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This paper reviews and compares individual voxel-wise thresholding

methods for identifying active voxels in single-subject fMRI datasets.

Different error rates are described which may be used to calibrate

activation thresholds. We discuss methods which control each of the

error rates at a prespecified level a, including simple procedures which

ignore spatial correlation among the test statistics as well as more

elaborate ones which incorporate this correlation information. The

operating characteristics of the methods are shown through a

simulation study, indicating that the error rate used has an important

impact on the sensitivity of the thresholding method, but that

accounting for correlation has little impact. Therefore, the simple

procedures described work well for thresholding most single-subject

fMRI experiments and are recommended. The methods are illustrated

with a real bilateral finger tapping experiment.
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Introduction

Many fMRI experiments have a common objective of identify-

ing active voxels in a neuroimaging dataset. This is done in single-

subject experiments, for example, by performing individual voxel-

wise tests of the null hypothesis that the observed time course is not

significantly related to an assigned reference function (Bandettini et

al., 1993; Cox et al., 1995). A voxel activation map is then

constructed by applying a thresholding rule to the resulting

t statistics.

This paper describes three error rates that may be used to

formally set activation thresholds based on individual voxel-wise

test statistics, but not on cluster size. We reviewmethods that control

each of the error rates at a prespecified level a. These methods

include simple procedures that ignore spatial correlation among the

test statistics as well as more elaborate ones that incorporate this

correlation information. The operating characteristics of the meth-

ods are shown through a simulation study, highlighting two results.
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First, as has been noted previously, the choice of error rate substan-

tially impacts the power to detect true activations. Second, compli-

cated procedures which explicitly account for the correlation

structure do not improve the power in most practical situations,

except when data are extremely strongly correlated. Therefore, for

most single-subject analyzes, the simple procedures are recommen-

ded in practice. A real bilateral finger-tapping experiment is used to

illustrate the methods and conclusions.
Problem and error rates

A common way of determining significance of a statistical

hypothesis test is to specify the significance level or type I error

rate of the test, usually denoted by a, and use this to determine a

threshold. The type I error rate is the probability that, if the voxel

were truly inactive, its test statistic would exceed the threshold,

leading to the incorrect conclusion that it is active. This significance

level determines the threshold, so that, for example, a 5% level

voxel z test would have a threshold of 1.96 (two-sided) or 1.645

(one-sided). However, there is an important problem here. If we

consider, for example, a 64 � 64 � 15 volume image, as in the real

experiment which follows, with no true activity attributable to

treatment, we would expect 0.05� 61,440 = 3072 voxels to exceed

a 5% threshold by chance alone. Therefore, when we use this kind

of thresholding rule, the result is a large number of false positives or

voxels declared active when they are truly inactive. The reason for

this problem is that there are multiple individual voxel hypotheses

being tested. This is called the multiplicity problem; it occurs when

multiple hypothesis tests are performed simultaneously and one

must account for the possibility of errors occurring on each of these

tests (Hochberg and Tamhane, 1987; Miller, 1981; Westfall and

Young, 1993; Westfall et al., 1999).

As a result of this problem of excessive false positives, it is

useful to consider other types of error rates which account for the

multiplicity problem. Some notation needs to be laid out before

proceeding. For voxels i = 1,. . ., m, define Ti to be the random

variable corresponding to the test statistic for treatment-related

activation at voxel i, ti to be its observed realization, pi = P (jTij >
jtij) to be the (two-sided) p value for voxel i, li to be the actual

treatment-related activation for voxel i, and c to be the fixed

threshold set for determining whether a voxel is active. For

example, li = 0 if voxel i is truly inactive and li p 0 if voxel i

is truly active.



Table 1

True status vs. decision for all m voxels

True status Decision Total

Declared inactive Declared active

Voxel inactive NT DF m0

Voxel active NF DT m1

N D m
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When no account is made of the multiple testing, the error rate is

the usual significance level or type I error rate. We will also call it

the per comparison error rate (or per voxel error rate) and it refers to

the probability of a false positive finding for an individual voxel i,

PCE ¼ PðATiA > cAli ¼ 0Þ:

The most common way in the statistical literature to account for

multiplicity is to consider the family-wise error rate (or image-wise

error rate). The family-wise error rate (FWE) is the probability of at

least one false positive on any voxel in the image,

FWE ¼ P v
i:li¼0

fATiA > cg
� �

:

Note that FWE z PCE, so that any method which controls the

FWE at level a will have a higher threshold c than one which

controls the PCE at level a. Sometimes a distinction is made

between methods which only control the FWE under the overall

null hypothesis (no voxels have treatment-related activity), called

weak control of the FWE, and those which control the FWE under

any null hypothesis (any subset of voxels have no treatment-related

activity), called strong control of the FWE.

While several methods exist for controlling the FWE in fMRI

data, it is important to consider whether the FWE is a relevant

criterion for fMRI data. Is it relevant to focus on the probability of

getting one or more false positives in a volume image of 61,440

voxels? The consequence of controlling the FWE at a set level a
means that we will have relatively low power to detect truly active

voxels. As in the Bonferroni procedure described below, we are

adjusting the threshold for such a large number of voxel tests, and

the signal or activity level will have to be very strong to be above

this adjusted threshold.

