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Abstract— Neural network pruning is an effective technique for 

reducing the computational and memory requirements of large 
neural networks. It has been proven to be useful in reducing the 
effects of overfitting and in some cases provide better performance 
than its original unpruned network. In this paper, we propose a 
method for pruning neural networks using Bayesian inference 
that can be incorporated into the training process. We evaluate 
our method on several standard benchmarks and show that it 
achieves high levels of sparsity while maintaining competitive 
accuracy.  

 
Index Terms—Bayesian pruning, Bayesian model selection, Bayes 
Factors, Neural network compression 
 

I. INTRODUCTION 
N artificial neural nets (ANN) and machine learning (ML), 
parameters represent what the network has learned from the 
data. Over time as the computational capabilities from a 

hardware perspective have advanced, we have now become 
able to define larger models with millions of parameters. The 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) and its winners over the year show us how the error 
rate has dropped with increase of the number of parameters and 
connections in neural network. In 2012, one of the CNNs 
AlexNet [1] had 660K nodes, 61M parameters and over 600M 
connections. The state-of-the-art deep learning language model 
GPT-3 [2] comprises of 175 billion machine learning 
parameters. While deeper high parameter nets provide better 
results, the large number of connections introduce the problems 
of memory, overfitting, and lack of generalizability. There have 
been numerous methods developed to address these problems. 
    Regularization is one of the most popular methods to address 
the problem of overfitting. It is a technique that adds a penalty 
term to the loss function to prevent the model from overfitting. 
It is a very effective method to reduce the complexity of the 
model and to improve its generalizability. However, it is not a 
very effective method for reducing the number of parameters 
in the model. 
    Neural network pruning is a popular method that focuses on 
reducing the number of parameters of the model, thereby 
reducing the computational complexity and memory 
requirements of deep learning models [3]. They are key to 
deploying large models on resource constrained devices like 
mobile phones and tablets. Pruning involves removing weights 
or neurons from the network that have a negligible impact on 
its performance, while retaining the most important ones. 
Traditional pruning methods typically rely on heuristics or 
sensitivity analysis to determine which weights to remove, but 
these approaches can be suboptimal and do not provide a 

 
 

principled way of selecting the most important weights [4].  
    Several pruning methods have been proposed in the 
literature, including weight pruning, neuron pruning, and filter 
pruning [5], [6], [7]. Weight pruning involves removing 
individual weights from the network based on their magnitude 
or other criteria, while neuron pruning, and filter pruning 
involve removing entire neurons or filters that are deemed 
unimportant. One of the most prominent neuron pruning 
technique is a process called “drop-out.”[8]. Dropout uses a 
heuristic to determine which connections can be randomly 
dropped during training. These methods can be effective for 
reducing the size of the network and improving its 
performance, but they typically rely on heuristics or sensitivity 
analysis to determine which weights or neurons to remove, 
which can be suboptimal and do not provide a principled way 
of selecting the most important ones [9]. 
    In Bayesian pruning, the weights of the network are treated 
as random variables with a prior distribution, which can be 
updated to a posterior distribution using Bayes' rule. This 
allows us to quantify the uncertainty associated with each 
weight and select the most important ones based on their 
relevance to the task at hand. Bayesian pruning has several 
advantages over traditional pruning methods, including a 
principled framework for selecting the most important weights, 
the ability to incorporate prior knowledge about the network 
structure, and the potential for improved performance when 
combined with other techniques such as importance weighting. 
The posterior distribution reflects our updated belief about the 
weights based on the observed data and can be used to calculate 
the probability that each weight is important for the task at 
hand. One common approach for approximating the posterior 
distribution is to use variational inference, which involves 
minimizing the Kullback-Leibler divergence between the true 
posterior and an approximate distribution [10]. Other 
approaches include Monte Carlo methods and Markov chain 
Monte Carlo (MCMC) sampling [11]. 
    In this chapter, we propose a Bayesian pruning algorithm 
that uses approximate Bayesian inference to calculate the 
posterior distribution of the weights and determine which ones 
to prune. Bayesian pruning offers a principled approach for 
selecting the most important weights in a neural network and 
can lead to significant reductions in computational and memory 
requirements without sacrificing accuracy. We follow an 
approach similar to [12] to iteratively prune with varying levels 
of sparsity and to monitor accuracy for different levels of 
sparsity. Our approach uses Bayesian hypothesis testing to 
compute the pruning threshold. We evaluate our method on 
standard benchmarks and show that it achieves high levels of 
sparsity while maintaining competitive accuracy. Our approach 
also allows us to incorporate prior knowledge about the 
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structure of the network and can be extended to handle more 
complex pruning scenarios. Overall, our results demonstrate 
the potential of Bayesian pruning as a promising approach for 
reducing the complexity of deep neural networks. 

