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Abstract: Many fMRI experiments have a common objective of identifying active voxels in a neuroi-
maging dataset. This is done in single subject experiments, for example, by performing individual
voxel-wise tests of the null hypothesis that the observed time course is not significantly related to an
assigned reference function. A voxel activation map is then constructed by applying a thresholding
rule to the resulting statistics (e.g., t-statistics). Typically the task-related activation is expected to occur
in clusters of voxels rather than in isolated single voxels. A variety of spatial thresholding techniques
have been proposed to reflect this belief, including smoothing the raw t-statistics, cluster size inference,
and spatial mixture modeling. We study two aspects of these spatial thresholding procedures applied
to single subject fMRI analysis through simulation. First, we examine the performance of these proce-
dures in terms of sensitivity to detect voxel activation, using receiver operating characteristic curves.
Second, we consider the accuracy of these spatial thresholding procedures in estimation of the size of
the activation region, both in terms of bias and variance. The findings indicate that smoothing has the
highest sensitivity to modest magnitude signals, but tend to overestimate the size of the activation
region. Spatial mixture models estimate the size of a spatially distributed activation region well, but
may be less sensitive to modest magnitude signals, indicating that additional research into more sensi-
tive spatial mixture models is needed. Finally, the methods are illustrated with a real bilateral finger-
tapping fMRI experiment. Hum Brain Mapp 29:1379–1389, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Many fMRI experiments have a common objective of
identifying active voxels in a neuroimaging dataset. This is
done in single subject experiments for example by per-
forming individual voxel-wise tests of the null hypothesis
that the observed time course is not significantly related to
an assigned reference function [Bandettini et al., 1993; Cox
et al., 1995]. A voxel activation map is then constructed by
applying a thresholding rule to the resulting t-statistics.
Typically, the task-related activation is expected to occur

in clusters of voxels rather than in isolated single voxels.
A variety of spatial thresholding techniques have been
proposed to reflect this belief, including smoothing either
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the raw data or the summary t-statistics for each voxel,
cluster size inference, and spatial mixture modeling.
Although smoothing is commonly done on the raw data
before fitting a linear model and obtaining a summary t-sta-
tistic, it can also be applied in the opposite order, first fitting
a linear model to obtain a t-statistic for each voxel, and then
smoothing the t-statistics. Skudlarski et al. [1999] reported
that the order of smoothing has only a slight effect on power.
We consider only smoothing of the t-statistics in this article
for simplicity, so that all of the techniques described can be
applied to the summary statistical parametric map (SPM)
containing the t-statistics. Smoothing is typically done using
a Gaussian kernel function, and then a standard threshold-
ing procedure can be applied to the smoothed t-statistics.
Alternatively, cluster size inference may be performed on
the smoothed t-statistics, in which clusters or sets of neigh-
boring voxels with t-statistics above a predetermined thresh-
old u are determined. In this case, the null hypothesis being
tested is whether the cluster is occurring due to chance alone
against the alternative hypothesis that the cluster is due to
some true spatial activation. Statistical inference is per-
formed on the cluster sizes (number of voxels in the clusters)
using either random field theory [Friston et al., 1994; Worsley
et al., 1996] or permutation-based inference [Hayasaka and
Nichols, 2003]. Mixture models were proposed for the inde-
pendent activation case by Everitt and Bullmore [1999], and
were extended by Hartvig and Jensen [2000] to account for
spatial clustering of activation.
Although a number of techniques have been proposed,

there is limited information about which procedures are
more useful or under what situations one should prefer
one method over another. The focus of this article is to
compare these methods in detail and in different ways
than have been studied previously. Skudlarski et al. [1999]
present an analysis using receiver operating characteristics
(ROC) curves, in which they consider several different spa-
tial clustering techniques, including smoothing and cluster
size inference. However, they did not consider spatial mix-
ture models in their study. Nichols and Hayasaka [2003]
compared multiplicity adjustments for smoothed data
using random field theory with adjustments using permu-
tation resampling to assess control of the familywise error
(FWE) rate, but they did not consider performance in
terms of power to identify activated regions. Marchini and
Presanis [2004] compared smoothing with either FWE or
false discovery rate (FDR) adjustment versus spatial mix-
ture models in terms of power. However, they only
applied the spatial mixture models to data after it was
smoothed. We feel that spatial mixture models are a poten-
tial alternative to smoothing, and in contrast to Marchini
and Presanis [2004], we compare the performance of
smoothing and cluster inference in applying spatial mix-
ture models to raw or unsmoothed data. Additionally,
Marchini and Presanis [2004] compare the power of the
procedures applied at different inherent Type I error rates
(FWE 5 0.05, FDR 5 0.05), while we align the error rates
using ROC curves, ensuring that power differences are