One way of mitigating this problem is to consider a priori

defined regions of interest (ROI). One can control the FWE in a

region of the image which is of specific interest using Bonferroni

adjustment or some other FWE method. This has the advantage

that there is less multiplicity adjustment because of reduced family

size (reduced number of voxels). Therefore, this method will have

higher power to detect active voxels in that region. The disadvan-

tage is that these ROIs must be identified a priori and must remain

unchanged throughout the experiment and analysis. Otherwise, the

FWE over that region will no longer be controlled. One example of

an a priori identified ROI is to apply a mask to the image, so that

only voxels inside the brain are considered in the multiplicity

adjustment. This reduces the total number of voxel hypotheses and

improves the power to detect activated voxels inside the brain and

uncovered by the mask. Also, it is not difficult to specify a mask a

priori, so this is a straightforward way to reduce the multiplicity

adjustment. For simplicity, however, we do not consider masking

further in the remainder of this paper.

The FWE criterion considers it unacceptable to have a false

positive occurring anywhere in the thresholded volume image.

Several alternatives exist for allowing a limited number of voxels

to be falsely declared active to improve the power to detect truly

active voxels. Sarkar (2002) proposed methods to control the

probability of more than k falsely rejected voxels. However, k

must be specified in advance, and this approach may be problem-

atic when k is larger than the number of truly active voxels. An

alternative is to allow some false positives in the thresholded

image, but to relate the number of these acceptable false positives
to the number of total positive findings. This is the basic concept of

the false discovery rate (Benjamini and Hochberg, 1995), which is

detailed next.

The false discovery rate (FDR) is the expected proportion of

false positives to total positives, or the expected proportion of truly

inactive voxels which are declared active to the total number of

voxels declared active. This is illustrated in Table 1, where the

entries in each cell refer to the counts of the number of individual

hypotheses falling in the corresponding category. For example,

false discoveries (DF) are the number of inactive voxels which are

declared to be active. Mnemonically, N refers to a nondiscovery

(voxel declared inactive), D refers to a discovery (voxel declared

active), F refers to a false conclusion, and T refers to a true

conclusion.

Then the false discovery rate is

FDR ¼ EðDF=DÞ;

where the ratio DF/D is defined to be 0 when D = 0. Note that using

this notation,

FWE ¼ PðDF > 0Þ:

In the case where all null hypotheses are true (called the global

null hypothesis), then the number of false positives DF is equal to

D, so that DF/D = 1 if D > 0 and 0 otherwise. The FDR under this

scenario simplifies to

FDR ¼ PðD > 0Þ ¼ PðDF > 0Þ ¼ FWE:

Therefore, any FDR-controlling procedure can be said to have

weak control of the FWE.
Methods for controlling the FWE

The simplest way to control the FWE is through the Bonferroni

method. To apply this, simply divide the individual threshold

significance level a by the number of voxel hypotheses m to arrive

at an adjusted threshold significance level a’ = a/m for each voxel

test. This guarantees that FWE is no larger than a because

FWE ¼ P v
i:li¼0

fATiA > cg
� �

V PðAT1A > cAl1 ¼ 0Þ þ : : :

þ PðATmA > cAlm ¼ 0Þ ¼ maV:

One limitation of the Bonferroni method is that it results in

conservative control of the FWE (i.e., fewer voxels declared active)

in many situations. This conservativism is usually most severe

when the test statistics are moderately to strongly correlated

because there is a mismatch between the effective number of tests

under correlation and the total number of tests m used in the
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Bonferroni denominator. Functional MRI data are known to exhibit

spatial autocorrelation, where closely spaced voxels are more

strongly correlated with one another. The result of the conservative

behavior of the Bonferroni method is potentially less power to

detect truly active voxels.

Several ways to sharpen the Bonferroni procedure are reviewed

by Miller (1981), Hochberg and Tamhane (1987), Westfall and

Young (1993), and Westfall et al. (1999), leading to less conser-

vative control of the FWE and more voxels declared active. One

common method is to set thresholds based on the distribution of

the maximum jTj statistic. This is because the FWE for threshold c
under the overall null hypothesis can be written as

FWE ¼ 1	 PðAT1AVc; . . . ;ATmAVcÞ ¼ 1	 Pðmax
i

ATiAVcÞ;

so that the exact threshold c to obtain FWE of a is the (1	a)
percentile of the maximum jTj distribution. Equivalently, one can

consider thresholds based on the minimum voxel P value. This

distribution is dependent on the correlation structure of the t

statistics and may be obtained in several ways.

Random field methods were first applied to functional neuro-

imaging data to approximate this max jTj distribution by Friston et

al. (1991) and Worsley et al. (1992). A unified approach was

presented in Worsley et al. (1996) that improved upon the earlier

approximations by accounting for a finite search volume; see

Petersson et al. (1999) for a further review of the contributions

in this area. They assume that the m t statistics can be viewed as a

lattice representation of a continuous Gaussian random field. They

derive an approximation to the probability P(maxi jTij z c) inside a
search region V using the expected Euler characteristic (EC) of the

set of voxels exceeding c. For high threshold c, the expected Euler

characteristic and the adjusted P value are approximately the same.

To account for the finite search volume, Worsley et al. (1996)

transform from voxel coordinates to unitless resel coordinates by

dividing the voxel dimensions by the Full-Width Half Maximum

(FWHM) of the random field. Then

Pðmax
i

ATiAzcÞ c
X3
D¼0

RDðV ÞpDðcÞ;

where RD(V) is the resel count of the region V corresponding to

dimension D and pD(c) is the EC density function in D dimensions.

Alternatively, these Gaussian random fields may be simulated, but

this requires an assumption of stationarity which the random field

methods for the peak height do not require.

Westfall and Young (1993) propose resampling techniques to

estimate the distribution of the maximum jTj statistic. These are

applied to fMRI analysis by Holmes et al. (1996), Bullmore et al.