II. METHODS 

A. Pruning Neural Networks Using Bayesian Inference 
 

Figure 1 shows the block diagram of the pruning system. 
After a forward pass through the layers of the neural network 
which consists of a series of matrix multiplications and non-
linear activations, the output of the network is compared with 
the ground truth labels to compute the loss.  

 

  
 
Fig. 1. Pruning system block diagram. 

 
The loss is then backpropagated through the network to 
compute the gradients of the weights. The gradients are then 
used to update the weights using an optimizer such as SGD or 
Adam [13]. After the epoch is completed, the weights are 
pruned using the pruning algorithm. The pruned weights are 
then used in the next epoch.  
    Let ψ be the set of weights in the unpruned network and let 
ϕ be the set of weights in the pruned network. We want to test 
whether the pruned network fits the data better than the original 
unpruned network. The null hypothesis is that the unpruned 
network fits the data better than the unpruned network, i.e.,  θ =
 ψ. The alternative hypothesis is that the pruned network fits 
the data better than the unpruned network, i.e., θ =  ϕ.  
    To test these hypotheses, we compute the Bayes factor, 
which is the ratio of the posterior probability of the alternative 
hypothesis to the posterior probability of the null hypothesis: 

Bayes factor =
𝑃(θ = ϕ|𝐷)
𝑃(θ = ψ|𝐷) 

 
where D is the training data. 
We can compute the posterior probability of the null hypothesis 
as follows: 

P(θ = ψ|𝐷) =
𝑃(𝐷|θ = ψ)𝑃(θ = ψ)

𝑃(𝐷)  

 
where P(𝐷|θ = ψ) is the likelihood of the data given the 
weights of the unpruned network, P(θ = ψ) is the prior 
probability of the null hypothesis, and P(𝐷) is the marginal 
likelihood of the data. P(θ = ψ|𝐷) represents the probability 
of the null hypothesis given the data. 

Similarly, we can compute the posterior probability of 
the alternative hypothesis as follows: 

P(θ = ϕ|𝐷) =
𝑃(𝐷|θ = ϕ)𝑃(θ = ϕ)

𝑃(𝐷)  

 
where P(𝐷|θ = ϕ) is the likelihood of the data given the 
weights of the pruned network, and 𝑃(𝜃 = 𝜙) is the prior 
probability of the alternative hypothesis. 𝑃(𝜃 = 𝜙|𝐷) 
represents the probability of the alternative hypothesis given 
the data. 
We can then compute the Bayes factor as the ratio of the 
posterior probabilities: 
 

Bayes	factor =
𝑃(𝐷|θ = ϕ)𝑃(θ = ϕ)
𝑃(𝐷|θ = ψ)𝑃(θ = ψ) 

 
    A Bayes factor value greater than 1 indicates that the pruned 
network fits the data better than the unpruned network. A Bayes 
factor value less than 1 indicates that the unpruned network fits 
the data better than the pruned network. We introduce shared 
prior distributions for the layer-wise pruning by specifying a 
common sparsity-inducing prior, 

𝑝<𝑊(")>θ(")? =@𝑝<𝑤$
(")>θ(")?

%(")

$&'

 

where 𝑊(")	is the weight matrix of layer 𝑙, 	𝑁" is the number of 
weights in layer 𝑙, and 𝑤$

(") is the 𝑖th weight in layer 𝑙. The prior 
distribution 𝑝<𝑤$

(")>θ(")? is a function of the hyperparameters 
θ(") that specify the sparsity-inducing prior.  
 
    Here we train the neural network on the training set using 
stochastic gradient descent. We compute the posterior 
distribution of each weight using a Gaussian prior with mean 𝜇 
and variance 𝜎(, where 𝜎 is a hyperparameter that controls the 
strength of the prior. 

𝑝(𝑤$) = 𝒩(µ, σ() 
For a classification problem, the likelihood of the data is given 
by: 

log 𝑝 <𝑦)*+,>𝑦-*.+? = log𝒞 Osoftmax<𝑦)*+,?R𝑦𝑡𝑟𝑢𝑒 
where 𝒞 is the categorical cross-entropy loss function, 𝑦)*+, is 
the neural network prediction for the classes and 𝑦-*.+ is the 
ground truth. We calculate the log prior and log likelihood for 
the weight parameters to get the posterior distribution of the 
weights with the following equation: 
 

log 𝑝 (𝑤|𝐷) = log 𝑝 (𝑤) + log 𝑝 (𝐷|𝑤)\	

=Ylog𝑝 (𝑦$|𝑓(𝑥$), 𝑤) + log 𝑝 (𝑤)
/

$&'

	

 
    We use an iterative pruning algorithm that is incorporated to 
the training process. Pruning is performed after each epoch of 
training. The Bayes factor is used to determine whether to 
prune or not to achieve a desired level of sparsity.  The 
percentage of weights to prune is a hyperparameter that can be 
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tuned to achieve the desired level of sparsity. The algorithm is 
summarized in Algorithm 1.  

