
Pruning a neural network using Bayesian Inference

Journal: IEEE Transactions on Neural Networks and Learning Systems

Manuscript ID TNNLS-2024-P-32985

Manuscript Type: Regular Paper

Keywords: Bayesian pruning, Bayesian model selection,
Bayes Factors, Neural Network Compression

1
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Pruning a neural network using Bayesian Inference

Abstract— Neural network pruning is an effective technique for

reducing the computational and memory requirements of large
neural networks. It has been proven to be useful in reducing the
effects of overfitting and in some cases provide better performance
than its original unpruned network. In this paper, we propose a
method for pruning neural networks using Bayesian inference
that can be incorporated into the training process. We evaluate
our method on several standard benchmarks and show that it
achieves high levels of sparsity while maintaining competitive
accuracy.

Index Terms—Bayesian pruning, Bayesian model selection, Bayes
Factors, Neural network compression

I. INTRODUCTION
N artificial neural nets (ANN) and machine learning (ML),
parameters represent what the network has learned from the
data. Over time as the computational capabilities from a

hardware perspective have advanced, we have now become
able to define larger models with millions of parameters. The
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) and its winners over the year show us how the error
rate has dropped with increase of the number of parameters and
connections in neural network. In 2012, one of the CNNs
AlexNet [1] had 660K nodes, 61M parameters and over 600M
connections. The state-of-the-art deep learning language model
GPT-3 [2] comprises of 175 billion machine learning
parameters. While deeper high parameter nets provide better
results, the large number of connections introduce the problems
of memory, overfitting, and lack of generalizability. There have
been numerous methods developed to address these problems.
 Regularization is one of the most popular methods to address
the problem of overfitting. It is a technique that adds a penalty
term to the loss function to prevent the model from overfitting.
It is a very effective method to reduce the complexity of the
model and to improve its generalizability. However, it is not a
very effective method for reducing the number of parameters
in the model.
 Neural network pruning is a popular method that focuses on
reducing the number of parameters of the model, thereby
reducing the computational complexity and memory
requirements of deep learning models [3]. They are key to
deploying large models on resource constrained devices like
mobile phones and tablets. Pruning involves removing weights
or neurons from the network that have a negligible impact on
its performance, while retaining the most important ones.
Traditional pruning methods typically rely on heuristics or
sensitivity analysis to determine which weights to remove, but
these approaches can be suboptimal and do not provide a

principled way of selecting the most important weights [4].
 Several pruning methods have been proposed in the
literature, including weight pruning, neuron pruning, and filter
pruning [5], [6], [7]. Weight pruning involves removing
individual weights from the network based on their magnitude
or other criteria, while neuron pruning, and filter pruning
involve removing entire neurons or filters that are deemed
unimportant. One of the most prominent neuron pruning
technique is a process called “drop-out.”[8]. Dropout uses a
heuristic to determine which connections can be randomly
dropped during training. These methods can be effective for
reducing the size of the network and improving its
performance, but they typically rely on heuristics or sensitivity
analysis to determine which weights or neurons to remove,
which can be suboptimal and do not provide a principled way
of selecting the most important ones [9].
 In Bayesian pruning, the weights of the network are treated
as random variables with a prior distribution, which can be
updated to a posterior distribution using Bayes' rule. This
allows us to quantify the uncertainty associated with each
weight and select the most important ones based on their
relevance to the task at hand. Bayesian pruning has several
advantages over traditional pruning methods, including a
principled framework for selecting the most important weights,
the ability to incorporate prior knowledge about the network
structure, and the potential for improved performance when
combined with other techniques such as importance weighting.
The posterior distribution reflects our updated belief about the
weights based on the observed data and can be used to calculate
the probability that each weight is important for the task at
hand. One common approach for approximating the posterior
distribution is to use variational inference, which involves
minimizing the Kullback-Leibler divergence between the true
posterior and an approximate distribution [10]. Other
approaches include Monte Carlo methods and Markov chain
Monte Carlo (MCMC) sampling [11].
 In this chapter, we propose a Bayesian pruning algorithm
that uses approximate Bayesian inference to calculate the
posterior distribution of the weights and determine which ones
to prune. Bayesian pruning offers a principled approach for
selecting the most important weights in a neural network and
can lead to significant reductions in computational and memory
requirements without sacrificing accuracy. We follow an
approach similar to [12] to iteratively prune with varying levels
of sparsity and to monitor accuracy for different levels of
sparsity. Our approach uses Bayesian hypothesis testing to
compute the pruning threshold. We evaluate our method on
standard benchmarks and show that it achieves high levels of
sparsity while maintaining competitive accuracy. Our approach
also allows us to incorporate prior knowledge about the

I

Page 1 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

structure of the network and can be extended to handle more
complex pruning scenarios. Overall, our results demonstrate
the potential of Bayesian pruning as a promising approach for
reducing the complexity of deep neural networks.