(1996), and Brammer et al. (1997) (see also Nichols and Holmes,

2001 for a review), in which the exact c values are simulated using

permutation resampling of the multiple scans over time. If under

the null hypothesis the data from these scans are exchangeable

(have the same distribution), we can generate the exact empirical

distribution of the max jTj statistic by enumerating each permuta-

tion, recomputing each voxel t statistic, and determining the

observed max jtj statistic across voxels for each permutation. In

practice, one takes a random sample of B possible permutations

rather than enumerating each one, because the number of permu-

tations becomes prohibitively large with the number of time points.

For example, with n = 128 time points, there would be 128!c 3.8�
10215 possible permutations. A random sample of these permuta-
tions yields a max jTj distribution which converges to the true

distribution with increasing B.

To obtain exchangeability, two modifications may need to be

made to the data. A time trend may need to be accounted for so that

one instead would permute the residuals after fitting a model for

the time trend. Also, the time courses may exhibit temporal

autocorrelation. Locascio et al. (1997) estimated the temporal

autocorrelation using a parametric model, whitened the data based

on this estimate, and then applied the permutation procedure to the

whitened data to estimate the distribution of the maximum jTj
statistic. However, it is important to note that fitting a time trend

and whitening the data make the residuals only approximately

exchangeable because the parameters computed from the data are

only estimates of the true values and they may induce additional

correlation in the residuals. While this is not likely to be a big

problem if the model is correctly specified, the impact of this

approximate exchangeability on the multiplicity correction is not

fully known. Finally, note that other methods have been proposed

to facilitate permutation-based inference in the presence of tempo-

ral autocorrelation, such as precoloring (Worsley and Friston,

1995) and wavelet resampling (Bullmore et al., 2001).

An algorithm using permutation resampling to estimate the

FWE corresponding to threshold c is given below:

1. Simulate a series of B images under the null hypothesis by

permuting the suitably exchangeable residuals, and denote

statistics computed on the simulated image b, b = 1,. . ., B with a

superscript.

2. For simulated image b compute maxi jtibj.
3. Estimate the FWE for threshold c using the simulated images as

F̂WEðcÞ ¼
f#bAmax

i
Atbi A > cg

B
:

In conclusion, methods for controlling the FWE require a

threshold to be set based on the distribution of the maximum jT j
statistic. Many possibilities for estimating this distribution exist, but

the permutation resampling method is especially attractive because

it can be applied to many situations, provided one can fit an

appropriate model so that the residuals are suitably exchangeable.
Methods for controlling the FDR

Benjamini and Hochberg (1995) propose a simple step-up

procedure for controlling the FDR at level q, which was applied

to neuroimaging data by Genovese et al. (2002). This procedure is

called step-up because it uses an adaptive threshold which depends

on the ordered P values P(1) V P(2) V,. . ., V P(m), where the

subscript in parentheses denotes the order. Let v(i) denote the voxel

corresponding to P value P(i), and let d be the largest i for which

PðiÞV
i

m
q:

The BH (Benjamini and Hochberg) procedure declares voxels

v(1),. . ., v(d) to be active. It is called a step-up procedure because of

the sequential or stepping up method for finding d.

This procedure was originally shown to control the FDR at

level q for independent test statistics or P values. This proof was

extended to test statistics which are positive regression dependent
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on subsets (PRDS), a technical definition of positive dependency

of which positively dependent voxel t statistics is a special case

(Benjamini and Yekutieli, 2001). For a general correlation structure

with potential negative correlations, Benjamini and Yekutieli

(2001) show that the FDR is still controlled if you redefine d

above to be the largest i for which

PðiÞV
i

m

q

Rm
j¼11=j

c
i

m

q

log mþ 1=2
:

However, this adjusted threshold is substantially smaller (ap-

proximately 1/9 of the original proposed BH threshold for m =

4096) and will result in smaller d and fewer voxels declared active.

Also, simulations (not shown) indicate that the original BH

procedure controls the FDR even when there is some moderate

negative correlation. Therefore, it is preferable to use the first

procedure unless the negative correlations are very strong.

Storey (2002, 2003) proposes a simplified version of the FDR

which he calls the positive FDR (pFDR):

pFDR ¼ EðDF=DAD > 0Þ:

Under independence of the test statistics, Storey (2002, 2003)

shows the pFDR has a natural Bayesian interpretation as

pFDR ¼ PðHi is trueAATiA > cÞ;

or the posterior probability that the voxel is inactive, given that its

test statistic is above the threshold. Storey uses the Bayesian

interpretation to express the pFDR in the following way:

pFDR ¼ PðATiAzcAli ¼ 0ÞPðli ¼ 0Þ
PðATiAzcÞ

¼ F0ðcÞp0

Fc
;

where F0 is the complement of the CDF of jTij when voxel i is

inactive, F is the complement of the marginal CDF of jTij
regardless of activity (a mixture distribution of F0 and an unknown

alternative distribution F1), and p0 = m0/m is the proportion of null

hypotheses (or inactive voxels).

Storey (2002) proposes estimates of the parameters of interest

and establishes a heuristic connection between his procedure and

BH in the following way. Suppose that the P value P(i) corre-

sponded to the threshold c(i), that is, P(i) = F0(c(i)). We can estimate

F̂(c(i)) by the proportion of rejected hypotheses, so that F̂(c(i)) = i/m.

A worst case or conservative estimate of pFDR can be obtained by

using p0 = 1. Then p̂FDR ¼ mpðiÞ=i so that

pFDRVq Z pðiÞV
i

m
q:

Therefore, this Bayesian formulation turns out to be equivalent to

the BH method under a conservative estimate of p0 = 1.