 
Algorithm	1	Bayesian Pruning Algorithm 

Input: Trained neural network 𝑓(⋅, θ), pruning rate 𝑟, 
dataset 𝒟 = (𝑥𝑖, 𝑦$)$&'/ , β Bayes factor threshold 
Output: Pruned neural network 𝑓*(⋅, θ) 
1: Compute the posterior probability of the weights before 
pruning. 
2: If  𝐵𝐹0' > 	𝛽 then 
3:       Prune 𝑟 percentage of weights 𝑓(⋅, θ) 
4: end if 
5: Compute the posterior probability of the weights after 
pruning. 
6: Compute the Bayes factor using the posterior probabilities 
before and after pruning. 

    In the following sections we introduce two pruning 
algorithms that use the above framework. The first algorithm is 
random pruning, which randomly selects weights to prune. The 
second algorithm is magnitude pruning, which selects weights 
to prune based on their magnitude. 

 

B. Random pruning 

  Random pruning is a simple pruning algorithm that randomly 
selects weights to prune. Here we set the pruning rate to be the 
desired level of sparsity that we are looking to achieve. After 
an epoch, we count the number of non-zero parameters in the 
network and randomly zero out just enough parameters to 
achieve the desired level of sparsity. The algorithm is 
summarized in Algorithm 2. 

 
Algorithm	2	Bayesian Pruning Algorithm 

1: 	𝑓(⋅, 𝜃):	Neural network model with parameters 𝜃 
2:  r: Desired sparsity level, 𝛽 Bayes factor threshold 
3:  Calculate log posterior probability 𝑝(θ|𝐷) 
4:    If  𝐵𝐹0' > 	𝛽 then 
5:         for all weights wi  ∈ θ do 
6:                n ← size(wi) 
7:                number of weights to prune, k ← (n × r) 
8:                I ← indices of non-zero weights 
9:                nz ← number of zero weights 
10:              k′ ← k − nz 
11:               J ← random sample(I, k′) 
12:              set elements in wi at indices J to zero 

13:       end for  

14:     end if 
15:  Calculate log posterior probability p(θ|D) after 
pruning 
16:  Calculate Bayes factor BF01  

C. Magnitude-based pruning 
  Magnitude-based pruning is a pruning algorithm that selects 
weights to prune based on their magnitude. This can be seen as 
pruning weights that are less important. Here we set the pruning 
rate to be the desired level of sparsity that we are looking to 
achieve. The lowest weights corresponding to the desired level 
of sparsity is pruned to get the pruned network. The algorithm 
is summarized in Algorithm 3.  

 
Algorithm	2	Bayesian Pruning Algorithm 

1: 	𝑓(⋅, 𝜃):	Neural network model with parameters 𝜃 
2:  r: Desired sparsity level, 𝛽 Bayes factor threshold 
3:  Calculate log posterior probability 𝑝(θ|𝐷) 
4:    If  𝐵𝐹0' > 	𝛽 then 
5:         for all weights wi  ∈ θ do 
6:                n ← size(wi) 
7:                number of weights to prune, k ← (n × r) 
8:                wi ← sort(wi) 
9:                set k element in wi to zero 
10:       end for  

11:     end if 
12:  Calculate log posterior probability p(θ|D) after 
pruning 
13:  Calculate Bayes factor BF01  

D. Datasets 

  MNIST dataset 

   The MNIST dataset [14] consists of 60,000 training images 
and 10,000 test images of handwritten digits. Each image is 
28 × 28 pixels and is grayscale. The images are normalized to 
have zero mean and unit variance. The images are flattened into 
a 784-dimensional vector and fed into the neural network. The 
network is trained to classify the images into one of the 10 
classes. The network is trained for 50 epochs.  

 MNIST-Fashion dataset 

   The MNIST-Fashion dataset, as described in the study by 
Xiao et al. (2017) [15] comprises 60,000 training images and 
10,000 test images featuring various fashion items. Each image 
has a resolution of 28×28 pixels and is presented in grayscale. 
To ensure uniformity, the images are normalized to possess 
zero mean and unit variance. Prior to processing through the 
fully connected neural network, the images are flattened into a 
784-dimensional vector. The objective of the network is to 
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categorize the images into one of the 10 classes. The training 
process involves 50 epochs. 

CIFAR-10 dataset 

   The CIFAR-10 dataset [16] consists of 50,000 training images 
and 10,000 test images of 10 classes of objects. Each image is 
32 × 32 pixels and is RGB. The images are normalized to have 
zero mean and unit variance. The images are flattened into a 
3072-dimensional vector and fed into the neural network. The 
network is trained to classify the images into one of the 10 
classes. The network is trained for 100 epochs. 

