufficient weights to memorize the training data.

The Bayesian random pruning method is able to maintain a low validation loss because it

prunes weights randomly, and thus is able to prune weights that are not necessarily the

least important weights. Bayes factor remains below one at the same level as the baseline

method for the Bayesian magnitude method which indicates that the model is not a good

fit for the data throughout the training epochs.

105

Figure A2: MNIST (CNN 25%) learning curves for the Bayesian pruning method.

Figure A2 shows the learning curves for the Bayesian pruning method on the MNIST

dataset for a CNN at 25% sparsity. Baseline, Bayesian random and Bayesian magnitude

shows lower amount of overfitting compared to its FCN counterpart. There does not seem

to be a significant difference between the baseline and Bayesian pruning methods. Bayes

factor remains below one at the same level as the baseline method for Bayesian pruning

methods, suggesting a similar level of fit to the training data.

Figure A3: MNIST (FCN 50%) learning curves for the Bayesian pruning method.

Figure A3 shows the learning curves for the Bayesian pruning method on the MNIST dataset

for a FCN at 50% sparsity. Observing the validation losses, Bayesian random method does

slightly better than baseline and Bayesian magnitude methods. Bayes factor remains below

one at the same level as the baseline method for Bayesian pruning methods, suggesting a

similar level of fit to the training data.

106

Figure A4: MNIST (CNN 50%) learning curves for the Bayesian pruning method.

Figure A4 shows the learning curves for the Bayesian pruning method on the MNIST dataset

for a CNN at 50% sparsity. Bayesian random method does slightly better than baseline

and Bayesian magnitude methods. Bayes random method has higher Bayes factor than the

baseline and Bayesian magnitude methods, suggesting a better fit to the training data.

Figure A5: MNIST (FCN 75%) learning curves for the Bayesian pruning method.

Figure A5 shows the learning curves for the Bayesian pruning method on the MNIST dataset

for a FCN at 75% sparsity. Bayesian random method does slightly better than baseline and

Bayesian magnitude methods. Bayes random method has higher Bayes factor than the

baseline and Bayesian magnitude methods, suggesting a better fit to the training data.

107

Figure A6: MNIST (CNN 75%) learning curves for the Bayesian pruning method.

Figure A6 shows the learning curves for the Bayesian pruning method on the MNIST dataset

for a CNN at 75% sparsity. Bayesian random method does slightly better than baseline

and Bayesian magnitude methods. Bayes random method has higher Bayes factor than the

baseline and Bayesian magnitude methods, suggesting a better fit to the training data.

Figure A7: MNIST (FCN 90%) learning curves for the Bayesian pruning method.

Figure A7 shows the learning curves for the Bayesian pruning method on the MNIST dataset

for a FCN at 90% sparsity. Baseline, Bayesian random and Bayesian magnitude models show

similar amount of overfitting. The validation loss starts to deteriorate as 90% of weights

are dropped. Bayes factor remains below one at the same level as the baseline method

for Bayesian magnitude, Bayesian random method shows higher Bayes factor, suggesting a

better fit to the training data.

108

Figure A8: MNIST (CNN 90%) learning curves for the Bayesian pruning method.

Figure A8 shows the learning curves for the Bayesian pruning method on the MNIST dataset

for a CNN at 90% sparsity. Baseline, Bayesian random and Bayesian magnitude models

show similar amount of overfitting but lower than the FCN models at 90% sparsity. The

validation loss starts to deteriorate as 90% of weights are dropped. Bayes factor remains

below one at the same level as the baseline method for Bayesian magnitude, Bayesian

random method shows higher Bayes factor, suggesting a better fit to the training data.

Figure A9: MNIST (FCN 99%) learning curves for the Bayesian pruning method.

Figure A9 shows the learning curves for the Bayesian pruning method on the MNIST

dataset for a FCN at 99% sparsity. Baseline and Bayesian random show similar amount

of overfitting. Bayesian magnitude performs best, with the lowest validation loss. Bayes

factor for Bayesian random and Bayesian magnitude have a similar trend, suggesting a

similar level of fit to the training data.

109

Figure A10: MNIST (CNN 99%) learning curves for the Bayesian pruning method.

Figure A10 shows the learning curves for the Bayesian pruning method on the MNIST

dataset for a CNN at 99% sparsity. Baseline, Bayesian random and Bayesian magnitude

show similar amount of overfitting. Bayes factor for Bayesian random and Bayesian magnitude

have a similar trend, suggesting a similar level of fit to the training data.