Several authors (Benjamini and Hochberg, 2000; Genovese and

Wasserman, 2002; Storey, 2002; Storey and Tibshirani, 2001;

Storey et al., 2004) have considered adaptive estimation of p0 to

further refine the FDR-controlling procedure and improve upon the

conservative BH procedure. However, in most fMRI datasets, we

expect that a relatively small proportion of the voxels in an image

would actually be considered active as a result of treatment. In this
setting, there may be limited utility in estimating p0 because the

estimate will typically be very close to one. In addition, estimation

of p0 may be sensitive to strong correlation structures. Storey et al.

(2004) show that for weak dependence, where

lim
m!l

DFðcÞ
m0

a:s:
¼ F0ðtÞ and lim

m!l

DT ðcÞ
m1

a:s:
¼ F1ðtÞ;

then the resulting adaptive estimates of pFDR will be asymptoti-

cally conservative (i.e., provide strong control over pFDR) as

m!l. This type of weak dependence includes dependence

occurring in finite blocks, among others. However, for a finite m,

less is known about how the adaptive estimation of p0 in the

presence of correlation affects the strong control of the FDR, so we

do not consider it further.

The BH method is a simple, powerful procedure, but it has two

main limitations. It has only been shown to control the FDR for

independent or positively correlated voxel t statistics, and if the

statistics are positively correlated, it may not be as powerful as

another method which does incorporate correlation information. As

discussed earlier, most fMRI datasets exhibit some spatial corre-

lation. Therefore, it is useful to consider methods for controlling

the FDR when there is correlation present.

Yekutieli and Benjamini (1999) propose a resampling-based

estimate of the FDR for threshold c which utilizes the correlation

structure, and show that a step-up procedure using these estimates

controls the FDR under an arbitrary correlation structure with the

restriction that DF and DT are independent of one another. A

sufficient but not necessary condition for this independence is that

the P values corresponding to the true null hypotheses and the P

values corresponding to the false null hypotheses are independent

of one another. Specifically with regard to fMRI data, this means

that the active voxels can be arbitrarily correlated with one another,

and the inactive voxels can be arbitrarily correlated with one

another, but the active and inactive voxels are independent of

one another. This assumption may not be met in fMRI datasets,

where the task-related signal changes are mean shifts within a

general correlation structure. We investigate in subsequent simu-

lations whether the YB procedure controls the FDR, when the

active and inactive voxels are positively correlated with one

another. This scenario of positive correlation between active and

inactive voxels may fit the spatial correlation structure exhibited by

many fMRI datasets. However, note that limited simulation studies

such as the one presented later need not reveal problems with the

YB method in terms of control of the FDR for correlation

structures seen in fMRI studies. Further research is needed to

establish mathematically whether this procedure still controls the

FDR when DF and DT are positively correlated, or if not in general,

then under what conditions does it control the FDR; note, however,

that counter examples can be obtained to show that it does not

necessarily control the FDR when DF and DT are negatively

correlated.

The YB procedure works as follows. Define DF(c) to be the

random variable representing the number of inactive voxels in the

actual image (with some truly active and some truly inactive

voxels), which are declared active using threshold c. Similarly,

define D0(c) to be the random variable representing the number of

truly inactive voxels which are declared active using threshold c in
a hypothetical image reflecting the overall null hypothesis where

all voxels are inactive. Then D0(c) is stochastically larger than

DF(c) because it has more inactive voxels which may potentially be
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declared active. Yekutieli and Benjamini (1999) use this result and

the independence of DF and DT to construct a conservative

estimator of the FDR for threshold c as

E
D0ðcÞ

D0ðcÞ þ DT ðcÞ

� �
instead of E

DFðcÞ
DFðcÞ þ DT ðcÞ

� �
:

In this expression, we can estimate DT(c) by

D̂T ðcÞ ¼ DðcÞ 	 mpc;

where D(c) is the number of ti exceeding c in the observed image

and pc is the P value corresponding to the threshold c. Then the

final estimator is

F̂DRYBðcÞ ¼ E
D0ðcÞ

D0ðcÞ þ D̂T ðcÞ

� �
: ð4:1Þ

This expectation is evaluated using the following steps:

1. For a given threshold (or P value) c, estimate D̂T(c) using the

observed image data.

2. Simulate a series of B images under the null hypothesis, either

through nonparametric resampling or Gaussian random field as

detailed earlier, and denote statistics computed on simulated

image b, b = 1,. . ., B with a superscript.

3. For simulated image b compute D0
b(c), the number of jtibj’s in

the bth image exceeding c.
4. Evaluate the expectation in Eq. (4.1) using the simulated images

as

F̂DRYBðcÞ ¼
1

B

XB
b¼1

Db
0ðcÞ

Db
0ðcÞ þ D̂T ðcÞ

" #
:

These FDR estimates can be used in a step-up procedure

analogous to the BH procedure as follows. First order the

observed P values so that P(1) V P(2) V. . . V P(m), and let v(i)
denote the voxel corresponding to P value P(i). Compute the

corresponding FDR estimates for each P value and denote the

FDR estimate for P(i) as F̂DRYBðpðiÞÞ. Let d denote the largest i for

which F̂DRYBðpðiÞÞV q. Conclude that the voxels v(1),. . ., v(d) are

active, and the remaining ones are inactive.

The YB method can be used to control the FDR when there are

potentially negative correlations, and it may be more powerful than

the BH method because it explicitly incorporates the correlation

structure.
fMRI simulation study

Basic design

Data are generated to simulate a bilateral finger-tapping fMRI

block design experiment where the true motor activation structure is

known so that each of the thresholding methods can be evaluated.

A 64 � 64 slice is selected for analysis within which two 7 � 7

ROIs as lightened in Fig. 1 are designated to have activation. For

this slice, simulated fMRI data are constructed according to a

regression model which consists of an intercept, a time trend for
all voxels but also a reference function for voxels in each ROI

which is related to a block experimental design.