 

D. Neural Network Architecture 

The network architecture of the fully connected network 
(FCN) seen in Figure 2 is as follows: 

𝒉' = 𝑅𝑒𝐿𝑈(𝑾'𝒙 + 𝒃') 

𝒉( = 𝑅𝑒𝐿𝑈(𝑾(𝒉' + 𝒃() 

𝒉1 = 𝑅𝑒𝐿𝑈(𝑾1𝒉( + 𝒃1) 

𝒚 = 𝑾2𝒉1 + 𝒃2       (1) 
 
Where 𝐱 is the input, 𝐡', 𝐡( and 𝐡1 are the three hidden layers, 
𝐲 is the output, 𝐖', 𝐖(, 𝐖1 and 𝐖2 are the weight matrices,  
𝐛', 𝐛(, 𝐛1 and 𝐛2 are the bias vectors and ReLU(.) is the 
rectified linear unit activation function.  

 
 
Fig. 2. Representation of Fully connected neural network 
architecture, given in Equation (1). See text for further details.   

Convolutional neural network (CNN) 
   The neural network architecture of the convolutional neural 
network (CNN) seen in Figure 3 is as follows: 
 
𝐡' = 	ReLU(Conv2d(𝐱,𝐖') +	𝐛𝟏) 

𝐡( = 	MaxPool2d(𝐡') 

𝐡1 = 	ReLU(Conv2d(𝐡(,𝐖() + 𝐛()	

𝐡2 = 	MaxPool2d(𝐡1) 

𝐡4 = 	ReLU(𝐖'𝐡2 + 𝐛')	

𝐡5 = 	ReLU(𝐖(𝐡4 + 𝐛() 

𝐡6 = 	ReLU(𝐖1𝐡5 + 𝐛1) 

𝐲			 = 	𝐖7𝐡6 + 𝐛7      (2) 

 

where x	is the input, h1, h2, h3, h4	···	h7	are the hidden layers, 
y	is the output, W1, W2, W3	and W4	are the weight matrices, 
b1, b2, b3	 and b4	 are the bias vectors, Conv2d(·) is the 
convolutional layer, MaxPool2d(·) is the max pooling layer, 
and ReLU(·) is the rectified linear unit activation function. 

 

 
Fig.3. Representation of Convolutional neural network 
architecture, given in Equation (2). See text for further details.   
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D. Optimization 
   There are several optimization algorithms that can be used 
for training a neural network. The log posterior loss function 
is a non-convex function. It can have multiple local minima 
and saddle points. Gradient descent is a first-order 
optimization algorithm that can be used to find a local 
minimum of a function. However, it is not guaranteed to find 
the global minimum. Gradient descent is also sensitive to the 
learning rate. If the learning rate is too small, the algorithm 
will take a long time to converge. If the learning rate is too 
large, the algorithm may not converge at all. Stochastic 
gradient descent (SGD) is a variant of gradient descent that 
uses a random sample of the training data to estimate the 
gradient. This reduces the computational cost of each iteration 
and allows the algorithm to converge faster. However, SGD is 
also sensitive to the learning rate. Adam is an adaptive 
learning rate optimization algorithm that uses the first and 
second moments of the gradient to adaptively adjust the 
learning rate. It is more robust to the choice of learning rate 
and converges faster than SGD. So, we will be using an Adam 
optimizer Kingma and Ba (2015) for training our neural 
networks. 

E. Implementation  
   Our implementation uses the PyTorch framework [17] for 
Bayesian inference. We use a Gaussian prior with mean 0 and 
variance σ2	as the prior distribution for the weights, where σ	is 
a hyperparameter that controls the strength of the prior. We use 
the Adam optimizer with a learning rate of 0.001 and a batch 
size of 64 for all experiments. We use the PyTorch DataLoader 
class to load and preprocess the data. Preprocessing only consist 
of normalizing the dataset and does not include any data 
augmentation like Random cropping or flipping of images to 
have fewer confounding variables in the studies we conduct to 
observe the effects of our pruning algorithm. We train the 
network for 25 epochs on the training set and evaluate its 
performance on the test set. We evaluate the performance of 
each method in terms of the accuracy of predictions it makes for 
the target classes using the test set. 

One experiment consists of evaluating a pruning method 
with one dataset, two different neural network architectures 
(FCN and CNN) and five different levels of desired sparsity. 
The levels of sparsity are 25%, 50%, 75%, 90% and 99%. We 
also plot the learning curves for each method, showing the 
evolution of the accuracy and sparsity during training. Both 
pruning techniques are not global, meaning the final sparsity 
level is achieved by pruning each layer individually. 

III. RESULTS 

MNIST dataset 
   Figure 4 shows the learning curves for random pruning, 
magnitude pruning under a Bayesian framework compared to 
baseline in a fully connected network (FCN) trained on the 
MNIST dataset. Here the desired level of sparsity is 75%. The 
figure has two subplots. One shows the training and validation 
loss as a function of the number of epochs, the other plot (right) 

shows the Bayes factor, sparsity as a function of the number of 
epochs. More figures for different sparsity levels are shown in 
Appendix B. 