A.2 MNIST FASHION LEARNING CURVES

The following figures show the learning curves for the Bayesian pruning method on the

MNIST Fashion dataset for a FCN, CNN at different sparsity levels.

Figure A11: MNIST Fashion (FCN 25%) learning curves for the Bayesian pruning method.

Figure A11 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a FCN at 25% sparsity. Both the baseline and Bayesian magnitude

methods show similar levels of overfitting. Only Bayesian random pruning is able to combat

overfitting to some extent. Pruning only 25 % of the weights with the lowest magnitude does

110

not help combat overfitting as there is still sufficient weights to memorize the training data.

The Bayesian random pruning method is able to maintain a low validation loss because it

prunes weights randomly, and thus is able to prune weights that are not necessarily the

least important weights. Bayes factor remains below one at the same level as the baseline

method for the Bayesian magnitude method. Bayesian random method shows higher Bayes

factor, suggesting a better fit to the training data.

Figure A12: MNIST Fashion (CNN 25%) learning curves for the Bayesian pruning method.

Figure A12 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a CNN at 25% sparsity. Both the baseline and Bayesian magnitude

methods show similar levels of overfitting. Only Bayesian random pruning is able to combat

overfitting to some extent. Pruning only 25 % of the weights with the lowest magnitude does

not help combat overfitting as there is still sufficient weights to memorize the training data.

The Bayesian random pruning method is able to maintain a low validation loss because it

prunes weights randomly, and thus is able to prune weights that are not necessarily the

least important weights. Bayes factor remains below one at the same level as the baseline

method for the Bayesian magnitude method. Bayesian random method shows higher Bayes

factor, suggesting a better fit to the training data.

111

Figure A13: MNIST Fashion (FCN 50%) learning curves for the Bayesian pruning method.

Figure A13 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a FCN at 50% sparsity. Bayesian magnitude starts do better than

baseline model, Bayesian random does better than both. Bayes factor for Bayesian random

is better than baseline and Bayesian magnitude, suggesting a better fit to the training data.

Figure A14: MNIST Fashion (CNN 50%) learning curves for the Bayesian pruning method.

Figure A14 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a CNN at 50% sparsity. Both the baseline and Bayesian magnitude

methods show similar levels of overfitting. Only Bayesian random pruning is able to combat

overfitting to some extent. Bayes factor remains close to one for all methods, suggesting a

similar fit to training data.

112

Figure A15: MNIST Fashion (FCN 75%) learning curves for the Bayesian pruning method.

Figure A15 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a FCN at 75% sparsity. Both Bayesian random and Bayesian magnitude

combats overfitting compared to the baseline model. Bayes factor for Bayesian random is

better than baseline and Bayesian magnitude, suggesting a better fit to the training data.

Figure A16: MNIST Fashion (CNN 75%) learning curves for the Bayesian pruning method.

Figure A16 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a CNN at 75% sparsity. Bayesian magnitude does slightly better than

baseline, Bayesian random does better than both to combat overfitting. Bayes factor for

Bayesian random is better than baseline and Bayesian magnitude, suggesting a better fit

to the training data.

113

Figure A17: MNIST Fashion (FCN 90%) learning curves for the Bayesian pruning method.

Figure A17 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a FCN at 90% sparsity. Bayesian magnitude does best in terms of

combatting overfitting. Bayes factor for Bayesian random is higher than baseline and

Bayesian magnitude, suggesting a better fit to the training data.

Figure A18: MNIST Fashion (CNN 90%) learning curves for the Bayesian pruning method.

Figure A18 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a CNN at 90% sparsity. Bayesian magnitude does best in terms of

combatting overfitting. Bayes factor for Bayesian random is higher than baseline and

Bayesian magnitude, suggesting a better fit to the training data.

114

Figure A19: MNIST Fashion (FCN 99%) learning curves for the Bayesian pruning method.

Figure A19 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a FCN at 99% sparsity. Bayesian magnitude does best in terms of

combatting overfitting. Bayes factor for Bayesian random and Bayesian magnitude remain

higher than baseline, suggesting a better fit to the training data.

Figure A20: MNIST Fashion (CNN 99%) learning curves for the Bayesian pruning method.