The multivariate regression model (Rowe, 2003) from which

we generate the data for all m = 4096 voxels and all n = 128 time

points is represented in terms of matrices as

Y
n�m

¼ X
n�ðqþ1Þ

B
ðqþ1Þ�m

þ E
n�m

ð5:1Þ

where q is the number of independent variables, X is the design

matrix, B is the matrix of true regression coefficients, and E is the

error matrix.

The voxels in each ROI are numbered sequentially from left to

right and top to bottom. The simulated data are generated according

to Eq. (5.1), where the design matrix X is an n � 3 matrix whose

first column is an n dimensional vector of ones, the second column

is an n dimensional vector of the first n counting numbers, and the

third column is an n dimensional vector consisting of eight

replicates of eight ones then eight negative ones. The true regression

coefficient matrix B outside each ROI consists of column vectors

which are (0.5,0.5,0)V plus random independent noise for the

nonzero elements with zero mean and standard deviation 0.25.

Inside each ROI, the regression coefficients associated with the

reference function are given in terms of (i, j) coordinates by

Bði; jÞ ¼ 2e
ði	iVÞ2þðj	jVÞ2

2ð2Þ þ 1:5 ð5:2Þ

where (iV, jV) is the voxel number in the center of the ROI. These

coefficients were chosen to have an activation region with the

largest effect in the center and smaller effects towards the edge, but

with reasonable power after multiplicity adjustment to detect the

activations.

Correlation Structures Considered

The observation errors eiwere randomly generated independent-

ly from a multivariate normal distribution with m dimensional zero

mean vector andm�m positive definite covariance matrix R = r2R,
where r2 = 64. Several types of spatial correlation structures R were

considered for the simulation study. First, the voxels were assumed

to have a stationary, isotropic exponential function covariogram

Daniel Rowe
Text Box
-
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(Cressie, 1993), which can be expressed in the simple form where

each voxel is correlated with all other voxels according to qd and d is
the Euclidean distance between the voxels. For this exponential

structure, values of q of 0.0, 0.7, and 0.95 were investigated and are

denoted Exp(q).
Next, we assumed a population correlation matrix equal to the

estimated sample correlation matrix from the example dataset in the

Real fMRI example section to illustrate how the methods might

perform on a ‘‘real’’ correlation structure.

Finally, we investigated how the methods might perform

when the data are smoothed before analysis. Datasets were

generated assuming spatial independence, and then we applied

a 5-mm FWHM Gaussian kernel to smooth each dataset. The

smoothed t statistics were rescaled to a N(0,1) distribution so that

appropriate thresholds could be determined. Note that the rescal-

ing factor K requires knowledge of the spatial correlation among

the residuals before smoothing, but under independence it just

reduces to the square root of the sum of the squares of the kernel

weights for voxels i and j;K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri;j k

2
ij

q
. When there is spatial

correlation present, it may be necessary to either model this

correlation or perform permutation resampling to determine an

appropriate rescaling parameter. There are two main differences

between the smoothed and unsmoothed data. First, smoothing

tends to reinforce signals that are more spatially distributed and

reduce in magnitude signals that are more isolated. Because our

activation regions are fairly wide, we found it necessary to

reduce the coefficients in the ROI by a multiplicative factor of

K to facilitate comparisons among the thresholding procedures.

Second, smoothing induces a correlation structure among the test

statistics above and beyond the underlying spatial correlation
Fig. 2. Population correlation images. (a) q = 0.00, (b) q
present in the raw data before smoothing. We only consider the

case where the residuals are uncorrelated before smoothing. The

net effect of smoothing is a correlation matrix which is similar to

the exponential correlation structure. Note that this correlation

matrix induced by smoothing is also commonly used by fMRI

researchers to model the residual spatial correlation without

smoothing.

To illustrate the effect of the spatial autocorrelation structure on

how the t statistic image appears, the first subfigure of Figs. 3–7

contains a single sample image (realization) of observed t statistics

generated from the corresponding model and correlation structure.

The Exp(0.0) image has little to no clustering of colors, the Exp(0.7)

image has moderate clustering of the t statistic values, while the

Exp(0.95) image has large areas of clustering. Note that the sample

image for the smoothed simulated dataset appears to fall between

the exponential covariance structures with q = 0.0 and q = 0.7 in

terms of the degree of clustering, while the covariance structure

generated from the example dataset results in very slight clustering

located only in certain parts of the image. The spatial correlation

structure of most single-subject fMRI data is expected to resemble

the q = 0.0 or q = 0.7 scenarios, and is not likely to be as strong as

the q = 0.95 scenario.

Another way to illustrate the spatial correlation structures

considered is to show the correlation matrices corresponding to

each structure. Fig. 2 illustrates the population correlation matrices

for the five correlation structures considered by ordering the 4096

voxels from left to right and top to bottom, computing the

correlation between each pair of voxels, and mapping the correla-

tions to a color map. Fig. 2a shows a diagonal line of nonzero values

when q = 0.0, while for q = 0.7, the correlation image in Fig. 2b has
= 0.70, (c) q = 0.95, (d) real qVs, (e) FWHM qVs.
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a narrow band of moderate correlation, indicating that the correla-

tion is strong locally but not very dispersed. We refer to a

correlation matrix which does not have a lot of moderate to strong

correlations throughout the image as a sparse correlation structure

(both q = 0.0 and 0.7 would qualify). When q = 0.95, this band of

moderate correlation widens substantially, indicating that voxels

even very far away are still moderately associated with one another.

Although the correlation matrix from the real dataset shown in Fig.

2d does not have the same spatial correlation structure as the

exponential structure, it appears that the magnitude and sparsity

of the correlation structure based on this real dataset is more similar

to the situation where q = 0.7, and not as strong as when q = 0.95.