Figure 4: Learning curves for a FCN with MNIST dataset. 
 
The training loss is the average loss over the training set, and the 
validation loss is the average loss over the validation set. The 
figure shows that the training loss decreases as the number of 
epochs increases, and the validation loss starts to decrease in 
about 5 epochs. The training loss decreases faster than the 
validation loss, which indicates that the model is overfitting the 
training data. As pruning begins, it affects the training and 
validation loss of both random and magnitude pruning as seen 
the curves. There are large oscillations in loss values for random 
pruning as seen in the figure. The Bayes factor begins to reduce 
as the number of epochs increases and the sparsity of the 
network becomes stabilized for magnitude pruning, but it 
remains fluctuating for random pruning and shows an increasing 
trend for the Bayes factor. 

Figure 5: Validation loss of random pruning for different 
sparsity levels. 

   Figure 5 shows the validation accuracy of random pruning 
for different sparsity levels. For 25% sparsity the validation 
accuracy seems to be the highest. Then as the sparsity level 
increases the validation accuracy begins to decrease. Until 
90% sparsity the validation accuracy remains to have a 
downward end and combats overfitting compared to the 
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baseline. The network only starts to become worse at 99% 
sparsity. 

 
Figure 6: Validation loss of magnitude pruning for different 
sparsity levels. 

   Figure 6 shows the validation accuracy of magnitude 
pruning for different sparsity levels. For 25% sparsity the 
validation accuracy remains similar to the baseline. Then as 
the sparsity level increases the validation accuracy starts to 
improve but the network still overfits the data until 99% of the 
parameters are pruned. 

Figure 7: Learning curves for CNN with MNIST dataset. 
 
   Figure 7 shows the learning curves for random pruning, 
magnitude pruning under a Bayesian framework compared to 
baseline in a convolutional neural network (CNN) trained on 
the MNIST dataset. The number of parameters in the CNN are 
comparatively larger than that of the FCN. This causes the 
effects of overfitting to be seen a little later in the training 
period. The trends in the learning curves are similar to that of 
the FCN. The Bayes factor begins to reduce as the number of 
epochs increases and the sparsity of the network becomes 
stabilized for magnitude pruning, but it remains fluctuating for 
random pruning and shows an increasing trend for the Bayes 
factor.  

Figure 8: Validation loss of random pruning for different 
sparsity levels. 

 
   Figure 8 shows the validation accuracy of random pruning for 
different sparsity levels. As the number of parameters of the 
CNN is larger than that of the FCN, the validation accuracy 
remains similar to the baseline until 90% sparsity. Then as the 
sparsity level increases the validation accuracy begins to 
decrease.  

 
Figure 9: Validation loss of magnitude pruning for different 
sparsity levels. 

   Figure 9 shows the validation accuracy of magnitude pruning 
for different sparsity levels. Even pruning 99% of the 
parameters does not affect the validation accuracy of the CNN. 
This is because CNN has an enormous number of parameters 
and the network overfits the data even after pruning 99% of the 
parameters. 

MNIST Fashion 
   Figure 10 shows the learning curves for random pruning, 
magnitude pruning under a Bayesian framework compared to 
baseline in a fully connected network (FCN) trained on the 
MNIST Fashion dataset. Here the desired level of sparsity is 
90%. The figure has two subplots. One shows the training and 
validation loss as a function of the number of epochs, the other 
plot (right) shows the Bayes factor, sparsity as a function of the 
number of epochs. More figures for different sparsity levels are 
shown in Appendix C. 
 

 
Figure 10: Learning curves for FCN with MNIST Fashion 
dataset. 

    The training loss is the average loss over the training set, and 
the validation loss is the average loss over the validation set. 
The figure shows that the training loss decreases as the number 
of epochs increases, and the validation loss starts to decrease in 
about 5 epochs. The training loss decreases faster than the 
validation loss, which indicates that the model is overfitting the 
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training data. As pruning begins, it affects the training and 
validation loss of both random and magnitude pruning as seen 
the curves. There is large oscillations in loss values for random 
pruning. The Bayes factor begins to reduce as the number of 
epochs increases and the sparsity of the network becomes 
stabilized for magnitude pruning, but it remains fluctuating for 
random pruning.  

Figure 11: Validation loss of random pruning for different 
sparsity levels. 

    Figure 11 shows the validation accuracy of random pruning 
for different sparsity levels. Similar to the MNIST dataset, the 
validation loss is the lowest for 25% sparsity. Then as the 
sparsity level increases the validation accuracy begins to 
decrease.

 

Figure 12: Validation loss of magnitude pruning for different 
sparsity levels. 
     Figure 12 shows the validation accuracy of magnitude 
pruning for different sparsity levels. Higher levels of sparsity 
improve the validation accuracy of the FCN. The effects of 
overfitting are reduced as the number of parameters are 
reduced. 

