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Abstract 
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Marquette University, 2016 

 

 

  

In functional magnetic resonance imaging (fMRI), complex valued data is collected, 

reconstructed, and processed before it becomes a recognizable image.  Each step is important in 

creating quality images, image processing specifically enhances the overall or a particular aspect 

of an image.  A particularly important process is image registration, the alignment of two or more 

images through geometric transformations.  Registration is not unique to medical imaging, it is 

complex and a challenging computational problem.  Within fMRI it is used for motion correction 

and spatial normalization.  It has been shown in recent studies that some image processing 

operations can induce artificial correlation of non-biological origins between voxels.  Quantifying 

any potentially induced correlation from image registration can allow for future development of 

statistical models that greatly improve the accuracy and reliability of fMRI studies. 
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1. Introduction 

 

Functional magnetic resonance imaging (fMRI) can find active parts of the brain by observing 

changes in the blood oxygenation level dependent (BOLD) signal.  The complex-valued signal is 

acquired in the spatial frequency domain and reconstructed with a 2-D discrete inverse Fourier 

Transform.   

Aside from reconstruction, multiple image processing steps are implemented for different 

reasons. One reason being that it is impossible to obtain perfectly aligned images, both inter-

subject and intra-subject studies produce some degree of misalignment between images.  Inter-

subject images are prone to the variation in size and physical features between subjects.  Whereas 

intra-subject images are prone to any kind of motion, even something as regular as breathing.  Both 

of these images need to be aligned before any meaningful analysis can be performed.  Registration 

is the process which addresses these issues, making it a very important step in fMRI. 

i. Research Problem 

Image processing is a crucial step to improving the quality of reconstructed MRI data, but 

spatial and temporal correlation of no biological origin can be induced.  Both the degree and 

structure of the induced correlation varies across different image processing techniques.  Other 

statistical properties of an image can be changed as well.  Since fMRI analysis is conducted after 

multiple steps of images processing and reconstruction, the reliability of analysis results can be 

compromised by induced correlations.  In addition, when multiple image processing operations 

are performed, the degree and structure of the induced correlation is changed.   

Quantification of induced correlations is vital to refining fMRI analysis.  Because image 

registration has become an expansive topic with many approaches, only the popular methods of 
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registration will be addressed.  The aim of this project is to both show and quantify any induced 

correlation from image registration.   
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2. Background 

 

i. Linear Framework for Data Reconstruction 

 

Linear image processing techniques can be represented as a linear matrix operator which can 

perform the process as a single matrix multiplication.  When complex-valued fMRI data is 

collected in the spatial frequency domain, k-space, it is reconstructed into a recognizable image 

using a discrete inverse Fourier transformation.  A complex-valued matrix application of the 

discrete inverse Fourier transformation is used to develop a one-to-one relationship between k-

space data and reconstructed voxel measurements, Eq. 1. 

R I

I R

  
   

  
, where 

[( ) ( )]

[( ) ( )]

R yR xR yI xI

I yR xI yI xR

      

      
 

 

(1) 

If the discrete inverse Fourier transformation is represented as a matrix operator then the 

reconstruction can be performed as a matrix multiplication [9]. 

v f   (2)   

Where matrix   is a discrete inverse Fourier transformation matrix operator, f is a vector of 

observed values, and v is the reconstructed complex-valued data.  

ii. Computing Correlation 

 

By developing matrix operator representations, the theoretical induced correlation can be 

quantified.  Although this could also be accomplished through simulation, a matrix operator is 

superior in both computational efficiency and accuracy.  Given Eq. 2, if the original vector f  has 

a known mean and covariance then the mean and covariance of the reconstructed image v  can be 

calculated 

[ ]E v    

cov( ) Tv    

(3) 
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Where   and   are the mean and covariance of the original vector f .  Aside from the inverse 

Fourier transform, image processing techniques can also be represented as matrix operators.  The 

same matrix representation in Eq. 2 can be used to complete reconstruction and processing [8]. 

v Of   (4) 

  

Where matrix O  is the collection of matrix operators necessary to perform reconstruction and 

processing, f  is a vector of observed values, and v is the reconstructed and processed complex-

valued data.  Again, if the original vector f  has a known mean and covariance then the mean and 

covariance of the reconstructed image v  can be calculated.  