because of the spatial method used, and not differences in
the Type I error rate.
A further objective of researchers may be to investigate

whether the size of the activation region (the set of voxels
identified as active) is changing within a subject under differ-
ent conditions. For example, among people who have suf-
fered a stroke, one might be interested in whether the size of
the region of activation for a particular task is getting bigger
over time as a measure of whether they are recovering from
the stroke. Spatial mixture models in particular hold a lot of
promise for this objective because of their parametrization in
terms of voxels being active or not, which naturally defines a
region of activation. There is very little published about how
accurate any of these various spatial thresholding procedures
are in terms of estimation of the size of the activation region,
and how much uncertainty there is in this estimate. Geliaz-
kova and Logan [2005] study the accuracy of estimation of
spatial mixture models using different parametrizations
including neighborhood size and spatial structure, and pro-
vide recommendations on practical use. To consider the
problem of modeling the size of activation, it is important to
first understand just howwell these spatial thresholding pro-
cedures estimate the size of activation.
The purpose of this paper is to study two aspects of

these spatial thresholding procedures applied to single
subject fMRI analysis through simulation and in experi-
mental data. First, we examine the performance of these
procedures in terms of sensitivity to detect voxel activa-
tion, using ROC curves. Second, we consider the accuracy
of these spatial thresholding procedures in estimation of
the size of the activation region, in terms of both bias and
variance. We examine these operating characteristics both
as the size or shape of the region changes, and as the mag-
nitude of the activation changes.
The organization of the paper is as follows. In theMaterials

and Methods section we first review smoothing, clustering,
and spatial mixture model methods. We also describe the
simulation study of the properties of the spatial thresholding
procedures, and discuss the application of the procedures to
a real dataset. In the Results and Discussion section we pres-
ent and discuss the results of the simulation study in three
parts. The first part compares ROC curves, the second part
covers estimation of the size of the region of activation, while
the third part examines robustness of the results to the shape
of the activation region. We also illustrate the application of
the methods to the real dataset. Finally, conclusions are given
in the last section.

MATERIALS AND METHODS

Statistical Parametric Maps

In the following, we assume that the investigator has al-
ready performed an analysis to obtain a statistical para-
metric map (SPM), which is a matrix of test statistics corre-
sponding to the null hypothesis of no task related activa-
tion. These could come, for example, from a series of
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univariate regression analyses at each voxel, where the in-
dependent variables include a linear drift term and a vari-
able reflecting the task such as a ‘‘boxcar’’ predictor or
other hemodynamic response function.
Under the null hypothesis, these test statistics typically

have a tm distribution, where m is large, so that it can be
well approximated by a normal distribution.

Smoothing

Smoothing may be done on the matrix of t- or z- statistics
using a Gaussian kernel with a prespecified full width half
maximum (FWHM). For single-subject fMRI data typically
modest smoothing is performed, such as with a two voxel
FWHM kernel. The smoothed data then can be thresholded
using any of a number of standard multiplicity adjustments.
These include an unadjusted analysis, which controls the per
comparison error rate at prespecified level a; the Bonferroni
procedure, which controls the FWE rate at level a; and the
Benjamini–Hochberg (BH) procedure [Benjamini and Hoch-
berg, 1995], which controls the FDR at level a. More refined
procedures to control the FWE are available through the
‘‘unified’’ approach to adjusting the P-value [Worsley et al.,
1996, 2004], and permutation resampling may also be used to
adjust the P-values and control a desired error rate [Holmes
et al., 1996; Nichols and Holmes, 2001]. However, because of
the modest smoothing used for single-subject fMRI, the Bon-
ferroni and BH procedures work well, and we will restrict
our attention to these [Logan and Rowe, 2004].
It is important to note that the presence of a true task-