Figure A20 shows the learning curves for the Bayesian pruning method on the MNIST

Fashion dataset for a CNN at 99% sparsity. Bayesian magnitude does best in terms of

combatting overfitting. Bayes factor for Bayesian magnitude remain higher, suggesting a

better fit to the training data.

A.3 CIFAR-10 LEARNING CURVES

The following figures show the learning curves for the Bayesian pruning method on the

MNIST dataset for a FCN, CNN at different levels of sparsity.

115

Figure A21: CIFAR-10 (FCN 25%) learning curves for the Bayesian pruning method.

Figure A21 shows the learning curves for the Bayesian pruning method on the CIFAR-10

dataset for a FCN at 25% sparsity. Both the baseline and Bayesian magnitude methods

validation loss deteriorate as training progresses. Only Bayesian random pruning is able to

maintain a low validation loss. Pruning only 25 % of the weights with the lowest magnitude

does not help combat overfitting as there is still sufficient weights to memorize the training

data. The Bayesian random pruning method is able to maintain a low validation loss because

it prunes weights randomly, and thus is able to prune weights that are not necessarily the

least important weights. Bayes factor remains below one at the same level as the baseline

method for the Bayesian magnitude method which indicates that the model is not a good

fit for the data throughout the training epochs.

Figure A22: CIFAR-10 (CNN 25%) learning curves for the Bayesian pruning method.

Figure A22 shows the learning curves for the Bayesian pruning method on the CIFAR-10

116

dataset for a CNN at 25% sparsity. Baseline, Bayesian random and Bayesian magnitude

methods validation loss deteriorate as training progresses. Only random pruning is able to

combat overfitting to some extent. Bayes factor lies close to one for the Bayesian magnitude

method which indicates that the model is a better fit compared to the FCN model at 25%

sparsity.

Figure A23: CIFAR-10 (FCN 50%) learning curves for the Bayesian pruning method.

Figure A23 shows the learning curves for the Bayesian pruning method on the CIFAR-10

dataset for a FCN at 50% sparsity. Both the baseline and Bayesian magnitude methods

validation loss deteriorate as training progresses. Only random pruning is able to combat

overfitting. Bayes factor remains below one at the same level as the baseline method for

the Bayesian magnitude method which indicates that the model is not a good fit for the

data throughout the training epochs.

Figure A24: CIFAR-10 (CNN 50%) learning curves for the Bayesian pruning method.

117

Figure A24 shows the learning curves for the Bayesian pruning method on the CIFAR-

10 dataset for a CNN at 50% sparsity. Both the baseline, Bayesian Random and Bayesian

magnitude methods validation loss deteriorate as training progresses. Only random pruning

is able to combat overfitting to some extent. Bayes factor lies close to one for the Bayesian

magnitude method which indicates that the model is a better fit compared to the CNN

model at 25% sparsity. Bayes factor lies close to one for the Bayesian magnitude method

which indicates that the model is a better fit compared to the FCN model at 50% sparsity.

Figure A25: CIFAR-10 (FCN 75%) learning curves for the Bayesian pruning method.

Figure A25 shows the learning curves for the Bayesian pruning method on the CIFAR-

10 dataset for a FCN at 75% sparsity. Both the baseline, Bayesian Random and Bayesian

magnitude methods validation loss deteriorate as training progresses. Only random pruning

is able to combat overfitting. Bayes factor remains below one and slightly better than the

baseline method for the Bayesian magnitude method which indicates that the model is not

a good fit for the data but better than baseline model.

118

Figure A26: CIFAR-10 (CNN 75%) learning curves for the Bayesian pruning method.

Figure A26 shows the learning curves for the Bayesian pruning method on the CIFAR-10

dataset for a CNN at 75% sparsity. Both the baseline and Bayesian magnitude methods

validation loss deteriorate as training progresses. Only random pruning is able to combat

overfitting to some extent. Bayes factor lies below one for the Bayesian magnitude method

but better compared to the FCN model at 75%.

Figure A27: CIFAR-10 (FCN 90%) learning curves for the Bayesian pruning method.

Figure A27 shows the learning curves for the Bayesian pruning method on the CIFAR-10

dataset for a FCN at 90% sparsity. Both the Bayesian Random and Bayesian magnitude

methods are able to combat overfitting. Bayes factor remains below one and slightly better

than the baseline method for the Bayesian magnitude method which indicates that the

model is not a good fit for the data but better than baseline model. Bayesian Random

method fits the data better.