II. METHODS

A. Pruning Neural Networks Using Bayesian Inference

Figure 1 shows the block diagram of the pruning system.
After a forward pass through the layers of the neural network
which consists of a series of matrix multiplications and non-
linear activations, the output of the network is compared with
the ground truth labels to compute the loss.

Fig. 1. Pruning system block diagram.

The loss is then backpropagated through the network to
compute the gradients of the weights. The gradients are then
used to update the weights using an optimizer such as SGD or
Adam [13]. After the epoch is completed, the weights are
pruned using the pruning algorithm. The pruned weights are
then used in the next epoch.
 Let ψ be the set of weights in the unpruned network and let
ϕ be the set of weights in the pruned network. We want to test
whether the pruned network fits the data better than the original
unpruned network. The null hypothesis is that the unpruned
network fits the data better than the unpruned network, i.e.,  θ =
 ψ. The alternative hypothesis is that the pruned network fits
the data better than the unpruned network, i.e., θ =  ϕ.
 To test these hypotheses, we compute the Bayes factor,
which is the ratio of the posterior probability of the alternative
hypothesis to the posterior probability of the null hypothesis:

Bayes factor =
𝑃(θ = ϕ|𝐷)
𝑃(θ = ψ|𝐷)

where D is the training data.
We can compute the posterior probability of the null hypothesis
as follows:

P(θ = ψ|𝐷) =
𝑃(𝐷|θ = ψ)𝑃(θ = ψ)

𝑃(𝐷)

where P(𝐷|θ = ψ) is the likelihood of the data given the
weights of the unpruned network, P(θ = ψ) is the prior
probability of the null hypothesis, and P(𝐷) is the marginal
likelihood of the data. P(θ = ψ|𝐷) represents the probability
of the null hypothesis given the data.

Similarly, we can compute the posterior probability of
the alternative hypothesis as follows:

P(θ = ϕ|𝐷) =
𝑃(𝐷|θ = ϕ)𝑃(θ = ϕ)

𝑃(𝐷)

where P(𝐷|θ = ϕ) is the likelihood of the data given the
weights of the pruned network, and 𝑃(𝜃 = 𝜙) is the prior
probability of the alternative hypothesis. 𝑃(𝜃 = 𝜙|𝐷)
represents the probability of the alternative hypothesis given
the data.
We can then compute the Bayes factor as the ratio of the
posterior probabilities:

Bayes	factor =
𝑃(𝐷|θ = ϕ)𝑃(θ = ϕ)
𝑃(𝐷|θ = ψ)𝑃(θ = ψ)

 A Bayes factor value greater than 1 indicates that the pruned
network fits the data better than the unpruned network. A Bayes
factor value less than 1 indicates that the unpruned network fits
the data better than the pruned network. We introduce shared
prior distributions for the layer-wise pruning by specifying a
common sparsity-inducing prior,

𝑝<𝑊(")>θ(")? =@𝑝<𝑤$
(")>θ(")?

%(")

$&'

where 𝑊(")	is the weight matrix of layer 𝑙, 	𝑁" is the number of
weights in layer 𝑙, and 𝑤$

(") is the 𝑖th weight in layer 𝑙. The prior
distribution 𝑝<𝑤$

(")>θ(")? is a function of the hyperparameters
θ(") that specify the sparsity-inducing prior.

 Here we train the neural network on the training set using
stochastic gradient descent. We compute the posterior
distribution of each weight using a Gaussian prior with mean 𝜇
and variance 𝜎(, where 𝜎 is a hyperparameter that controls the
strength of the prior.

𝑝(𝑤$) = 𝒩(µ, σ()
For a classification problem, the likelihood of the data is given
by:

log 𝑝 <𝑦)*+,>𝑦-*.+? = log𝒞 Osoftmax<𝑦)*+,?R𝑦𝑡𝑟𝑢𝑒
where 𝒞 is the categorical cross-entropy loss function, 𝑦)*+, is
the neural network prediction for the classes and 𝑦-*.+ is the
ground truth. We calculate the log prior and log likelihood for
the weight parameters to get the posterior distribution of the
weights with the following equation:

log 𝑝 (𝑤|𝐷) = log 𝑝 (𝑤) + log 𝑝 (𝐷|𝑤)\	

=Ylog𝑝 (𝑦$|𝑓(𝑥$), 𝑤) + log 𝑝 (𝑤)
/

$&'

	

 We use an iterative pruning algorithm that is incorporated to
the training process. Pruning is performed after each epoch of
training. The Bayes factor is used to determine whether to
prune or not to achieve a desired level of sparsity. The
percentage of weights to prune is a hyperparameter that can be

Page 2 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

tuned to achieve the desired level of sparsity. The algorithm is
summarized in Algorithm 1.