related signal located at some voxels in the image can dis-
tort the control of the respective error rates when the data
are smoothed. The FWE is controlled at a prespecified level
a by the thresholding procedures discussed earlier under
the overall null hypothesis or when none of the voxels are
truly active. However, when there is a task-related signal
present, the smoothing of the signal may alter the mean of
some voxels which were considered before smoothing to be
null or nonactive voxels. The resulting nonzero means
thereby inflates the FWE if we calibrate it based on the acti-
vation status or mean activation of each voxel prior to
smoothing. This means that smoothing followed by an
adjustment to control the FWE offers only weak control of
the FWE, as opposed to strong control where the FWE is
controlled over all nonactive voxels even when some voxels
are active. This dispersion of the activation signal also
affects control of the FDR in a similar fashion. Also, this
inflation of the FWE in the presence of task-related activa-
tion can occur even when smoothing is performed on raw
data before analysis. In this case, spatial smoothing of a
nonactive voxel’s raw time series adjacent to an active voxel
can affect the shape of the time-series so that it is more
likely to reject the null hypothesis of no activation.

Cluster Size Inference

Inference on smoothed data can also be performed using
cluster size inference. Inference on Gaussian SPM’s using

random field approximations are discussed in Friston et al.
[1994] and Worsley et al. [1996]. Inference on t- SPM’s
using random field approximations are developed in Cao
[1999] and Cao and Worsley [2001]. Forman et al. [1995]
introduced thresholding based on cluster size using a
simulated distribution of the cluster size under the null
hypothesis, an approach which is implemented in AFNI
[Cox, 1996]. Hayasaka and Nichols [2003] present a nice
review of cluster inference, and compare random field
approximations with cluster inference using permutation
testing.
Briefly, a cluster is a set of neighboring voxels whose t-

statistics are above some predetermined threshold u. The
null hypothesis which we are testing is whether the cluster
is occurring due to chance alone against the alternative
that the cluster is due to some true spatial activation. Let S
be the size of the cluster, or the number of contiguous vox-
els with ti > u. The null distribution of S is unknown, but
we can use random field (RF) theory to approximate this
distribution. Then inference on a cluster with size s is
based on a multiplicity adjusted P-value representing the
probability of at least one cluster of size s or larger occur-
ring in an image with no activation. Alternatively, a critical
value Sa can be obtained which corresponds to an adjusted
cluster error rate of a. Various random field theory
approximations are implemented in fmristat and SPM2
[see Hayasaka and Nichols, 2003 for details].

Spatial Mixture Models

In 1999, Everitt and Bullmore proposed an alternative
approach for detecting activated voxels in the human brain
under a cognitive task. They fitted a finite mixture distri-
bution to the observed distribution of the test statistic. The
mixture distribution has two components, one of which
accounts for the activated voxels and the other of which
represents the nonactivated voxels. They also estimated
the proportion of voxels which are activated, denoted p,
and the parameter that characterizes the activation distri-
bution d using maximum likelihood methods. Hartvig and
Jensen [2000] extended this mixture model to allow for
association between neighboring voxels in terms of activa-
tion status. This association mimics the clustering of acti-
vation typically seen in fMRI data. The interpretation of
the results is similar to a Bayesian analysis. A prior distri-
bution (e.g., a distribution not informed by the data) for
the activation status indicator variables is updated, given
the observed test statistic data. This results in posterior
distributions (informed by or given the data) for the acti-
vation status variables, also called posterior probabilities
of activation. These posterior probabilities of activation are
expressed for each voxel in terms of the estimated model
parameters. They can be thresholded (e.g., taking 0.5 as a
threshold) to identify which of the voxels are activated
and which are not. Note that while the interpretation is
similar to a Bayesian analysis, the Hartvig and Jensen
approach is not a fully Bayesian method; only point esti-
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mates of the model parameters are used to compute the
posterior probabilities of activation, rather than posterior
distributions of the model parameters. We give a brief
description of the details later.
Let Ai be the indicator for voxel i being activated. The

distribution of the observed t-statistic in each voxel
depends on the indicator Ai; here we take f ðtijAi ¼ 0Þ to be
a standard normal distribution N(0,1), while f ðtijAi ¼ 1; dÞ
is assumed to be a nonstandard normal distribution
N(d,1). Hartvig and Jensen [2000] consider prior models
for activation indicator variables in a neighborhood around
voxel i, denoted AN(i), which reflect the tendency of voxels
to be active in clusters. They use this model to determine
the posterior probability of activation for voxel i given the
observed t-statistics in the neighborhood, PðAi ¼ 1jtNðiÞÞ.
Three models are presented for the joint prior distribution
of AN(i), denoted P(AN(i)). Model 1 has only one parameter
such that