 
Figure 13: Learning curves for CNN with MNIST Fashion 
dataset.  

    Figure 13 shows the learning curves for random pruning, 
magnitude pruning under a Bayesian framework compared to 
baseline in a convolutional neural network (CNN) trained on 
the MNIST Fashion dataset. Here the desired level of sparsity 
is 90%. The figure has two subplots. One shows the training 
and validation loss as a function of the number of epochs, the 
other plot (right) shows the Bayes factor, sparsity as a function 
of the number of epochs. 

     The number of parameters in the CNN are comparatively 
larger than that of the FCN. This causes the effects of 
overfitting to be seen a little later in the training period. The 
trends in the learning curves are similar to that of the FCN. The 
validation accuracy for random pruning decreases at the 
beginning of training and starts to improve as training 
progresses. The Bayes factor begins to reduce as the number of 
epochs increases and the sparsity of the network becomes 
stabilized for magnitude pruning, but it remains fluctuating for 
random pruning and shows an increasing trend for the Bayes 
factor. 

Figure 14: Validation loss of random pruning for different 
sparsity levels. 

     Figure 14 shows the validation accuracy of random pruning 
for different sparsity levels. The trends are similar the MNIST 
dataset. The validation accuracy is better for 25% sparsity and 
decreases as the sparsity level increases. Sparsity levels up to 
90% helps in reducing the effects of overfitting. 

 

Figure 15: Validation loss of magnitude pruning for different 
sparsity levels.    
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  Figure 15 shows the validation accuracy of magnitude pruning 
for different sparsity levels. Similar to the MNIST dataset, 
magnitude pruning helps in reducing the effects of overfitting. 
The validation loss continues to improve as 99% sparsity is 
achieved. 

CIFAR-10 dataset 

    Figure 16 shows the learning curves for random pruning, 
magnitude pruning under a Bayesian framework compared to 
baseline in a fully connected network (FCN) trained on the 
CIFAR-10 dataset. Here the desired level of sparsity is set to 
90%. The figure has two subplots. One shows the training and 
validation loss as a function of the number of epochs, the other 
plot (right) shows the Bayes factor, sparsity as a function of the 
number of epochs. More figures for different sparsity levels are 
shown in Appendix D 

     
 Figure 16: Learning curves for FCN with CIFAR-10 dataset. 

    Unlike the MNIST, Fashion datasets the input images of 
CIFAR-10 dataset are of size 32 × 32 × 3. This causes the 
number of parameters in the FCN to be much larger than that 
of the MNIST, Fashion datasets. This causes the effects of 
overfitting to be seen a little later in the training period. The 
trends in the learning curves are similar to that of the MNIST, 
Fashion datasets. The validation accuracy for random pruning 
decreases at the beginning of training and starts to improve as 
training progresses. The Bayes factor begins to reduce as the 
number of epochs increases and the sparsity of the network 
becomes stabilized for both magnitude pruning and random 
pruning.

Figure 17: Validation loss of random pruning for different 
sparsity levels. 

    Figure 17 shows the validation accuracy of random pruning 
for different sparsity levels. Due to the larger network size, the 
effects of overfitting are higher. The trends for random pruning 
remains similar to that of the MNIST, Fashion datasets. The 
validation accuracy is better for 25% sparsity and decreases as 
the sparsity level increases. 

 

Figure 18: Validation loss of magnitude pruning for different 
sparsity levels. 

    Figure 18 shows the validation accuracy of magnitude 
pruning for different sparsity levels. The trends remain the 
same as that of the MNIST, Fashion datasets. Magnitude 
pruning helps in reducing the effects of overfitting. The 
validation loss continues to improve as 99% sparsity is 
achieved. 

Figure 19: Learning curves for CNN with CIFAR-10 dataset. 

     Figure 19 shows the learning curves for random pruning, 
magnitude pruning under a Bayesian framework compared to 
baseline in a convolutional neural network (CNN) trained on 
the CIFAR-10 dataset. Here the desired level of sparsity is set 
to 90%. The figure has two subplots. One shows the training 
and validation loss as a function of the number of epochs, the 
other plot (right) shows the Bayes factor, sparsity as a function 
of the number of epochs. The learning trends are similar to that 
of the FCN. The validation accuracy for random pruning 
decreases at the beginning of training and starts to improve as 
training progresses. The Bayes factor begins to increase for 
magnitude pruning and sparsity fluctuates as training 
progresses. For random pruning the Bayes factor begins to 
reduce as the number of epochs increases and the sparsity of 
the network becomes stabilized. 
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Figure 20: Validation loss of random pruning for different 
sparsity levels. 
 