[ ]E v O    

cov( ) Tv O O     

( ) Tcorr v DO O D     

 

 (5) 

 

Where   and   are the mean and covariance of the original vector f , and D  is a square matrix 

with diagonal elements formed by the reciprocal square root of the diagonal elements of cov( )v . 

ii. Registration 

 

Registration is an extensive topic not only limited to medical imaging, a broad explanation is 

an image processing technique that aligns two or more images through geometric transformations.  

In fMRI, registration techniques are implemented for motion correction and spatial normalization 

[1,2]. 

The simplest and most common geometric transformation is completed using a rotation matrix 

with additional parameters.  Rotation matrices are simple and linear, although non-linear methods 

that warp images exist as well such as thin plate splines [3,4].  Motion correction with rotation 

matrices consists of six parameters (6 degrees of freedom): three rotations about each axis, and 

three shifts along each axis.  Spatial normalization consists of twelve parameters (12 degrees of 

freedom): three rotations about each axis, three shifts along each axis, three shears, and three 
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scales.  Although these two registration techniques vary in number of parameters, the 

implementation remains the same for both. 

 The problem of registration can be described as the optimization of some cost function given 

the parameters [7].  The challenges of developing an algorithm for this problem are not just limited 

to accuracy but computational constraints as well.  Due to the complexity of such an optimization 

problem, this project will only use 3 degrees of freedom (DOF).  It is important to note that 3 DOF 

is insufficient for high quality image registration, especially inter-subject images, however a lower 

number of DOF will not affect the results of any induced correlation.  Therefore, for this purposes 

of this project 3 DOF is sufficient.   

iii. Interpolation 

 

After the geometric transformation, an image has been rotated, shifted, sheared, and scaled the 

image intensity values and its corresponding may no longer be integer valued.  Although the 

coordinates are Cartesian coordinates it is still necessary to convert to integers to correctly display 

2-dimensional images [6].  Image interpolation methods are needed in order to make this 

correction.  The majority of these methods attempt to interpolate new values based on some kind 

of distance weighting.  Generally, sinc interpolation and trilinear interpolation is used but simpler 

methods are implemented in this project; this is done for the sake of computational efficiency, and 

the fact that these simpler methods create easier visualization.  The interpolation methods used in 

this essay are nearest neighbor, mean weighted, bilinear, and inverse distance weighting. 

(a) Nearest Neighbor ' ( , )i t tz z x y , min( ( , ) ( , ) )i i t tx y x y  

(b) Mean ' ( ( , ))i t tz mean z x y , ( , ) ( , )i i t tx y x y R   

(c) Bilinear 4

,

1

' ( , )
t ti x y t t t

t

z w z x y


  
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(d) Inverse Distance Weighted 
1

1

( , ) ( , )
'

1

( , ) ( , )

n
t

p
t i i t t

i n

p
t i i t t
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x y x y






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




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Table 1. (a) Where ( , )i ix y  is the location to be estimated, ( , )i ix y  is the location of known values, 

and 'iz  is the interpolated image value.  (b) Where ( , )i ix y  is the location to be estimated, ( , )i ix y  

is the location of known values, 'iz  is the interpolated image value, and R  is some search radius.  

(c) Where  ( , )i ix y  is the location of known values, and 'iz  is the interpolated image value, and 

,t tx yw  is the weight.  (d) Where p is the power, ( , )i ix y is the location to be estimated, ( , )i ix y  is 

the location of known values, 'iz  is the interpolated image value, and tz is the known image 

values. 

 

Using the same definitions and notations in Table 1, matrix operators can be formed to produce 

the same processing results.  Each of the interpolation methods are creating weights with regards 

to distance between the interpolated point and the observed point; within the matrix operator, these 

weights first need to be calculated then place in the right location. 
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(d) Inverse 
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Table 2.  Matrix operators of interpolation methods: (a) nearest neighbor, (b) mean, (c) bilinear, 

and (d) inverse distance weighted.  

  

Given Eq. 2, if an image is N×N then a vector of image values f  with both real and imaginary 

components would be 2N2×1 and matrix operators of size 2N2×2N2.  Since magnitude only images 

are used in this project, a vector of f  would be N2×1 and matrix operators of size N2×N2.  