PðANðiÞ ¼ aÞ ¼ q0 if l ¼ 0
q1 if l > 0

�

where l is the number of voxels in the neighborhood. This
essentially reduces neighborhood activation information to
just the presence or absence of active voxels in the neigh-
borhood. Model 2 uses the number of active voxels in the
neighborhood, such that

PðANðiÞ ¼ aÞ ¼ q0 if l ¼ 0
/gl�1 if l > 0

�

This model can be parameterized through the marginal
probability P of a voxel being activated as p ¼ /ð1þ gÞm,
where / is a measure of association between neighboring
voxels. Model 3 requires four parameters and was not rec-
ommended by Hartvig and Jensen [2000]. Geliazkova and
Logan [2005] studied the performance of Models 1 and 2
for four or eight neighbor regions, and concluded that
Hartvig and Jensen’s Model 2 with eight neighbors per-
formed the best. Therefore, we will limit our simulation
study to Model 2 with eight neighbors. Under Model 2, the
posterior probabilities of activation for a particular voxel
given the values tN(i) in the neighborhood is given by

PðA¼ 1jtNðiÞÞ¼ 1þ f ðtj0Þ
f ðtj1Þ g�1 þ 1�/ð1þ gÞmþ1=g

/
r
�ðgÞ

" #( )�1

where

r
�ðgÞ ¼

Y
j2NðiÞ

1þ g
f ðtjj1Þ
f ðtjj0Þ

� �2
4

3
5
�1

:

Parameters of the model are estimated by maximizing a
pseudo-likelihood function, which is used because the spa-

tial structure in the likelihood function makes it too diffi-
cult to maximize. In this case, the pseudo-likelihood is
constructed as the product of the neighborhood likelihoods
for each voxel as if they were independent, ignoring the
spatial structure. Under certain conditions, the maximum
pseudo-likelihood estimates can be shown to be consistent
estimates of the model parameters. Once the model param-
eters are estimated, posterior probabilities of activation can
be computed using the closed-form expressions above.
Implementation of the previous procedure takes about 10–
15 s to implement on a single-slice 64 by 64 image, using a
SunBlade 100 with a 500 MHz CPU.

FMRI Simulation Study

Part I: ROC curves

The first part of the simulation study compares the char-
acteristics of these spatial thresholding procedures in terms
of their sensitivity to voxel activation. We use ROC curves
to display the results. ROC curves are a plot of the sensi-
tivity (on the y-axis) versus 1 minus the specificity (on the
x-axis), plotted over a range of test statistic thresholds.
Each threshold determines a (x,y) point on the curve. Here
sensitivity is the probability of identifying an active voxel
as active because it is over the threshold, while 1 minus
the specificity is the false positive rate, or the probability
of incorrectly identifying an inactive voxel as active
because it is above the threshold. ROC curves range from
(0,0) to (1,1), and ideally we want the curve to be as close
to the upper left quadrant (1,0) as possible. ROC analysis
has been used in several previous studies to validate
approaches in fMRI [Constable et al., 1995; Lange et al.,
1999; Lukic et al., 2002; Sorenson and Wang, 1996; Xiong
et al., 1996].
In each case, data is generated to simulate a t-statistic

SPM where the true regions of activation (ROAs) are
known. A 64 by 64 image slice is selected for analysis
within which two square ROAs are designated to have
activation. For this slice, simulated fMRI t-statistics
(assuming large d.f.) outside the ROAs are generated from
a N(0,1) distribution, while inside the ROAs they are gen-
erated from a N(d,1). Here d can be interpreted as the
mean of the standardized t-statistics for activated voxels.
We use d 5 1.5 and ROAs varying from 3 by 3 to 7 by 7.
Figure 1a illustrates sample 7 by 7 ROAs as considered in
the first two parts of the simulation study, while Figure 1b
illustrates the ROAs considered in the third part of the
simulation study. To estimate the (x,y) point on the ROC
curve, first a fixed threshold in terms of the test statistic is
set. Then using that threshold value, the sensitivity and (1-
Specificity) is computed for each image. These are then
averaged across 500 simulated images to generate the (x,y)
point. This is repeated for a range of thresholds to gener-
ate a curve. This is similar to the approach used in Lange
et al. [1999]. A total of 500 simulations for each scenario
are used in all simulations.
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The smoothing is performed using a 2 voxel FWHM
Gaussian kernel, and thresholded over a range of smoothed
t-statistics. Cluster size inference follows smoothing with a 2
voxel FWHM kernel, and is performed using three different
magnitude thresholds of u 5 (2.0, 2.5, or 3.0) and thresh-
olded over a range of cluster sizes. Because the cluster sizes
are discrete, the ROC curves tend to have sharp jumps at
points where the cluster size threshold changes. The spatial
mixture model is done using a neighborhood of eight neigh-
bors, and is thresholded over a range of posterior probabil-
ities of activation.