Algorithm	1	Bayesian Pruning Algorithm

Input: Trained neural network 𝑓(⋅, θ), pruning rate 𝑟,
dataset 𝒟 = (𝑥𝑖, 𝑦$)$&'/ , β Bayes factor threshold
Output: Pruned neural network 𝑓*(⋅, θ)
1: Compute the posterior probability of the weights before
pruning.
2: If 𝐵𝐹0' > 	𝛽 then
3: Prune 𝑟 percentage of weights 𝑓(⋅, θ)
4: end if
5: Compute the posterior probability of the weights after
pruning.
6: Compute the Bayes factor using the posterior probabilities
before and after pruning.

 In the following sections we introduce two pruning
algorithms that use the above framework. The first algorithm is
random pruning, which randomly selects weights to prune. The
second algorithm is magnitude pruning, which selects weights
to prune based on their magnitude.

B. Random pruning

 Random pruning is a simple pruning algorithm that randomly
selects weights to prune. Here we set the pruning rate to be the
desired level of sparsity that we are looking to achieve. After
an epoch, we count the number of non-zero parameters in the
network and randomly zero out just enough parameters to
achieve the desired level of sparsity. The algorithm is
summarized in Algorithm 2.

Algorithm	2	Bayesian Pruning Algorithm

1: 	𝑓(⋅, 𝜃):	Neural network model with parameters 𝜃
2: r: Desired sparsity level, 𝛽 Bayes factor threshold
3: Calculate log posterior probability 𝑝(θ|𝐷)
4: If 𝐵𝐹0' > 	𝛽 then
5: for all weights wi ∈ θ do
6: n ← size(wi)
7: number of weights to prune, k ← (n × r)
8: I ← indices of non-zero weights
9: nz ← number of zero weights
10: k′ ← k − nz
11: J ← random sample(I, k′)
12: set elements in wi at indices J to zero

13: end for

14: end if
15: Calculate log posterior probability p(θ|D) after
pruning
16: Calculate Bayes factor BF01

C. Magnitude-based pruning
 Magnitude-based pruning is a pruning algorithm that selects
weights to prune based on their magnitude. This can be seen as
pruning weights that are less important. Here we set the pruning
rate to be the desired level of sparsity that we are looking to
achieve. The lowest weights corresponding to the desired level
of sparsity is pruned to get the pruned network. The algorithm
is summarized in Algorithm 3.

Algorithm	2	Bayesian Pruning Algorithm

1: 	𝑓(⋅, 𝜃):	Neural network model with parameters 𝜃
2: r: Desired sparsity level, 𝛽 Bayes factor threshold
3: Calculate log posterior probability 𝑝(θ|𝐷)
4: If 𝐵𝐹0' > 	𝛽 then
5: for all weights wi ∈ θ do
6: n ← size(wi)
7: number of weights to prune, k ← (n × r)
8: wi ← sort(wi)
9: set k element in wi to zero
10: end for

11: end if
12: Calculate log posterior probability p(θ|D) after
pruning
13: Calculate Bayes factor BF01

D. Datasets

 MNIST dataset

 The MNIST dataset [14] consists of 60,000 training images
and 10,000 test images of handwritten digits. Each image is
28 × 28 pixels and is grayscale. The images are normalized to
have zero mean and unit variance. The images are flattened into
a 784-dimensional vector and fed into the neural network. The
network is trained to classify the images into one of the 10
classes. The network is trained for 50 epochs.

 MNIST-Fashion dataset

 The MNIST-Fashion dataset, as described in the study by
Xiao et al. (2017) [15] comprises 60,000 training images and
10,000 test images featuring various fashion items. Each image
has a resolution of 28×28 pixels and is presented in grayscale.
To ensure uniformity, the images are normalized to possess
zero mean and unit variance. Prior to processing through the
fully connected neural network, the images are flattened into a
784-dimensional vector. The objective of the network is to

Page 3 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

categorize the images into one of the 10 classes. The training
process involves 50 epochs.

CIFAR-10 dataset

 The CIFAR-10 dataset [16] consists of 50,000 training images
and 10,000 test images of 10 classes of objects. Each image is
32 × 32 pixels and is RGB. The images are normalized to have
zero mean and unit variance. The images are flattened into a
3072-dimensional vector and fed into the neural network. The
network is trained to classify the images into one of the 10
classes. The network is trained for 100 epochs.

D. Neural Network Architecture

The network architecture of the fully connected network
(FCN) seen in Figure 2 is as follows:

𝒉' = 𝑅𝑒𝐿𝑈(𝑾'𝒙 + 𝒃')

𝒉(= 𝑅𝑒𝐿𝑈(𝑾(𝒉' + 𝒃()

𝒉1 = 𝑅𝑒𝐿𝑈(𝑾1𝒉(+ 𝒃1)

𝒚 = 𝑾2𝒉1 + 𝒃2 (1)

Where 𝐱 is the input, 𝐡', 𝐡(and 𝐡1 are the three hidden layers,
𝐲 is the output, 𝐖', 𝐖(, 𝐖1 and 𝐖2 are the weight matrices,
𝐛', 𝐛(, 𝐛1 and 𝐛2 are the bias vectors and ReLU(.) is the
rectified linear unit activation function.