Note also that there is a central box-like shape to the larger

correlation values; this region corresponds to the intracerebral

voxels. This suggests long-range correlations in the original dataset
Fig. 3. Sample t statistic image and a = 0.05 power images for q = 0.00. (a) Sample

FWE permutation method, (e) FDR BH method, (f) FDR YB method.
which may be due to unmodeled signal or physiological noise.

Finally, an empirical correlation matrix is shown in Fig. 2e to

illustrate the correlation structure induced by smoothing the data

with a 5-mm FWHM Gaussian kernel. This empirical correlation

matrix is constructed from 5000 simulated datasets with no true

activation that were smoothed. Note that the correlation matrix is

quite sparse (it has moderate correlation for voxels within two of

one another) and falls somewhere between the Exp(0.0) and

Exp(0.7) models.

In addition to the positive spatial correlation structures above,

we also studied a model where several blocks or regions of voxels

were moderately negatively cross-correlated with one another,

while voxels within each region followed a positive spatial

correlation from a Exp(q) covariance function. The results of this

structure were similar to the Exp(q) covariance function which did
t statistic image, (b) unadjusted threshold, (c) FWE Bonferroni method, (d)



B.R. Logan, D.B. Rowe / NeuroImage 22 (2004) 95–108102
not have negatively correlated blocks and are therefore omitted for

brevity. In particular, it is worth noting that the BH procedure

controlled the FDR despite the negative correlations present,

indicating further that the conservative approximation discussed

by Benjamini and Yekutieli (2001) is unnecessary for most fMRI

applications.

Results of simulation study

Five thresholding methods were considered: unadjusted method

with type I error of 5%, a Bonferroni procedure with FWE of 5%, a

permutation resampling procedure to control the FWE at 5%, the

BH procedure with FDR of 5%, and the YB permutation resam-

pling procedure with a FDR of 5%. Both resampling methods used
Fig. 4. Sample t statistic image and a = 0.05 power images for q = 0.70. (a) Sample

FWE permutation method, (e) FDR BH method, (f) FDR YB method.
500 randomly generated permutations. Because of the computa-

tional burden, 1000 simulated images were created, on which each

of these methods was applied. For each procedure, a power image

was constructed which summarized the frequency over the 1000

simulated images with which each voxel was detected as active

(above the respective threshold). For clarity, all voxels which are

never detected as active are kept as image grayscale, while those

which are detected active are given a color expressing the power or

frequency with which they are declared active. These images are

given in Figs. 3–7 for Exp(0.0), Exp(0.7), Exp(0.95), real data,

and 5 mm FWHM correlation structures, respectively. As described

above, the first subfigure of each figure is a single sample set of

observed t statistics generated from the corresponding model and

covariance matrix.
t statistic image, (b) unadjusted threshold, (c) FWE Bonferroni method, (d)



Fig. 5. Sample t statistic image and a = 0.05 power images for q = 0.95. (a) Sample t statistic image, (b) unadjusted threshold, (c) FWE Bonferroni method, (d)

FWE permutation method, (e) FDR BH method, (f) FDR YB method.
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In all cases considered, the unadjusted method detects the active

region with high power, but at the cost of a substantial number of

false positives. In fact, every voxel in the entire 64 � 64 image is

declared active at least once and often multiple times in the 1000

simulated images.

For the zero correlation or independent voxels scenario, there

appears to be no benefit to using a permutation sampling method to

account for correlation. The FWE Bonferroni method and the FWE

permutation method give virtually identical power images as do the

FDR BH method and the FDR YB method. However, there is a

substantial difference between the FWE-controlling procedure and

the FDR-controlling procedure. The FDR-controlling procedures

maintain higher power in the ROI than the FWE-controlling
procedures, albeit at the cost of more falsely detected voxels.

However, the proportion of falsely detected voxels is still main-

tained at a rate of 5% or fewer on average of the total number of

voxels declared active.

Similar results can be seen for the Exp(0.7) structure. Even

though the spatial correlation is stronger, there is still little to no

effect of incorporating the correlation information through a per-

mutation method, either for the FWE- or FDR-controlling proce-

dures. This is probably because, even though q = 0.7, the correlation

between any voxel and a neighbor 6 voxels away is only 0.12,

which is very low and indicative of the sparse correlation matrix

seen in Fig. 2b. Because the correlation matrix is sparse, there is

little advantage to incorporating such correlation information into



Fig. 6. Sample t statistic image and a = 0.05 power images for q = 0.00. (a) Sample t statistic image, (b) unadjusted threshold, (c) FWE Bonferroni method, (d)

FWE permutation method, (e) FDR BH method, (f) FDR YB method.
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the multiplicity adjustment. However, there is still an important

advantage in terms of power to use a FDR-controlling procedure

rather than a FWE-controlling procedure again at the cost of more

false positives, similar to when the correlation was 0.0.

When the spatial correlation is very strong (Exp(0.95)), then we

can see evidence that permutation-resampling methods improve

the power to detect voxel activations. The FWE permutation-

sampling procedure detects a larger portion of the activation region

with higher power than the FWE Bonferroni procedure. Similarly,

the FDR YB resampling method also has higher power than the

FDR BH method to detect voxel activations. For the spatial

correlation of 0.95, the correlation between any voxel and a

neighbor 6 and 12 voxels away is 0.74 and 0.54, respectively,

and this is illustrated in Fig. 2c by a less sparse correlation map
with a larger frequency of moderate to high correlation values.