    Figure 20 shows the validation accuracy of random pruning 
for different sparsity levels. The trend of random pruning is 
similar to that of the MNIST, Fashion datasets. The effect of 
overfitting is reduced by pruning. The validation accuracy 
decreases as the sparsity level increases to 99%. 

 
Figure 21: Validation loss of magnitude pruning for different 
sparsity levels. 
 
    Figure 21 shows the validation accuracy of magnitude 
pruning for different sparsity levels. The trends are similar to 
that of the MNIST, Fashion datasets. Magnitude pruning helps 
in reducing the effects of overfitting. The validation loss 
continues to improve as 99% sparsity is achieved. 
 
     Summary of results, Table 1 shows the accuracy values of 
the pruned networks at different sparsity levels after training for 
25 epochs. The experiment was repeated 5 times with different 
seeds for the random generator and averaged to get the results. 
The results show that the Bayesian pruning method can prune 
the networks to a higher sparsity level without losing any 
accuracy. They perform better than unpruned networks and have 
comparable or better accuracy than baseline neural network 
pruning methods. 
 

   IV. CONCLUSION 
Neural networks with a very high number of parameters are 
capable of learning complex functions. Based on the size of the 
dataset they may overfit and produce undesirable results. They 
also cannot be deployed on compute constrained devices like 
mobile phones, tablets, and other devices. Neural network 
pruning provides a solution to both the problems of overfitting 
and size. The results of the experiments on three different 
datasets and two different architectures show that a Bayesian 
approach to neural network pruning can provide a principled 
way of eliminating connections in a network. This can provide 
an effective way to train neural networks with fewer 
parameters. 
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Table 1: Accuracy value different sparsity levels 
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APPENDIX A. BAYESIAN PRUNING LEANING CURVES  

The following figures show the learning curves for the Bayesian 
pruning method on the MNIST dataset for a FCN, CNN at 
different sparsity levels. 

 

APPENDIX A1. MNIST LEARNING CURVES  

 
Figure 22: MNIST (FCN 25%) learning curve for the Bayesian 
pruning method. 
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Figure 23: MNIST (CNN 25%) learning curve for the Bayesian 
pruning method.  

Figure 24: MNIST (FCN 50%) learning curve for the Bayesian 
pruning method.  

Figure 25: MNIST (CNN 50%) learning curve for the Bayesian 
pruning method.  

Figure 26: MNIST (FCN 75%) learning curve for the Bayesian 
pruning method.  

Figure 27: MNIST (CNN 75%) learning curve for the Bayesian 
pruning method.  

Figure 28: MNIST (FCN 90%) learning curve for the Bayesian 
pruning method. 

 

Figure 29: MNIST (CNN 90%) learning curve for the Bayesian 
pruning method. 

 
Figure 30: MNIST (FCN 99%) learning curve for the Bayesian 
pruning method.  
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Figure 31: MNIST (CNN 99%) learning curve for the Bayesian 
pruning method. 

 

APPENDIX A2. MNIST FASHION LEARNING CURVES  

The following figures show the learning curves for the Bayesian 
pruning method on the MNIST Fashion dataset for a FCN, CNN 
at different sparsity levels. 

Figure 32: MNIST Fashion (FCN 25%) learning curve for the 
Bayesian pruning method.  

 
Figure 33: MNIST Fashion (CNN 25%) learning curve for the 
Bayesian pruning method. 
 

 
Figure 34: MNIST Fashion (FCN 50%) learning curve for the 
Bayesian pruning method. 

Figure 35: MNIST Fashion (CNN 50%) learning curve for the 
Bayesian pruning method. 

Figure 36: MNIST Fashion (FCN 75%) learning curve for the 
Bayesian pruning method. 

Figure 37: MNIST Fashion (CNN 75%) learning curve for the 
Bayesian pruning method. 

Figure 38: MNIST Fashion (FCN 90%) learning curve for the 
Bayesian pruning method. 
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Figure 39: MNIST Fashion (CNN 90%) learning curve for the 
Bayesian pruning method. 

Figure 40: MNIST Fashion (FCN 99%) learning curve for the 
Bayesian pruning method. 

Figure 41: MNIST Fashion (CNN 99%) learning curve for the 
Bayesian pruning method. 

APPENDIX A3. CIFAR-10 LEARNING CURVES  
 
The following figures show the learning curves for the Bayesian 
pruning method on the MNIST dataset for a FCN, CNN at 
different levels of sparsity. 
 

Figure 42: CIFAR-10 (FCN 25%) learning curve for the 
Bayesian pruning method. 

 

Figure 42 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a FCN at 25\% sparsity. 
Both the baseline and Bayesian magnitude methods validation 
loss deteriorate as training progresses. Only Bayesian random 
pruning is able to maintain a low validation loss. Pruning only 
25% of the weights with the lowest magnitude does not help 
combat overfitting as there is still sufficient weights to 
memorize the training data. The Bayesian random pruning 
method is able to maintain a low validation loss because it 
prunes weights randomly, and thus is able to prune weights that 
are not necessarily the least important weights. Bayes factor 
remains below one at the same level as the baseline method for 
the Bayesian magnitude method which indicates that the model 
is not a good fit for the data throughout the training epochs. 