119

Figure A28: CIFAR-10 (CNN 90%) learning curves for the Bayesian pruning method.

Figure A28 shows the learning curves for the Bayesian pruning method on the CIFAR-10

dataset for a CNN at 90% sparsity. Both the baseline and Bayesian magnitude methods

validation loss deteriorate as training progresses. Only random pruning is able to combat

overfitting to some extent. Bayes factor remains high and fluctuating throughout training

suggesting a better fit with fewer parameters.

Figure A29: CIFAR-10 (FCN 99%) learning curves for the Bayesian pruning method.

Figure A29 shows the learning curves for the Bayesian pruning method on the CIFAR-10

dataset for a FCN at 99% sparsity. Both Bayesian random and Bayesian magnitude pruning

methods are able to combat overfitting. Bayes factor remains below one and better than

the baseline method for the Bayesian magnitude method which indicates that the model is

not a good fit for the data but better than baseline model. Bayesian Random method fits

the data better.

120

Figure A30: CIFAR-10 (CNN 99%) learning curves for the Bayesian pruning method.

Figure A30 shows the learning curves for the Bayesian pruning method on the CIFAR-10

dataset for a CNN at 99% sparsity. The validation loss deteriorates for Bayesian random

pruning from the beginning of the training period as 99% of weights are pruned. Bayesian

magnitude method is able to combat overfitting. Bayes factor remains high throughout

training for the Bayesian magnitude method. The model is able to fit the data better with

fewer parameters.

APPENDIX B: MRI DATA PROCESSING

B.1 AFFINE TRANSFORMATIONS

As the MRI scanner collects data on a regular grid affine (linear) transformations can be

applied to MRI data to rotate, scale and translate the data from voxel space to scanner

space.

Affine transformations can be represented using a 4x4 transformation matrix (A) where the

3x3 submatrix (M) in the first 3 rows and columns represent the scaling followed by the

121

rotation transformation and the first three rows of the last column represent the translation.

A =

m11 m12 m13 t14

m21 m22 m23 t24

m31 m32 m33 t34

0 0 0 1

Scaling the data (zooming in or out) can be represented by a 3x3 diagonal matrix where

the elements on the diagonal zooms their respective dimensions by their value.

S =

sx 0 0

0 sy 0

0 0 sz

Rotation in three dimensions are represented by a 3x3 matrix. There are three embeddings

based on the rotation axis. If x axis or the first array of the MRI data is kept fixed, then

the rotation is

Rx =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

If y axis or the first array of the MRI data is kept fixed, then the rotation is

Ry =

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

If z axis or the first array of the MRI data is kept fixed, then the rotation is

Rz =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

To rotate on an axis that is not the coordinate axis and in the direction specified by an unit

122

vector u = (x, y, z)

Ru =

0 −z y

z 0 −x

−y x 0

 sin θ + (I − uuT) cos θ + uuT

The scaling and rotation can be combined to be 3x3 matrix, an example of scaling and

rotating around x axis can be shown as

M =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

sx 0 0

0 sy 0

0 0 sz

Thus with the affine transformation matrix (A) we can transform the voxel coordinates to

a real 3d space like the scanner space where the origin (0, 0, 0) is at the magnet isocenter

and units are measured in mm. The three orthogonal scanner axis are 1. scanner-bore axis

(behind the scanner towards end of scanner bed) 2. scanner-floor to ceiling axis 3. scanner-

left to right axis There are numerous reference spaces, one that is common is RAS+ where

Right, Anterior and Superior of the subject are positive values on the axes. A coordinate

(i, j, k) in voxel space can be transformed to the reference space by applying the affine

transform as

x

y

z

1

=

m11 m12 m13 t14

m21 m22 m23 t24

m31 m32 m33 t34

0 0 0 1

i

j

k

1

123

APPENDIX C: PROBABILITY DISTRIBUTIONS OF A RBM

C.1 POSTERIOR DISTRIBUTION OF A RBM

The joint distribution of an RBM with visible nodes v, hidden nodes h can be written as:

P (v, h) =
1

Z
exp(−E(v, h))

where Z is the partition function and E(v, h) is the energy function defined as:

E(v, h) = −vTWh− vTa− hT b

Here, W represents the weight matrix connecting the visible and hidden nodes, a and b are

the bias terms for the visible and hidden nodes respectively, and the superscript T denotes

the transpose operation.