Fig. 2. Representation of Fully connected neural network
architecture, given in Equation (1). See text for further details.

Convolutional neural network (CNN)
 The neural network architecture of the convolutional neural
network (CNN) seen in Figure 3 is as follows:

𝐡' = 	ReLU(Conv2d(𝐱,𝐖') +	𝐛𝟏)

𝐡(= 	MaxPool2d(𝐡')

𝐡1 = 	ReLU(Conv2d(𝐡(,𝐖() + 𝐛()	

𝐡2 = 	MaxPool2d(𝐡1)

𝐡4 = 	ReLU(𝐖'𝐡2 + 𝐛')	

𝐡5 = 	ReLU(𝐖(𝐡4 + 𝐛()

𝐡6 = 	ReLU(𝐖1𝐡5 + 𝐛1)

𝐲			 = 	𝐖7𝐡6 + 𝐛7 (2)

where x	is the input, h1, h2, h3, h4	···	h7	are the hidden layers,
y	is the output, W1, W2, W3	and W4	are the weight matrices,
b1, b2, b3	 and b4	 are the bias vectors, Conv2d(·) is the
convolutional layer, MaxPool2d(·) is the max pooling layer,
and ReLU(·) is the rectified linear unit activation function.

Fig.3. Representation of Convolutional neural network
architecture, given in Equation (2). See text for further details.

Page 4 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

D. Optimization
 There are several optimization algorithms that can be used
for training a neural network. The log posterior loss function
is a non-convex function. It can have multiple local minima
and saddle points. Gradient descent is a first-order
optimization algorithm that can be used to find a local
minimum of a function. However, it is not guaranteed to find
the global minimum. Gradient descent is also sensitive to the
learning rate. If the learning rate is too small, the algorithm
will take a long time to converge. If the learning rate is too
large, the algorithm may not converge at all. Stochastic
gradient descent (SGD) is a variant of gradient descent that
uses a random sample of the training data to estimate the
gradient. This reduces the computational cost of each iteration
and allows the algorithm to converge faster. However, SGD is
also sensitive to the learning rate. Adam is an adaptive
learning rate optimization algorithm that uses the first and
second moments of the gradient to adaptively adjust the
learning rate. It is more robust to the choice of learning rate
and converges faster than SGD. So, we will be using an Adam
optimizer Kingma and Ba (2015) for training our neural
networks.

E. Implementation
 Our implementation uses the PyTorch framework [17] for
Bayesian inference. We use a Gaussian prior with mean 0 and
variance σ2	as the prior distribution for the weights, where σ	is
a hyperparameter that controls the strength of the prior. We use
the Adam optimizer with a learning rate of 0.001 and a batch
size of 64 for all experiments. We use the PyTorch DataLoader
class to load and preprocess the data. Preprocessing only consist
of normalizing the dataset and does not include any data
augmentation like Random cropping or flipping of images to
have fewer confounding variables in the studies we conduct to
observe the effects of our pruning algorithm. We train the
network for 25 epochs on the training set and evaluate its
performance on the test set. We evaluate the performance of
each method in terms of the accuracy of predictions it makes for
the target classes using the test set.

One experiment consists of evaluating a pruning method
with one dataset, two different neural network architectures
(FCN and CNN) and five different levels of desired sparsity.
The levels of sparsity are 25%, 50%, 75%, 90% and 99%. We
also plot the learning curves for each method, showing the
evolution of the accuracy and sparsity during training. Both
pruning techniques are not global, meaning the final sparsity
level is achieved by pruning each layer individually.

III. RESULTS

MNIST dataset
 Figure 4 shows the learning curves for random pruning,
magnitude pruning under a Bayesian framework compared to
baseline in a fully connected network (FCN) trained on the
MNIST dataset. Here the desired level of sparsity is 75%. The
figure has two subplots. One shows the training and validation
loss as a function of the number of epochs, the other plot (right)

shows the Bayes factor, sparsity as a function of the number of
epochs. More figures for different sparsity levels are shown in
Appendix B.

Figure 4: Learning curves for a FCN with MNIST dataset.

The training loss is the average loss over the training set, and the
validation loss is the average loss over the validation set. The
figure shows that the training loss decreases as the number of
epochs increases, and the validation loss starts to decrease in
about 5 epochs. The training loss decreases faster than the
validation loss, which indicates that the model is overfitting the
training data. As pruning begins, it affects the training and
validation loss of both random and magnitude pruning as seen
the curves. There are large oscillations in loss values for random
pruning as seen in the figure. The Bayes factor begins to reduce
as the number of epochs increases and the sparsity of the
network becomes stabilized for magnitude pruning, but it
remains fluctuating for random pruning and shows an increasing
trend for the Bayes factor.

Figure 5: Validation loss of random pruning for different
sparsity levels.