This substantially stronger spatial correlation is utilized by the

resampling methods to improve the power relative to their non-

resampling counterparts. As above, the FDR-controlling methods

are more powerful than the FWE-controlling methods at the cost

of more false negatives. However, it is important to recall that the

FDR procedures control the expected rate of false discoveries

relative to total discoveries. The actual false discovery rate may be

higher than the targeted rate (e.g., 5%), and this can be especially

problematic when the correlation is strong enough to induce

substantial clustering in the t statistics. In this case, it may be

more appropriate to consider methods which control the actual

false discovery rate V q with probability b, as discussed in

Pacifico et al. (2003). However, as indicated by the sample t



 

 

 

 

Fig. 7. Sample t statistic image and a = 0.05 power images, 5 mm FWHM smoothed. (a) Sample t statistic image, (b) unadjusted threshold, (c) FWE Bonferroni

method, (d) FWE permutation method, (e) FDR BH method, (f) FDR YB method.
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statistic image, a spatial correlation of this extent and severity is

unlikely to be encountered in single-subject fMRI data.

The correlation image for the ‘‘real’’ correlation structure in Fig.

2d exhibits similar characteristics of sparsity as the correlation

image for Exp(0.7). Therefore, as expected, the relative perfor-
Table 2

Average power for various thresholding methods

Method Exp(0.0) Exp(0.7)

Unadjusted 0.7459 (0.0014) 0.7481 (0.0036)

FWE Bonferroni 0.0924 (0.0008) 0.0915 (0.0020)

FWE permutation 0.0926 (0.0009) 0.0957 (0.0021)

FDR BH 0.2326 (0.0016) 0.2307 (0.0044)

FDR YB 0.2359 (0.0016) 0.2369 (0.0043)
mance of the thresholding methods is similar to the exponential

covariance model structure with q = 0.0 or 0.7.

Smoothing induces a correlation matrix whose sparsity falls

between that of the Exp(0.0) and Exp(0.7) covariance structures. As

a result, there is little advantage to using permutation resampling to
Exp(0.95) ‘‘Real’’ 5 mm FWHM

0.7530 (0.0071) 0.7557 (0.0028) 0.3329 (0.0151)

0.0937 (0.0034) 0.0937 (0.0015) 0.0340 (0.0019)

0.1721 (0.0049) 0.0981 (0.0015) 0.0386 (0.0022)

0.2406 (0.0075) 0.2331 (0.0033) 0.0892 (0.0034)

0.3067 (0.0078) 0.2446 (0.0033) 0.0963 (0.0049)

DanRowe
Callout
Mult values by 2.



Table 3

FDR for various thresholding methods

Method Exp(0.0) Exp(0.7) Exp(0.95) ‘‘Real’’ 5 mm FWHM

Unadjusted 0.7325 (0.0005) 0.7286 (0.0015) 0.6005 (0.0077) 0.7105 (0.0029) 0.7538 (0.0011)

FWE Bonferroni 0.0057 (0.0008) 0.0077 (0.0016) 0.0042 (0.0020) 0.0049 (0.0010) 0.0077 (0.0017)

FWE permutation 0.0060 (0.0008) 0.0083 (0.0016) 0.0159 (0.0033) 0.0056 (0.0010) 0.0108 (0.0022)

FDR BH 0.0502 (0.0014) 0.0490 (0.0022) 0.0303 (0.0040) 0.0512 (0.0026) 0.0446 (0.0024)

FDR YB 0.0527 (0.0015) 0.0557 (0.0027) 0.0538 (0.0050) 0.0571 (0.0027) 0.0532 (0.0026)
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adjust the threshold for the correlation structure induced by

smoothing, as illustrated by the power images in Fig. 7. Note,

however, that permutation resampling may be useful in determining

the appropriate scaling factor or marginal distribution after smooth-

ing from which the thresholds are set, as discussed above. Finally,

as in other scenarios, there are substantial advantages to using the

FDR rather than the FWE to set the thresholds.

Tables 2–4 provide additional information on the magnitude

of the power differences between the various methods as well as

the error rates obtained. Table 2 presents the average power in

the true activation regions for the various methods and correla-

tion structures, while Tables 3 and 4 contain the estimates of the

false discovery rates and family-wise error rates based on the

simulated data. Standard errors are given next to each estimate in

parentheses.

The FDR-controlling procedures appear to improve the average

power in the active region by approximately 14%. The resampling

adjustments to incorporate correlation improve the power by about

7%, but only when q = 0.95. Also of particular interest is whether

the YB resampling method controls the FDR for positively corre-

lated active and inactive voxels. The observed FDR for the YB

method is slightly more than 1.96 SE above the nominal 5% value

in some cases (Exp(0.7), ‘‘real’’). There are several possible reasons

for this slight elevation of the FDR rate. First, in a simulation study

of this magnitude, we can only use a limited number of permutation

samples (500). As a result, the permutation distribution may not be

adequately filled in, and the error rate may be elevated as a result.

Second, estimation of the correlation among the residuals by

resampling the residual vectors may be inadequate because of the

limited sample size (n = 128) and high dimension (4096C2 correla-

tion parameters) involved. The uncertainty associated with such

estimation may inflate the error rate above the nominal value.

Finally, the YB procedure has not been mathematically proven to

control the FDR when DF and DT are correlated, and both cases

qualify. However, the magnitude of the inflation of the FDR error

rate is not large and should not be considered a major barrier to

using this procedure. It will slightly inflate the power estimates,

however, so that we should not give too much credence to small

differences in power between the BH and YB procedures. Finally,

keep in mind that a limited simulation study such as the one

presented here may not reveal problems with the YB method in
Table 4

FWE for various thresholding methods

Method Exp(0.0) Exp(0.7)

Unadjusted 1.0000 (0.0000) 1.0000 (0.0000)

FWE Bonferroni 0.0500 (0.0069) 0.0440 (0.0065)

FWE permutation 0.0540 (0.0072) 0.0480 (0.0068)

FDR BH 0.6910 (0.0146) 0.5300 (0.0158)

FDR YB 0.7090 (0.0144) 0.5640 (0.0157)
terms of control of the FDR for correlation structures encountered in

fMRI studies.