Now, let’s assume we have observed data v′, and we want to infer the hidden nodes h given

the observed data. According to Bayes’ theorem:

P (h|v′) = P (v′, h)

P (v′)

To calculate the posterior distribution, we need to calculate the numerator and the denominator.

We can express P (v′, h) as:

P (v′, h) =
1

Z
exp(−E(v′, h))

Here, we treat v′ as fixed observed data, and h as the variable.

To calculate the denominator, we need to marginalize over all possible values of h:

124

P (v′) =
∑
h

P (v′, h)

We can expand P (v′, h) and perform the summation over h.

After obtaining the numerator and denominator, we can divide the numerator by the

denominator to calculate the posterior distribution:

P (h|v′) = P (v′, h)

P (v′)

Note that calculating the exact posterior distribution of an RBM is generally computationally

infeasible. In practice, approximate methods such as variational inference or Markov

chain Monte Carlo (MCMC) techniques like Gibbs sampling are often used to estimate

the posterior distribution.

C.2 POSTERIOR CONDITIONAL DISTRIBUTION OF A RBM

In a binary RBM to derive the probability P (hj = 1|v) of a hidden unit hj being activated

(having a value of 1) given the visible nodes v in a Restricted Boltzmann Machine (RBM),

we can use the concept of conditional probability and the sigmoid activation function.

The activation probability P (hj = 1|v) can be calculated by considering the joint probability

of the hidden unit hj being 1 along with the given visible nodes v and normalizing it with

respect to all possible states of hj . Mathematically, it can be expressed as:

P (hj = 1|v) = P (hj = 1, v)

P (hj = 0, v) + P (hj = 1, v)

We can calculate P (hj = 1, v) by summing over all possible hidden unit states hj multiplied

by the joint probability of hj and v. In an RBM, the joint probability is defined using the

energy function as:

P (hj , v) =
1

Z
exp(−E(v, h))

125

To calculate P (hj = 1, v), we fix hj to 1 and sum over all possible values of the remaining

hidden nodes h¬j :

P (hj = 1, v) =
∑
h¬j

P (hj = 1, h¬j , v)

To calculate P (hj = 0, v) + P (hj = 1, v), we need to consider both the cases where hj is 0

and 1. We can express it as:

P (hj = 0, v) + P (hj = 1, v) =
∑
hj

P (hj , v)

Here, we sum over both possible values of hj (0 and 1) and all possible values of the

remaining hidden nodes h¬j .

Finally, we can substitute the derived numerator and denominator into the expression for

P (hj = 1|v) to obtain the probability of the hidden unit hj being activated given the visible

nodes v:

P (hj = 1|v) = P (hj = 1, v)

P (hj = 0, v) + P (hj = 1, v)

P (hj = 1, v)

P (hj = 0, v) + P (hj = 1, v)
=

1

1 +
P (hj=0,v)
P (hj=1,v)

To further simplify, we can express the term
P (hj=0,v)
P (hj=1,v) as the exponential of the negative

energy difference:

P (hj = 1, v)

P (hj = 0, v)
= exp(−E(hj = 1, v) + E(hj = 0, v))

Substituting this expression back into the simplified form, we have:

126

=
1

1 + exp(−E(hj = 1, v) + E(hj = 0, v))

This simplified expression is in the form of the logistic function, or sigmoid function. Thus,

we can rewrite it as:

σ(E(hj = 1, v)− E(hj = 0, v))

This represents the probability P (hj = 1|v) of a hidden unit hj being activated given the

visible nodes v in terms of the difference in energy between the two states.

= σ(vTW:j × 1 + bj × 1− [vTW:j × 0 + bj × 0])

= σ(vTW:j + bj)

APPENDIX D: RBM SYSTEM PLOTS

Left atrial surface reconstruction plots created using the RBM based system. Each plot

contains surface reconstruction for 5 different patient data. Each volume is reconstructed

using 250 input points.

127

F
ig
u
re

A
31

:
R
B
M

sy
st
em

su
rf
ac
e
p
lo
t
w
it
h
25

0
in
p
u
t
p
oi
n
ts

in
A
P

v
ie
w
.

128

F
ig
u
re

A
32

:
R
B
M

sy
st
em

m
es
h
w
it
h
25

0
in
p
u
t
p
oi
n
ts

in
A
P

v
ie
w
.