 Figure 5 shows the validation accuracy of random pruning
for different sparsity levels. For 25% sparsity the validation
accuracy seems to be the highest. Then as the sparsity level
increases the validation accuracy begins to decrease. Until
90% sparsity the validation accuracy remains to have a
downward end and combats overfitting compared to the

Page 5 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

baseline. The network only starts to become worse at 99%
sparsity.

Figure 6: Validation loss of magnitude pruning for different
sparsity levels.

 Figure 6 shows the validation accuracy of magnitude
pruning for different sparsity levels. For 25% sparsity the
validation accuracy remains similar to the baseline. Then as
the sparsity level increases the validation accuracy starts to
improve but the network still overfits the data until 99% of the
parameters are pruned.

Figure 7: Learning curves for CNN with MNIST dataset.

 Figure 7 shows the learning curves for random pruning,
magnitude pruning under a Bayesian framework compared to
baseline in a convolutional neural network (CNN) trained on
the MNIST dataset. The number of parameters in the CNN are
comparatively larger than that of the FCN. This causes the
effects of overfitting to be seen a little later in the training
period. The trends in the learning curves are similar to that of
the FCN. The Bayes factor begins to reduce as the number of
epochs increases and the sparsity of the network becomes
stabilized for magnitude pruning, but it remains fluctuating for
random pruning and shows an increasing trend for the Bayes
factor.

Figure 8: Validation loss of random pruning for different
sparsity levels.

 Figure 8 shows the validation accuracy of random pruning for
different sparsity levels. As the number of parameters of the
CNN is larger than that of the FCN, the validation accuracy
remains similar to the baseline until 90% sparsity. Then as the
sparsity level increases the validation accuracy begins to
decrease.

Figure 9: Validation loss of magnitude pruning for different
sparsity levels.

 Figure 9 shows the validation accuracy of magnitude pruning
for different sparsity levels. Even pruning 99% of the
parameters does not affect the validation accuracy of the CNN.
This is because CNN has an enormous number of parameters
and the network overfits the data even after pruning 99% of the
parameters.

MNIST Fashion
 Figure 10 shows the learning curves for random pruning,
magnitude pruning under a Bayesian framework compared to
baseline in a fully connected network (FCN) trained on the
MNIST Fashion dataset. Here the desired level of sparsity is
90%. The figure has two subplots. One shows the training and
validation loss as a function of the number of epochs, the other
plot (right) shows the Bayes factor, sparsity as a function of the
number of epochs. More figures for different sparsity levels are
shown in Appendix C.

Figure 10: Learning curves for FCN with MNIST Fashion
dataset.

 The training loss is the average loss over the training set, and
the validation loss is the average loss over the validation set.
The figure shows that the training loss decreases as the number
of epochs increases, and the validation loss starts to decrease in
about 5 epochs. The training loss decreases faster than the
validation loss, which indicates that the model is overfitting the

Page 6 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

training data. As pruning begins, it affects the training and
validation loss of both random and magnitude pruning as seen
the curves. There is large oscillations in loss values for random
pruning. The Bayes factor begins to reduce as the number of
epochs increases and the sparsity of the network becomes
stabilized for magnitude pruning, but it remains fluctuating for
random pruning.

Figure 11: Validation loss of random pruning for different
sparsity levels.

 Figure 11 shows the validation accuracy of random pruning
for different sparsity levels. Similar to the MNIST dataset, the
validation loss is the lowest for 25% sparsity. Then as the
sparsity level increases the validation accuracy begins to
decrease.

Figure 12: Validation loss of magnitude pruning for different
sparsity levels.
 Figure 12 shows the validation accuracy of magnitude
pruning for different sparsity levels. Higher levels of sparsity
improve the validation accuracy of the FCN. The effects of
overfitting are reduced as the number of parameters are
reduced.

Figure 13: Learning curves for CNN with MNIST Fashion
dataset.

 Figure 13 shows the learning curves for random pruning,
magnitude pruning under a Bayesian framework compared to
baseline in a convolutional neural network (CNN) trained on
the MNIST Fashion dataset. Here the desired level of sparsity
is 90%. The figure has two subplots. One shows the training
and validation loss as a function of the number of epochs, the
other plot (right) shows the Bayes factor, sparsity as a function
of the number of epochs.

 The number of parameters in the CNN are comparatively
larger than that of the FCN. This causes the effects of
overfitting to be seen a little later in the training period. The
trends in the learning curves are similar to that of the FCN. The
validation accuracy for random pruning decreases at the
beginning of training and starts to improve as training
progresses. The Bayes factor begins to reduce as the number of
epochs increases and the sparsity of the network becomes
stabilized for magnitude pruning, but it remains fluctuating for
random pruning and shows an increasing trend for the Bayes
factor.

Figure 14: Validation loss of random pruning for different
sparsity levels.

 Figure 14 shows the validation accuracy of random pruning
for different sparsity levels. The trends are similar the MNIST
dataset. The validation accuracy is better for 25% sparsity and
decreases as the sparsity level increases. Sparsity levels up to
90% helps in reducing the effects of overfitting.

Figure 15: Validation loss of magnitude pruning for different
sparsity levels.