Although this can result in large matrices, the majority of the matrix operators are made up of zero 

values and sparse matrix representation is used to greatly improve computational efficiency.  For 

example, a 4×4 image would have 16×16 matrix operators, Fig. 1 (a) – (d). 

 
Figure 1. Example of 16×16 matrix operators, scaled to values between 0.0 and 0.01 to display 

non-zero values of operator.  (a) nearest neighbor, (b) mean, (c) bilinear, (d) inverse distance 

weighted.    
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3. Methodology 

 

Induced correlation from image processing can be quantified either with the use of simulation 

or matrix operators.  It is easier to develop a simulation, but the use of matrix operators has greater 

accuracy and computational efficiency; both will be demonstrated and analyzed using magnitude 

data only.  Although complex-valued data is collected and reconstructed, magnitude only data is 

used for its simplicity.    

i. Function and Matrix Operator Accuracy 

 

The simulation will use the functions defined in Table 1, whereas a real data set will be 

registered using the matrix operators defined in Table 2.  The matrix operators need to provide the 

same results as their respective functions.   

The accuracy of the matrix operators is best shown through an example.  Using a single 96×96 

Shepp–Logan phantom, normally distributed noise with mean, 0.0, and standard deviation, 0.1, is 

introduced to the image’s intensity values and its respective coordinates centered about (0,0).  

Interpolation is required to grid the images to integer valued Cartesian coordinates; both functions 

and matrix operators are used for comparison, the results are displayed in Fig. 2 (a) – (d).  The 

squared error between the two methods are computed and there are differences between the two 

but it is small enough to account to computer round off error.  It is reasonable to conclude that the 

matrix operator will accomplish the same accuracy of interpolation as its respective functions.   
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Figure 2. Comparison of interpolation results between function and matrix operator with max squared error.  

(a) nearest neighbor, (b) mean, (c) bilinear, (d) inverse distance weighted.   

 

ii. Simulation 

 

Images will have noise added to both the intensity values and their respective coordinates in 

order to simulate data that has already been geometrically transformed but still requires Cartesian 

grid interpolation.  Using 100 samples of 96×96 Shepp – Logan phantoms, normally distributed 

noise with mean, 0.0, and standard deviation, 0.1, is introduced to the image’s intensity values and 

its respective coordinates centered about (0,0).  The simulation data will be interpolated using 

nearest neighbor, mean, bilinear, and inverse distance weighted defined in Table 1 (a) – (d).  The 

parameter of the mean weighted interpolation is a search radius of three voxels.  The parameters 

of the inverse distance weighted interpolation are a search radius of three voxels, and a power 

weighting of two. 
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iii. Matrix Operator 

 

Using a data set where extreme motion is replicated where the subject periodically rotates their 

head.  The data is collected from the General Electric 3.0 T Signa LX Magnetic Resonance Imager 

at the Medical College of Wisconsin.  The single coil scan is composed of 11 slices with 720 time 

repetitions (TR) at 1 second each apart.  

Motion correction will be performed on the first slice across 720 TR using the middle TR as 

the template by optimizing a geometric transformation with 3 DOF.  After the optimization is 

completed, the scans will be interpolated using nearest neighbor, mean, bilinear, and inverse 

distance weighted matrix operators defined in Table 2 (a) – (d).  The parameter of the mean 

weighted interpolation is a search radius of 3 voxels.  The parameters of the inverse distance 

weighted interpolation are a search radius of 3 voxels, and a power weighting of 2. 
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4. Results 

 

Using both simulation and matrix operators, the correlation between one voxel and every other 

voxel can be computed.  The method and results between the two can be compared and analyzed.  

i. Simulation 

 

With 100 registered samples, covariance and correlation matrices can be computed.  Each row 

of the covariance matrix is the covariance between one voxel and all others ordered by column, 

the diagonal elements of the covariance matrix is the variance of each voxel.   Each column of the 

correlation matrix is the correlation between one voxel and all others ordered by row, the diagonal 

elements of the correlation matrix is equal to 1, Fig. 3 (a) – (d). 

 
Figure 3. Correlation matrix computed from simulation of 100 registered images using (a) nearest 

neighbor, (b) mean, (c) bilinear, and (d) inverse distance weighted interpolation. 

 

Each row of a correlation matrix is the correlation between voxel and all others.  Each row can be 

reshaped, Fig. 4 (a) – (d), as well as overlayed the template image and passed through a threshold 

for better visualization, Fig. 5 (a) – (d). 