Part II: Estimation of the size of the ROA

In this simulation study, we measure the bias and the
variance of the estimate of the size of the activation region
for each procedure. The size of the activation region is the
number of truly active voxels across both ROAs, while the
estimated size is the number of voxels who are declared
active by one of the thresholding procedures. The true
number of active voxels ranges from 18 for 3 by 3 regions
to 98 for 7 by 7 regions. Two scenarios are considered; in
the first we study the bias and variance of each procedure
as the size of the activation regions get larger, and in the
second we compare the bias and variance as the magni-
tude of activation changes. The data generation model is
as in Part I. In the first scenario, we vary the dimensions
of the square ROAs from 3 by 3 to 5 by 5 to 7 by 7, with
d 5 2.25. In the second scenario, we use two 7 by 7 square
ROAs while varying d from 1.5 to 3.0 in increments of 0.5.
Each of the procedures discussed earlier is studied

under a variety of thresholding techniques. The smoothing
is performed using a 2 voxel FWHM Gaussian kernel,

combined with one of two P-value thresholding techniques
(BH procedure and Bonferroni procedure) at respective
error rates of 5%. Cluster size inference follows smoothing
with a 2 voxel FWHM kernel, and is performed using a
magnitude threshold of u 5 (2.0, 2.5, 3.0) with critical clus-
ter size determined according to a cluster error rate of 5%.
Spatial mixture Model 2 is done using a neighborhood of
eight neighbors, and is thresholded at a 0.5 posterior prob-
ability of activation.

Part III: Effect of the shape of the ROA

In this section, we examined the effect of the shape of
the ROA on the findings in the previous simulation stud-
ies. The previous two sections used square ROAs, which
are very smooth, with a small ratio of edge to interior vox-
els, and these may be conducive to smoothing as a spatial
technique. Here we study a more jagged shape of the ROA
with more edges relative to interior voxel points. An illus-
tration of this shape is given in Figure 1b. As before, we
have two ROAs, and the total number of truly active
voxels is 42 (21 in each ROA).

Real Data Example

A bilateral finger-tapping experiment was performed to
illustrate the spatial thresholding procedures investigated
earlier. To generate the functional data, bilateral finger tap-
ping was performed in a block design with eight epochs of
16 s off and 16 s on, followed by 20 s off. Scanning was
performed using a GE 3T scanner in which 15 axial slices
of size 96 3 96 were acquired. A mask was applied so that
only the interior 64 3 64 image is used. Each voxel has

Figure 1.

Regions of activation (ROA) for simulation studies. (a) Parts I and II. (b) Part III.
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dimensions 2 mm cubic voxels, with TE 5 48 ms. Observa-
tions were taken every TR 5 2,000 ms so that there are 138
in each voxel. Data from a single axial slice through the
motor cortex were selected for analysis. A multiple regres-
sion model was fit to the data with an intercept, a time
trend, and a reference function. The first 6 s were omitted
to remove warm-up effects, and the reference function was
a boxcar shape, shifted by 6 s to match the hemodynamic
response. Temporal AR(1) autocorrelation was checked,
found to be minimal, and so was not adjusted for. Each of
the methods discussed were applied to the dataset.