Page 7 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

 Figure 15 shows the validation accuracy of magnitude pruning
for different sparsity levels. Similar to the MNIST dataset,
magnitude pruning helps in reducing the effects of overfitting.
The validation loss continues to improve as 99% sparsity is
achieved.

CIFAR-10 dataset

 Figure 16 shows the learning curves for random pruning,
magnitude pruning under a Bayesian framework compared to
baseline in a fully connected network (FCN) trained on the
CIFAR-10 dataset. Here the desired level of sparsity is set to
90%. The figure has two subplots. One shows the training and
validation loss as a function of the number of epochs, the other
plot (right) shows the Bayes factor, sparsity as a function of the
number of epochs. More figures for different sparsity levels are
shown in Appendix D

 Figure 16: Learning curves for FCN with CIFAR-10 dataset.

 Unlike the MNIST, Fashion datasets the input images of
CIFAR-10 dataset are of size 32 × 32 × 3. This causes the
number of parameters in the FCN to be much larger than that
of the MNIST, Fashion datasets. This causes the effects of
overfitting to be seen a little later in the training period. The
trends in the learning curves are similar to that of the MNIST,
Fashion datasets. The validation accuracy for random pruning
decreases at the beginning of training and starts to improve as
training progresses. The Bayes factor begins to reduce as the
number of epochs increases and the sparsity of the network
becomes stabilized for both magnitude pruning and random
pruning.

Figure 17: Validation loss of random pruning for different
sparsity levels.

 Figure 17 shows the validation accuracy of random pruning
for different sparsity levels. Due to the larger network size, the
effects of overfitting are higher. The trends for random pruning
remains similar to that of the MNIST, Fashion datasets. The
validation accuracy is better for 25% sparsity and decreases as
the sparsity level increases.

Figure 18: Validation loss of magnitude pruning for different
sparsity levels.

 Figure 18 shows the validation accuracy of magnitude
pruning for different sparsity levels. The trends remain the
same as that of the MNIST, Fashion datasets. Magnitude
pruning helps in reducing the effects of overfitting. The
validation loss continues to improve as 99% sparsity is
achieved.

Figure 19: Learning curves for CNN with CIFAR-10 dataset.

 Figure 19 shows the learning curves for random pruning,
magnitude pruning under a Bayesian framework compared to
baseline in a convolutional neural network (CNN) trained on
the CIFAR-10 dataset. Here the desired level of sparsity is set
to 90%. The figure has two subplots. One shows the training
and validation loss as a function of the number of epochs, the
other plot (right) shows the Bayes factor, sparsity as a function
of the number of epochs. The learning trends are similar to that
of the FCN. The validation accuracy for random pruning
decreases at the beginning of training and starts to improve as
training progresses. The Bayes factor begins to increase for
magnitude pruning and sparsity fluctuates as training
progresses. For random pruning the Bayes factor begins to
reduce as the number of epochs increases and the sparsity of
the network becomes stabilized.

Page 8 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

9
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Figure 20: Validation loss of random pruning for different
sparsity levels.

 Figure 20 shows the validation accuracy of random pruning
for different sparsity levels. The trend of random pruning is
similar to that of the MNIST, Fashion datasets. The effect of
overfitting is reduced by pruning. The validation accuracy
decreases as the sparsity level increases to 99%.

Figure 21: Validation loss of magnitude pruning for different
sparsity levels.

 Figure 21 shows the validation accuracy of magnitude
pruning for different sparsity levels. The trends are similar to
that of the MNIST, Fashion datasets. Magnitude pruning helps
in reducing the effects of overfitting. The validation loss
continues to improve as 99% sparsity is achieved.

 Summary of results, Table 1 shows the accuracy values of
the pruned networks at different sparsity levels after training for
25 epochs. The experiment was repeated 5 times with different
seeds for the random generator and averaged to get the results.
The results show that the Bayesian pruning method can prune
the networks to a higher sparsity level without losing any
accuracy. They perform better than unpruned networks and have
comparable or better accuracy than baseline neural network
pruning methods.

 IV. CONCLUSION
Neural networks with a very high number of parameters are
capable of learning complex functions. Based on the size of the
dataset they may overfit and produce undesirable results. They
also cannot be deployed on compute constrained devices like
mobile phones, tablets, and other devices. Neural network
pruning provides a solution to both the problems of overfitting
and size. The results of the experiments on three different
datasets and two different architectures show that a Bayesian
approach to neural network pruning can provide a principled
way of eliminating connections in a network. This can provide
an effective way to train neural networks with fewer
parameters.

Page 9 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Table 1: Accuracy value different sparsity levels

V. ACKNOWLEDGMENTS

We would like to acknowledge support for this project from the
Wehr Foundation’s Computational Sciences Summer Research
Fellows Program (CSSRFP) at Marquette University’s
Department of Mathematical and Statistical Sciences.