 

Figure 43: CIFAR-10 (CNN 25%) learning curve for the 
Bayesian pruning method. 

 
 
Figure 43 shows the learning curves for the Bayesian pruning 

method on the CIFAR-10 dataset for a CNN at 25\% sparsity. 
Both the baseline, Bayesian Random and Bayesian magnitude 
methods validation loss deteriorate as training progresses. Only 
random pruning is able to combat overfitting to some extent. 
Bayes factor lies close to one for the Bayesian magnitude 
method which indicates that the model is a better fit compared 
to the FCN model at 25% sparsity. 

 

 
Figure 44: CIFAR-10 (FCN 50%) learning curve for the 
Bayesian pruning method. 

 
    Figure 44 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a FCN at 50% sparsity. 
Both the baseline and Bayesian magnitude methods validation 
loss deteriorate as training progresses. Only random pruning is 
able to combat overfitting. Bayes factor remains below one at 
the same level as the baseline method for the Bayesian 
magnitude method which indicates that the model is not a good 
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fit for the data throughout the training epochs. 
 

 
Figure 45: CIFAR-10 (CNN 50%) learning curve for the 
Bayesian pruning method. 

 
Figure 45 shows the learning curves for the Bayesian pruning 

method on the CIFAR-10 dataset for a CNN at 50% sparsity. 
Both the baseline, Bayesian Random and Bayesian magnitude 
methods validation loss deteriorate as training progresses. Only 
random pruning is able to combat overfitting to some extent. 
Bayes factor lies close to one for the Bayesian magnitude 
method which indicates that the model is a better fit compared 
to the CNN model at 25% sparsity. Bayes factor lies close to 
one for the Bayesian magnitude method which indicates that the 
model is a better fit compared to the FCN model at 50% 
sparsity. 

 

 
Figure 46: CIFAR-10 (FCN 75%) learning curve for the 
Bayesian pruning method. 
 
    Figure 46 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a FCN at 75% sparsity. 
Both the baseline, Bayesian Random and Bayesian magnitude 
methods validation loss deteriorate as training progresses. Only 
random pruning is able to combat overfitting. Bayes factor 
remains below one and slightly better than the baseline method 
for the Bayesian magnitude method which indicates that the 
model is not a good fit for the data but better than baseline 
model. 

 

 

Figure 47: CIFAR-10 (CNN 75%) learning curve for the 
Bayesian pruning method. 
 
    Figure 47 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a CNN at 75% sparsity. 
Both the baseline and Bayesian magnitude methods validation 
loss deteriorate as training progresses. Only random pruning is 
able to combat overfitting to some extent. Bayes factor lies 
below one for the Bayesian magnitude method but better 
compared to the FCN model at 75%. 

 

Figure 48: CIFAR-10 (FCN 90%) learning curve for the 
Bayesian pruning method. 
 
    Figure 48 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a FCN at 90% sparsity. 
Both the Bayesian Random and Bayesian magnitude methods 
are able to combat overfitting. Bayes factor remains below one 
and slightly better than the baseline method for the Bayesian 
magnitude method which indicates that the model is not a good 
fit for the data but better than baseline model. Bayesian Random 
method fits the data better.  
 

 
Figure 49: CIFAR-10 (CNN 90%) learning curve for the 
Bayesian pruning method. 
 
    Figure 49 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a CNN at 90% sparsity. 
Both the baseline and Bayesian magnitude methods validation 
loss deteriorate as training progresses. Only random pruning is 
able to combat overfitting to some extent. Bayes factor remains 
high and fluctuating throughout training suggesting a better fit 
with fewer parameters. 
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Figure 50: CIFAR-10 (FCN 99%) learning curve for the 
Bayesian pruning method. 
 
    Figure 50 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a FCN at 99% sparsity. 
Both Bayesian random and Bayesian magnitude pruning 
methods are able to combat overfitting. Bayes factor remains 
below one and better than the baseline method for the Bayesian 
magnitude method which indicates that the model is not a good 
fit for the data but better than baseline model. Bayesian Random 
method fits the data better. 
 

 
Figure 51: CIFAR-10 (CNN 99%) learning curve for the 
Bayesian pruning method. 
 
    Figure 51 shows the learning curves for the Bayesian pruning 
method on the CIFAR-10 dataset for a CNN at 99% sparsity. 
The validation loss deteriorates for Bayesian random pruning 
from the beginning of the training period as 99% of weights are 
pruned. Bayesian magnitude method is able to combat 
overfitting. Bayes factor remains high throughout training for 
the Bayesian magnitude method. The model is able to fit the 
data better with fewer parameters. 
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