 
Figure 4. Correlation between center voxel and all others produced from simulation after (a) 

nearest neighbor, (b) mean, (c) bilinear, and (d) inverse distance weighted interpolation. 
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Figure 5. Correlation between center voxel and all others, overlayed the template image with a 

threshold value of 0.15 after (a) nearest neighbor, (b) mean, (c) bilinear, and (d) inverse distance 

weighted interpolation. 

 

ii. Matrix Operator 

 

With 720 optimizations performed, a correlation matrix is computed for each.  As an example, 

the registration of TR = 720 to the template is examined, Fig. 6. (a) – (b).  The optimization for 

this example is found to be a rotation of 13 degrees, a 1 voxel shift in the x-axis, and a 3 voxel 

shift in the y-axis. 

  
Figure 6. (a) Template image, and (b) slice 1, TR = 720.  

 

Covariance and correlation matrices of the same structure can be computed.  With the use of sparse 

matrix representation and the fact that simulations are not being computed makes matrix operators 

computationally superior, with respect to computation of covariance and correlation matrices.  
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Using matrix operators, the correlation matrices are computed; due to the large size of the 

correlation matrices it is difficult to display, instead only the first 1000×1000 elements are 

displayed in Fig. 7 (a) – (d).  

 
Figure 7.  First 1000×1000 elements of correlations matrices computed from (a) nearest 

neighbor, (b) mean, (c) bilinear, and (d) inverse distance weighted. 

 

Each row of a correlation matrix is the correlation between voxel and all others.  Each reshaped, 

Fig. 8 (a) – (d), as well as overlayed the template image for better visualization, Fig. 9 (a) – (d). 

 
Figure 8.  Correlation between center voxel and all others produced from matrix operators after 

(a) nearest neighbor, (b) mean, (c) bilinear, and (d) inverse distance weighted interpolation. 

 

 

 
Figure 9.  Correlation between center voxel and all others, overlayed the template image with a 

threshold value of 0.0001 after (a) nearest neighbor, (b) mean, (c) bilinear, and (d) inverse 

distance weighted interpolation. 
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iii. Comparison 

 

When observing the center voxel’s correlation with respect to all other voxels using the 

simulation results it is clear that some kind of correlation is present.  However, it is unclear what 

the structure of the correlation is.  With 100 samples, the noise included in the simulation is still 

indistinguishable from the induced correlation.  As opposed to simulation, the use of matrix 

operators clearly defines the structure of the induced correlation.  

With regards to the interpolation methods, nearest neighbor, mean, bilinear, and inverse 

distance weighted yield different results.  Nearest neighbor interpolation does not induce 

correlation since it is simply a permutation matrix.  Both mean and inverse distance weighted 

interpolation weight nearby values based on distance, creating a local radial correlation.  Bilinear 

interpolation also weights with respect to is neighboring values, but only for the four closest 

neighboring values; this induces a very small local correlation, but it is not visible in the 

simulations due to scaling.  At the least, the correlation computed from simulation reflects the 

results from matrix operators.   

In these particular cases, the induced correlations are all local but that does not mean that far 

reaching correlations cannot be induced.  This is most evident with the mean weighted and inverse 

distance weighted interpolation methods, the structure of the correlation is related to its respective 

parameters.  When implementing mean weighted interpolation, if the search radius is increased 

then the size of the radially induced correlation also increases.  When implementing inverse 

distance weighted interpolation, if the search radius is increased then the size of the radially 

induced correlation also increases, and if the power is increased the rate of change of the 

correlation increases.  Any time some image processing method weights its neighboring values, 

induced correlation should be considered a possibility. 
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5. Conclusion 

Image processing is an important step in fMRI analysis, the alignment of different images into 

the same coordinate plane allows for the computation of statistics.  With the quantification of 

induced correlation due to image registration, at the very least researchers can be aware of the 

statistical effects.  Linear matrix operator representations of these image processing techniques 

help theoretically visualize any induced correlation. 

For future research, additional image processing techniques should also be examined.  Sinc 

interpolation and trilinear interpolation are commonly used methods within registration packages 

and should be considered as well.  The quantification of theoretical correlation also allows for the 

future research into models that account for the correlation 
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