RESULTS AND DISCUSSION

Simulation Study Part I: ROC Curves

The ROC curves for 3 by 3 ROAs are given in Figure 2.
In general, the smoothed z-statistics perform best, except
when specificity is high, where cluster inference with low
u performs better. The spatial mixture model does not per-
form as well as cluster inference with a low (1-Specificity)
or false positive rate, while it may perform better than the
cluster inference for larger false positive rates. The spatial
mixture model seems to consistently have lower sensitivity
for fixed false positive rate than smoothing. However, it is
important to note that one technique is not uniformly bet-
ter than all others; the relative performance depends in
many cases on the level of specificity desired. Also, this
comparison does not take into consideration how a thresh-
old should be chosen, and its impact on the sensitivity and
specificity. ROC curves were also generated for 7 by 7
ROAs (not shown). The sensitivity was generally higher
for 7 by 7 ROAs than for 3 by 3 ROAs. This is likely
because the ROAs are larger, resulting in a more spatially
distributed signal which is easier to detect with a spatial
thresholding procedure. Otherwise, the relative perform-

ance of the methods was similar, except that the difference
between the spatial mixture models and the other statistics
was not as pronounced.

Simulation Study Part II: Estimation

of Size of ROA

Figure 3 contains the bias (a,b) and SD (c,d) estimates of
each procedure. In Figure 3a, the bias is plotted against
the width of the square ROA. In Figure 3b, the bias is plot-
ted against the magnitude of activation, d. Note that the
cluster size techniques tend to overestimate the size of the
ROA, as does the smoothed data analysis with the BH
threshold. This can be seen for d 5 2.25 in Figure 3a and
as d gets larger in Figure 3b, where the bias continues to
increase as d gets larger. This is likely due to the smooth-
ing, which tends to overdistribute the true signal beyond
its original boundary. In Figure 3b, the Bonferroni proce-
dure applied to the smoothed data is too conservative and
underestimates the size of the ROA except when d is very
large. The spatial mixture model performs well and is not
very sensitive to either the width of the ROA or d. t also
has a bias that appears to converge to 0 as d increases, in
contrast to the methods based on the smoothed data.
In Figure 3c, the SD is plotted against the width of the

square ROA, while in Figure 3d the SD is plotted against
the magnitude of activation. In Figure 3c, the SD of the
size estimate tends to increase slightly as the width of the
ROA increases, except for the cluster size procedure with
u 5 2.0. This exception is likely due to the additional vari-
ability from smoothing and using a low cluster threshold.
As a function of d in Figure 3d, the SD for the methods
based on smoothing with a BH thresholding procedure or
the cluster size methods decrease initially, plateau between
2 and 2.5, and increase slightly thereafter. This late
increase also may be an artifact of the smoothing increas-
ing the variability of the estimated ROA. The spatial mix-
ture model and Bonferroni procedure have a SD that
decreases steadily with increasing d in Figure 3d.
In terms of MSE (Bias 1 Variance, not shown), when d

5 2.25 and the dimensions of the square ROAs are varied,
the cluster size threshold with u 5 3.0 performs the best,
followed closely by the spatial mixture model and the BH
procedure applied to the smoothed data. However, the lat-
ter procedure tends to perform slightly worse when the
ROA is very large, possibly due to the impact of the sig-
nal-dispersing effect of smoothing on the bias. When d is
varied using a 7 by 7 square ROA, the cluster size thresh-
olds with u 5 2.0, 2.5 perform the best for small d 5 1.5,
while the Bonferroni procedure applied to the smoothed
data performs very poorly. For modest d between 2.0 and
2.5, several of the procedures including cluster size thresh-
old with u 5 2.5, 3.0, spatial mixture model, and smoothed
t-statistics with BH procedure perform comparably. For
large d 5 3.0, the bias term dominates and the spatial mix-
ture model and Bonferroni adjusted smoothed t- statistics
perform the best. Overall, the spatial mixture model per-

Figure 2.

ROC curves for 3 by 3 square ROAs. Sensitivity refers to the

true positive rate while 1-Specificity refers to the false positive

rate.
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forms well across a wide range of d, except when the sig-
nal is very small.

Simulation Part III: Effect of Shape of ROA

For brevity, we only show the ROC curve and the plot
of the bias of the size estimate against d in Figure 4. In
general, the results are consistent with what we found for
the square ROAs. In Figure 4a the smoothed t-statistics
generally perform the best in terms of sensitivity as a func-
tion of (1-Specificity), except when the false positive rate is
very small, in which case cluster size thresholding with
small u performs the best. The spatial mixture model does
not perform as well as smoothing in terms of the ROC
curves. In Figure 4b, the cluster size techniques and the
smoothed data analysis with a BH threshold tend to over-
estimate the size of the ROA as d gets large. The spatial
mixture model, in contrast, has a bias which decreases as d

increases. Smoothing with a Bonferroni threshold is gener-
ally too conservative and underestimates the size of the
ROA.