APPENDIX A. BAYESIAN PRUNING LEANING CURVES

The following figures show the learning curves for the Bayesian
pruning method on the MNIST dataset for a FCN, CNN at
different sparsity levels.

APPENDIX A1. MNIST LEARNING CURVES

Figure 22: MNIST (FCN 25%) learning curve for the Bayesian
pruning method.

Page 10 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Figure 23: MNIST (CNN 25%) learning curve for the Bayesian
pruning method.

Figure 24: MNIST (FCN 50%) learning curve for the Bayesian
pruning method.

Figure 25: MNIST (CNN 50%) learning curve for the Bayesian
pruning method.

Figure 26: MNIST (FCN 75%) learning curve for the Bayesian
pruning method.

Figure 27: MNIST (CNN 75%) learning curve for the Bayesian
pruning method.

Figure 28: MNIST (FCN 90%) learning curve for the Bayesian
pruning method.

Figure 29: MNIST (CNN 90%) learning curve for the Bayesian
pruning method.

Figure 30: MNIST (FCN 99%) learning curve for the Bayesian
pruning method.

Page 11 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Figure 31: MNIST (CNN 99%) learning curve for the Bayesian
pruning method.

APPENDIX A2. MNIST FASHION LEARNING CURVES

The following figures show the learning curves for the Bayesian
pruning method on the MNIST Fashion dataset for a FCN, CNN
at different sparsity levels.

Figure 32: MNIST Fashion (FCN 25%) learning curve for the
Bayesian pruning method.

Figure 33: MNIST Fashion (CNN 25%) learning curve for the
Bayesian pruning method.

Figure 34: MNIST Fashion (FCN 50%) learning curve for the
Bayesian pruning method.

Figure 35: MNIST Fashion (CNN 50%) learning curve for the
Bayesian pruning method.

Figure 36: MNIST Fashion (FCN 75%) learning curve for the
Bayesian pruning method.

Figure 37: MNIST Fashion (CNN 75%) learning curve for the
Bayesian pruning method.

Figure 38: MNIST Fashion (FCN 90%) learning curve for the
Bayesian pruning method.

Page 12 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Figure 39: MNIST Fashion (CNN 90%) learning curve for the
Bayesian pruning method.

Figure 40: MNIST Fashion (FCN 99%) learning curve for the
Bayesian pruning method.

Figure 41: MNIST Fashion (CNN 99%) learning curve for the
Bayesian pruning method.

APPENDIX A3. CIFAR-10 LEARNING CURVES

The following figures show the learning curves for the Bayesian
pruning method on the MNIST dataset for a FCN, CNN at
different levels of sparsity.

Figure 42: CIFAR-10 (FCN 25%) learning curve for the
Bayesian pruning method.

Figure 42 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a FCN at 25\% sparsity.
Both the baseline and Bayesian magnitude methods validation
loss deteriorate as training progresses. Only Bayesian random
pruning is able to maintain a low validation loss. Pruning only
25% of the weights with the lowest magnitude does not help
combat overfitting as there is still sufficient weights to
memorize the training data. The Bayesian random pruning
method is able to maintain a low validation loss because it
prunes weights randomly, and thus is able to prune weights that
are not necessarily the least important weights. Bayes factor
remains below one at the same level as the baseline method for
the Bayesian magnitude method which indicates that the model
is not a good fit for the data throughout the training epochs.

Figure 43: CIFAR-10 (CNN 25%) learning curve for the
Bayesian pruning method.

Figure 43 shows the learning curves for the Bayesian pruning

method on the CIFAR-10 dataset for a CNN at 25\% sparsity.
Both the baseline, Bayesian Random and Bayesian magnitude
methods validation loss deteriorate as training progresses. Only
random pruning is able to combat overfitting to some extent.
Bayes factor lies close to one for the Bayesian magnitude
method which indicates that the model is a better fit compared
to the FCN model at 25% sparsity.

Figure 44: CIFAR-10 (FCN 50%) learning curve for the
Bayesian pruning method.

 Figure 44 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a FCN at 50% sparsity.
Both the baseline and Bayesian magnitude methods validation
loss deteriorate as training progresses. Only random pruning is
able to combat overfitting. Bayes factor remains below one at
the same level as the baseline method for the Bayesian
magnitude method which indicates that the model is not a good

Page 13 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

fit for the data throughout the training epochs.

Figure 45: CIFAR-10 (CNN 50%) learning curve for the
Bayesian pruning method.

Figure 45 shows the learning curves for the Bayesian pruning

method on the CIFAR-10 dataset for a CNN at 50% sparsity.
Both the baseline, Bayesian Random and Bayesian magnitude
methods validation loss deteriorate as training progresses. Only
random pruning is able to combat overfitting to some extent.
Bayes factor lies close to one for the Bayesian magnitude
method which indicates that the model is a better fit compared
to the CNN model at 25% sparsity. Bayes factor lies close to
one for the Bayesian magnitude method which indicates that the
model is a better fit compared to the FCN model at 50%
sparsity.