129

APPENDIX E: VAE SYSTEM PLOTS

Left atrial surface reconstruction plots created using the VAE based system. Each plot

contains surface reconstruction for 5 different patient data. Each volume is reconstructed

using 250 input points.

A wireframe view of the reconstructed surface is shown in Figure A34.

130

F
ig
u
re

A
33

:
V
A
E

sy
st
em

su
rf
ac
e
p
lo
t
w
it
h
25

0
in
p
u
t
p
oi
n
ts

in
A
P

v
ie
w
.

131

F
ig
u
re

A
34

:
R
B
M

sy
st
em

m
es
h
w
it
h
25

0
in
p
u
t
p
oi
n
ts

in
A
P

v
ie
w
.

132

APPENDIX F: RBM, VAE COMPARISON PLOTS

Left atrial surface reconstruction plots created using the RBM and VAE based system for

Anterior-Posterior (AP), Left Anterior Oblique (LAO), Right Anterior Oblique (RAO), Left

Lateral (LL) and Right Lateral (RL) views. Each plot contains surface reconstruction for

5 different patient data. Each volume is reconstructed using 25, 100 and 250 input points.

Figure A35: RBM, VAE comparsion plot with 25, 100 and 250 points in AP view.

133

Figure A36: RBM, VAE comparsion plot with 25, 100 and 250 points in LAO view.

134

Figure A37: RBM, VAE comparsion plot with 25, 100 and 250 points in RAO view.

135

Figure A38: RBM, VAE comparsion plot with 25, 100 and 250 points in LL view.

136

Figure A39: RBM, VAE comparsion plot with 25, 100 and 250 points in RL view.

	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	Motivation
	Research Aims
	Aim 1: Pruning neural networks using Bayesian inference.
	Aim 2: Interpretable models for volumetric data.
	Aim 3: Generation of patient specific anatomical models of cardiac chamber models using interpretable generative models for electroanatomical mapping.

	Background
	Interventional Electrophysiology
	Artificial Neural Networks
	Bayesian Inference
	Supervised learning
	Unsupervised learning
	Generative Modeling
	Surface Reconstruction

	Left Atrial Dataset

	CHAPTER 2. PRUNING NEURAL NETWORKS USING BAYESIAN INFERENCE
	Introduction
	Theory
	Neural Network Pruning
	Bayesian Hypothesis Testing

	Methods
	Pruning Neural Networks using Bayesian Inference

	Experiments
	Results
	Discussion

	CHAPTER 3. AN INTERPRETABLE MODEL FOR VOLUMETRIC DATA USING MCMC METHODS
	Introduction
	Theory
	Latent variable models
	Approximate Bayesian Inference
	Markov chain Monte Carlo (MCMC) methods

	Methods
	A Restricted Boltzmann Machine (RBM) for volumetric data

	Results
	Discussion

	CHAPTER 4. AN INTERPRETABLE GENERATIVE MODEL FOR VOLUMETRIC DATA USING VARIATIONAL INFERENCE
	Introduction
	Theory
	Variational Inference
	Learning conditional distributions using CNNs

	Methods
	A Variational Autoencoder (VAE) model for volumetric data

	Results
	Discussion

	CHAPTER 5. GENERATION OF PATIENT SPECIFIC CARDIAC CHAMBER MODELS USING INTERPRETABLE MODELS FOR ELECTROANATOMICAL MAPPING
	Introduction
	Theory
	Electroanatomical Mapping (EAM) Systems

	Methods
	An EAM system based on Bayesian inference

	Experiments
	Results
	Discussion

	CHAPTER 6. CONCLUSION
	Summary of Presented Work
	Future Work

	BIBLIOGRAPHY
	APPENDIX A: BAYESIAN PRUNING LEARNING CURVES
	A.1 MNIST LEARNING CURVES
	A.2 MNIST FASHION LEARNING CURVES
	A.3 CIFAR-10 LEARNING CURVES

	APPENDIX B: MRI DATA PROCESSING
	B.1 AFFINE TRANSFORMATIONS

	APPENDIX C: CONDITIONAL PROBABILITY DISTRIBUTIONS OF A RBM
	A.1 POSTERIOR DISTRIBUTION OF A RBM
	C.2 POSTERIOR CONDITIONAL DISTRIBUTION OF A RBM

	APPENDIX D: RBM SYSTEM PLOTS
	APPENDIX D: VAE SYSTEM PLOTS
	APPENDIX D: RBM, VAE COMPARISON PLOTS