Real Data Example

The image of t-statistics is shown in Figure 5a, followed
by the same image after applying a variety of thresholding
procedures. All subsequent thresholding procedures are
based on one-sided testing to simplify the illustration. The
t-statistics are thresholded at a one-sided unadjusted error
rate of 5% (t 5 1.645) in Figure 5b. Figure 5c shows the
raw t-statistics thresholded using the BH procedure with a
5% FDR. Figure 5d shows the posterior probabilities of
activation from the spatial mixture model, thresholded at
0.5. Note the change in the colorbar for Figure 5d because
the posterior probabilities have a restricted scale between 0
and 1. Figure 5e,f show the t-statistics, smoothed with a

Figure 3.

Bias (in number of voxels) and standard deviation (SD) of ROA

size estimate as a function of width of the two square ROAs or

the mean of the activated voxels. There are two ROAs so the

total number of truly active voxels in the bias calculation is twice

the number of voxels in each square ROA. (a) Bias as a function

of the width of the two square ROAs, with activation mean d 5

2.25. (b) Bias as a function of the mean of the activated voxels,

d, using two 7 by 7 square ROAs. (c) SD as a function of the

width of the two square ROAs, with activation mean d 5 2.25.

(d) SD as a function of the mean of the activated voxels, d, using
two 7 by 7 square ROAs.
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2 voxel FWHM Gaussian kernel and thresholded using the
Bonferroni (5% FWE) and BH (5% FDR) procedures,
respectively. Note that here a 2 voxel FWHM Gaussian
kernel smoother corresponds to a 4 mm FWHM smoother,
given the voxel dimensions of 2 mm. Figure 5g–i show the
smoothed t-statistic images, thresholded using a cluster
size error rate of 5% with u 5 2.0, 2.5, 3.0, respectively.
The cluster size threshold with u 5 2.0 shows the most
activation, while the cluster size threshold with u 5 3.0
shows the least activation. All cluster size threshold proce-
dures eliminate the noise in Figure 5f from isolated voxels
appearing above the threshold. Note that the smoothing or
cluster size thresholding methods tend to overdisperse the
signal beyond where it appears to be likely from the raw
t-image, although the Bonferroni procedure (Fig. 5e) shows
the least overdispersion. The spatial mixture model cap-
tures the spatially distributed signal nicely, while still
eliminating much of the noise present in Figure 5b.

CONCLUSIONS

We have investigated the operating characteristics of a
number of spatial thresholding methods. When investiga-
tors are interested in identifying a spatially distributed sig-
nal in an exploratory context, it is important to have high
signal to noise ratio. Our ROC simulation study simply
illustrates the tradeoff between signal and noise in terms
of the sensitivity versus the false positive rate. In terms of
raw sensitivity to activation for a fixed false positive rate,
the spatial thresholding procedure does not perform as
well as methods which incorporate smoothing. This is
probably to be expected, as information may be lost when
applying the spatial model to the binary categorization of
voxels (active vs. inactive) instead of the raw continuous t-
statistics. It performs worse when the size of the ROA is

smaller; possibly the loss of information is greater. When
comparing cluster size inference with univariate threshold-
ing of the smoothed t-statistics, there is no uniformly bet-
ter procedure across false positive rates. For very small
false positive rates as is often used in practice, cluster size
inference may work better than univariate thresholding of
the smoothed t-statistics when the signal is spatially dis-
tributed. Furthermore, cluster size inference with smaller u
values (t-statistic thresholds) appears to work better than
larger u values, especially for smaller ROAs. Possibly some
of this advantage is attributed to a smoother distribution
of cluster sizes, although the accuracy of the random field
theory may be an issue here in application [Hayasaka and
Nichols, 2003]. Overall, either univariate thresholding of
smoothed t-statistics or cluster size thresholding with u 5
2.0 are recommended for having high sensitivity to detect
voxel activation.
While sensitivity to activation in an exploratory context

is a common and important goal, sometimes it is impor-
tant to accurately identify the location of a ROA. In this
setting, smoothing tends to overdisperse the signal beyond
its original boundary, making accurate delineation of the
activation region difficult. This is particularly problematic
when the magnitude of the activation is large, thereby
increasing the likelihood that nonactive voxels adjacent to
active voxels will be declared active due to smoothing.
Several authors have attempted to mitigate the overdisper-
sion of the signal inherent in Gaussian kernel smoothing.
Recent work in techniques such as bilateral spatial filtering
[Walker et al., 2006] which combine smoothing with an
edge stopping function may reduce this problem. How-
ever, such techniques may make the statistical analysis
and threshold selection difficult. Beckmann and Smith
[2004] perform hypothesis testing using independent com-
ponents analysis, arguing that because the inferential steps
are not based on Gaussian RF theory, they can use nonlin-

Figure 4.