As mentioned above, additional correlation structures were also

considered, including some with negatively correlated regions of

the brain. In all others, similar results were observed, where the

correlation matrix was too sparse for the correlation-based multi-

plicity adjustments to improve the power to detect active voxels

over methods which do not account for correlation.
Real fMRI Example

To illustrate the thresholding methods described in this paper, a

bilateral finger-tapping experiment was performed with the same

design as the previous simulation study. To generate the functional

data, bilateral finger tapping was performed in a block design with

eight epochs of 16 s on and 16 s off. Scanning was performed using

a 3-T Bruker Biospec in which 15 axial slices of size 64 � 64 were

acquired. Each voxel has dimensions in mm of 3.125 � 3.125 � 5,

with TE = 27.2 ms. Observations were taken every TR = 2000 ms so

that there are 128 in each voxel. Data from a single axial slice

through the motor cortex were selected for analysis. A multiple

regression model was fit to the data with an intercept, a time trend,

and a reference function. The reference function was eight repli-

cates of eight ones then eight negative ones, which mimics the

experimental design in the simulation study.

After fitting the regression model, the correlation matrix was

computed from the residuals and a correlation image was con-

structed. This sample correlation image shown in Fig. 2d does not

have the same spatial correlation structure as the others considered

in the simulation study. It appears that the magnitude and the

sparsity of this real dataset are more similar to the situation where

q = 0.7, and not as strong as when q = 0.95. Therefore, we would

expect there to be little difference between using a thresholding

method which does not account for spatial correlation and one

which does account for spatial correlation. The real data t statistic

image is given in Fig. 8, along with thresholded images using each

of the methods discussed with a 5% error rate.

As expected, there are little to no differences between the

Bonferroni and the permutation resampling FWE adjustment, or

between the BH and the YB FDR adjustment. Also as expected,
Exp(0.95) ‘‘Real’’ 5 mm FWHM

0.9980 (0.0014) 1.0000 (0.0000) 1.0000 (0.0000)

0.0070 (0.0026) 0.0400 (0.0062) 0.0480 (0.0096)

0.0510 (0.0070) 0.0460 (0.0066) 0.0640 (0.0110)

0.1140 (0.0101) 0.5080 (0.0158) 0.5400 (0.0223)

0.2150 (0.0130) 0.5570 (0.0157) 0.6040 (0.0219)



Fig. 8. Real data thresholded t statistic images for a = 0.05. (a) Sample t statistic image, (b) unadjusted threshold, (c) FWE Bonferroni method, (d) FWE

permutation method, (e) FDR BH method, (f) FDR YB method.
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there are more voxels above the threshold using the FDR adjust-

ment than using a FWE adjustment because the error rate is less

stringent.
Conclusion

This simulation study highlights two important findings. First,

as has been indicated previously by other authors, the FDR-

controlling methods generally have higher power than FWE-con-

trolling methods to detect active voxels. The average magnitude of

this power improvement was approximately 14% in the simulations

considered, but this is likely to be sensitive to the underlying

parameters involved and the size of the image considered. In

general, the FDR criterion is more robust to the size of the image
being considered than the FWE criterion (Holland and Cheung,

2002). However, the procedures are controlling two different error

rates, so this higher power comes at the cost of a greater rate of false

positives. For most fMRI applications, because of the large number

of voxels considered, controlling the FWE is less appealing than

controlling the FDR at a fixed rate a because the number of

allowable voxels which are falsely declared active is then linked

to the total number of voxels declared active.

Second, except when the spatial correlation is extremely strong

(Exp(0.95)), voxel-wise thresholding methods which use resam-

pling to account for correlation in the multiplicity adjustment do not

have much impact on the power. This is probably due to the

sparseness of the overall covariance matrix in many fMRI applica-

tions, in which most of the entries in the entire covariance matrix are

close to 0, resulting in an ‘‘average’’ correlation close to 0. This
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phenomenon was found even for moderate local spatial correlation

such as the Exp(0.7) or the 5 mm FWHM structures. Therefore,

because of the extreme computational burden of doing such

resampling and the difficult assumptions they require, the simple

procedures, such as Bonferroni for controlling the FWE or Benja-

mini–Hochberg for controlling the FDR, are recommended in

practice, unless there is a strong indication of a high correlation

between a large number of the voxels in the image. Note that while

we have focused on single-subject fMRI, multiple-subject fMRI

studies often utilize more extensive smoothing which induces

stronger spatial correlation. This may indicate that adjustment with

one of the more computationally intensive methods is more appro-

priate for multiple subject studies; however, more research needs to

be done on the effect of smoothing on multiplicity adjustment for

multiple subject fMRI studies.

While incorporating correlation information does not appear to

be important to voxel-wise thresholding rules, note that these

findings do not apply to cluster thresholding methods, as in Friston

et al. (1994), where an a priori cluster size is also used to set the

threshold. In this case, the spatial correlation information may have

a significant impact on the expected cluster size, as indicated by our

sample t statistic images in Figs. 3–7, and the resulting t statistic–

cluster size thresholding rule needs to be sensitive to this.

Finally, our simulation studies have focused on the effect of

spatial correlation on the voxel-wise thresholding methods. fMRI

datasets may include temporal autocorrelation, and while one may

whiten the data as in Locascio et al. (1997) before applying a

permutation resampling method, further work needs to be done to

investigate whether our conclusions hold for prewhitened data as

well.
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