Figure 46: CIFAR-10 (FCN 75%) learning curve for the
Bayesian pruning method.

 Figure 46 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a FCN at 75% sparsity.
Both the baseline, Bayesian Random and Bayesian magnitude
methods validation loss deteriorate as training progresses. Only
random pruning is able to combat overfitting. Bayes factor
remains below one and slightly better than the baseline method
for the Bayesian magnitude method which indicates that the
model is not a good fit for the data but better than baseline
model.

Figure 47: CIFAR-10 (CNN 75%) learning curve for the
Bayesian pruning method.

 Figure 47 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a CNN at 75% sparsity.
Both the baseline and Bayesian magnitude methods validation
loss deteriorate as training progresses. Only random pruning is
able to combat overfitting to some extent. Bayes factor lies
below one for the Bayesian magnitude method but better
compared to the FCN model at 75%.

Figure 48: CIFAR-10 (FCN 90%) learning curve for the
Bayesian pruning method.

 Figure 48 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a FCN at 90% sparsity.
Both the Bayesian Random and Bayesian magnitude methods
are able to combat overfitting. Bayes factor remains below one
and slightly better than the baseline method for the Bayesian
magnitude method which indicates that the model is not a good
fit for the data but better than baseline model. Bayesian Random
method fits the data better.

Figure 49: CIFAR-10 (CNN 90%) learning curve for the
Bayesian pruning method.

 Figure 49 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a CNN at 90% sparsity.
Both the baseline and Bayesian magnitude methods validation
loss deteriorate as training progresses. Only random pruning is
able to combat overfitting to some extent. Bayes factor remains
high and fluctuating throughout training suggesting a better fit
with fewer parameters.

Page 14 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Figure 50: CIFAR-10 (FCN 99%) learning curve for the
Bayesian pruning method.

 Figure 50 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a FCN at 99% sparsity.
Both Bayesian random and Bayesian magnitude pruning
methods are able to combat overfitting. Bayes factor remains
below one and better than the baseline method for the Bayesian
magnitude method which indicates that the model is not a good
fit for the data but better than baseline model. Bayesian Random
method fits the data better.

Figure 51: CIFAR-10 (CNN 99%) learning curve for the
Bayesian pruning method.

 Figure 51 shows the learning curves for the Bayesian pruning
method on the CIFAR-10 dataset for a CNN at 99% sparsity.
The validation loss deteriorates for Bayesian random pruning
from the beginning of the training period as 99% of weights are
pruned. Bayesian magnitude method is able to combat
overfitting. Bayes factor remains high throughout training for
the Bayesian magnitude method. The model is able to fit the
data better with fewer parameters.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet Classification with Deep Convolutional
Neural Networks,” in Advances in Neural Information
Processing Systems, F. Pereira, C. J. Burges, L. Bottou,
and K. Q. Weinberger, Eds., Curran Associates, Inc.,
2012.

[2] T. Brown et al., “Language models are few-shot
learners,” Adv Neural Inf Process Syst, vol. 33, pp.
1877–1901, 2020.

[3] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,
“Rethinking the Value of Network Pruning,” arXiv
preprint arXiv:2104.06937, 2021.

[4] D. Blalock, S. Kudugunta, and V. Shankar, “What is
weight decay, and why does it work?,” arXiv preprint
arXiv:2012.06106, 2020.

[5] S. Han, H. Mao, and W. J. Dally, “Deep Compression:
Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding,” arXiv
preprint arXiv:1510.00149, 2015.

[6] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning Filters for Efficient ConvNets,” arXiv
preprint arXiv:1608.08710, 2017.

[7] Y. He, X. Zhang, and J. Sun, “Channel Pruning for
Accelerating Very Deep Neural Networks,” in
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1389–1398.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to
prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[9] D. W. Blalock, J. J. G. Ortiz, J. Frankle, and J. V
Guttag, “What is the State of Neural Network
Pruning?,” CoRR, vol. abs/2003.03033, 2020, [Online].
Available: https://arxiv.org/abs/2003.03033

[10] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D.
Wierstra, “Weight uncertainty in neural networks,”
arXiv preprint arXiv:1505.05424, 2015.

[11] D. Molchanov, A. Ashukha, and D. Vetrov,
“Variational dropout sparsifies deep neural networks,”
in Proceedings of the 36th International Conference on
Machine Learning, 2019, pp. 5234–5243.

[12] M. Zhu and S. Gupta, “To prune, or not to prune:
exploring the efficacy of pruning for model
compression.” 2017.

[13] D. P. Kingma and J. Ba, “Adam: A Method for
Stochastic Optimization,” arXiv preprint
arXiv:1412.6980, 2015.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998, doi: 10.1109/5.726791.

[15] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine
Learning Algorithms.” 2017.

[16] A. Krizhevsky, “Learning multiple layers of features
from tiny images.” 2009.

[17] A. Paszke et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in
Neural Information Processing Systems, 2019, pp.
8024–8035.

Page 15 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