Operating characteristics when the two ROAs have a more jagged shape as in Figure 1b. (a)

ROC curve. (b) Bias of ROA size estimate across both ROAs plotted against the mean of the

activated voxels, d.
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ear smoothing to reduce the bleeding of spatial activation
into neighboring nonactive areas. Other authors have used
Bayesian modeling with spatial prior distributions in order
to spatially smooth regression coefficients. Gossl et al.
[2001] and Woolrich et al. [2004a,b] used Bayesian models
with Markov random field or continuous autoregressive
(CAR) priors to detect activation, while Penny et al. [2005]
use a Laplacian spatial prior. Inference in such Bayesian
models is based on marginal posterior probabilities that

the regression coefficient for a particular voxel is at least of
a prespecified magnitude. Such smoothing of the regres-
sion parameters may still have the problem of overdisper-
sion of the voxel activation, and thresholding is somewhat
subjective in terms of specification of the magnitude of in-
terest. A couple of authors have proposed Bayesian spatial
mixture models analogous to the spatial mixture model of
Hartvig and Jensen studied here. Holmes and Ford [1993]
demonstrated the use of discrete Markov random fields for

Figure 5.

Various thresholding procedures applied to real dataset. (a)

shows the unthresholded raw t-statistics, (b) and (c) show two

thresholding procedures applied to the raw t-statistics (b, fixed

threshold of 1.645; c, BH procedure), (d) shows the posterior

probabilities from the spatial mixture model thresholded at 0.5,

(e) and (f) show two thresholding procedures applied to the

t-statistics smoothed with a 2 voxel FWHM Gaussian kernel (e,

Bonferroni with smoothing; f, BH with smoothing), while (g)–(i)

show several cluster size thresholding procedures with varying u

and cluster error rate of 5%, applied to the smoothed t-statis-

tics. (g) Cluster size threshold, u 5 2.0; (h) Cluster size thresh-

old, u 5 2.5; (i) Cluster size threshold, u 5 3.0.
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determining activation, implemented using Gibbs sam-
pling. Smith et al. [2003] use a Bayesian spatial mixture
model with an Ising prior on the vector of activation indi-
cators, and proposed a fast algorithm for estimating the
posterior probabilities of activation. Woolrich et al. [2005]
approximate the indicator variables in the discrete mixture
model likelihood with a set of continuous random varia-
bles, and then place a spatial CAR prior on a transforma-
tion of these continuous variables. Lukic et al. [2004]
model the activation as a mixture of nonactive voxels and
a series of circular activation patterns, where the number
of circular activations is estimated via reversible jump
Markov chain Monte Carlo techniques. Descombes et al.
[1998] propose a spatio-temporal analysis using discrete
Markov random fields with edge-preserving potentials.
However, their model requires prespecification of a large
number of spatial parameters to determine the potentials,
and the resulting thresholding method is likely sensitive to
these values.
In general, the potential advantage of the spatial mixture

model formulation is that it incorporates shrinkage
towards zero for voxels which are likely inactive, directly
accounting for the multiplicity problem. Also, they have
better edge-preserving characteristics, since the spatial
model is applied to the binary activation indicators, rather
than the raw parameters or test statistics. Overall, if the
focus is on accurate identification of the location of a ROA,
spatial mixture modeling may be preferred to smoothing,
especially if the magnitude of activation is expected to be
large. However, as we have shown with the Hartvig and
Jensen approach, spatial mixture models can be less sensi-
tive to modest magnitude signals than smoothing the data,
and generally work better for larger magnitude, more dis-
persed signals. This trend is likely to hold for Bayesian
spatial mixture models as well. The use of edge-preserving
techniques holds promise, but further understanding of
the effect of these methods on the thresholding error rates
is needed.
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