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Abstract

Pharmacological FMRI in humans involves BOLD signal acquisition before, during and after the administration of a drug, and
often results in a heterogeneous pattern of drug-induced hemodynamic responses in the brain. Exploratory techniques, including
blind source separation, can be useful for BOLD data that contains patterns of cross-dependencies. Bayesian source separation
(BSS) is a multivariate technique used to calculate the presence of unobserved signal sources in measured FMRI data, as well as
the covariance between data voxels and between reference waveforms. Unlike conventional univariate regression analysis, BSS
does not assume independence between voxel time series or source components. In this study, BOLD measurement of the acute
effect of an intravenous dose of cocaine, a substance shown previously to engage multiple sites within the orbitofrontal cortex, was
processed with BSS. The utility of BSS in pharmacological FMRI applications was demonstrated in multiple examples featuring
single-ROI, multiple-ROI and whole-slice data. The flexibility of the BSS technique was shown by choosing different modeling
strategies to form the prior reference functions, including approximating the pharmacokinetics of cocaine, interpolating simultane-
ously measured behavioral data and using observed BOLD responses from known subcortical afferents to the cortex of interest.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Reward processing in humans has been a subject of intense functional magnetic resonance imaging (FMRI) inves-
tigation since the primary experiments of direct activation of proposed reward-processing brain circuits by cocaine
[1] and nicotine [2]. The data collected in these experiments comprised of thousands of blood-oxygenation level-
dependent (BOLD) time series simultaneously acquired from the conscious human brain. Significant changes in
BOLD signal magnitude following infusion of a psychoactive drug were judged to be directly related to drug-induced
neural responses. The loci of cocaine- or nicotine-induced neural activity were characterized by simultaneous testing
of the signal time series, each belonging to a oblong “voxel” within the brain tissue [1–3]. BOLD data has been typi-
cally analyzed by comparing individual voxel time series acquired from test and control states with paired t-tests, or

* Corresponding author. Fax: +414 456 6512.
E-mail address: dbrowe@mcw.edu (D.B. Rowe).
1051-2004/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.dsp.2007.03.001



966 P.R. Kufahl et al. / Digital Signal Processing 17 (2007) 965–978
by correlating the voxel time series with reference waveforms, and generalizing the results by transforming them into
z-scores (for example, see [4,5]).

The processing strategies of BOLD data in the studies described above established the feasibility of FMRI measure-
ment of acute psychoactive drug responses in dependent subjects [6], but assumed independence among the BOLD
time series of voxels and therefore could not statistically categorize the data into component networks. We used a
Bayesian multivariate technique [7] to process the acute BOLD response to an intravenous dose of cocaine measured in
a cocaine-addicted human subject, estimating dependencies between voxels residing within cocaine-sensitive regions.

Most FMRI data is currently processed as a set of independent voxelwise tests, resulting in the multiple compar-
isons problem. Statistical thresholds are often chosen to control the familywise error rate (FWE) or false discovery
rate (FDR) in FMRI [8]. The most common and easiest way to control the FWE is with the application of the Bonfer-
roni threshold. However, the Bonferroni technique is very conservative and other methods can be applied to sharpen
the FWE threshold. A popular strategy for choosing a workable FWE threshold of voxelwise tests, made popular in
low-resolution PET experiments, is to preprocess FMRI data using the concepts of Gaussian random field theory [9].
FMRI data is assumed to have an intrinsic smoothness approximating that of a continuous random field. This as-
sumption is ensured by spatially blurring the data to at least twice the acquired voxel size, somewhat compromising
the spatial resolution advantage of FMRI. Another strategy is to utilize permutation resampling to determine a FWE
threshold. One can also assess the statistical map in terms of clusters, where adjacent voxels that pass the voxelwise
threshold belong to the same cluster. Clusters of a given size are then required to pass the overall threshold of signifi-
cance, determined by simulation and dependent on spatial blurring and total number of voxels being tested [10]. Since
cocaine has been shown to activate voxels in both cortical areas and subcortical areas of the human brain in FMRI
studies [1,3], the sizes of statistical clusters are thought to be highly variable. Therefore, the visibility of significant
BOLD changes is a function of location within the brain, as well as the voxel-wise and corrected thresholds. For this
reason, we elected to minimize the spatial blurring in the preprocessing stages of analysis, and not use the concepts of
Gaussian random field theory.

The observation that cocaine induces multiple well-recognized processes in addicts, described as “liking” and
“wanting” in the literature, and the notion that different networks of brain regions may be responsible for the drug-
induced relapse [11], inspires a view of FMRI data as a mixture of a limited number of unobserved sources, rather
than a set of thousands of independent BOLD measurements. If the p-dimensional set of voxel time courses were to
be reduced to a much smaller number of underlying signal sources, q � p, then the sources could be inferred to cor-
respond to discrete mental processes of the subject. Kufahl and colleagues [3] demonstrated the limited separability
of high- and craving-related BOLD data by univariate processing (for two loci in the OFC, at least 6 out of 9 sub-
jects exhibited BOLD responses significantly correlated to both high and craving VAS ratings), and the consequently
incomplete localization of cocaine “wanting” and “liking.”

Multivariate analysis methods have been developed to analyze FMRI data, essentially decomposing p BOLD time
series into q < p underlying “components” of interest, without assuming mutual independence between voxel time
courses [12]. The principal task of these methods is to reduce the dimensionality of the analysis from p to q by impos-
ing constraints on the components for indentifiability [13]. Principal component analysis assumes that components are
mutually orthogonal [14], factor analysis assumes uncorrelated components [13], and temporal independent compo-
nent analysis (ICA) assumes that the components are mutually independent [15]. Since the measured high and craving
ratings only significantly change following cocaine infusion and not saline infusion for the same subjects [3], it is dif-
ficult to justify treating cocaine-induced euphoria and craving as orthogonal or independent processes. Although these
processes have been shown to correlate with different brain regions in varying levels [1,3], cocaine-induced euphoria
and craving are thought to be codependent to some degree [16].

There has been much interest in utilizing Bayesian methodology for informed separation of components [17].
Multivariate analysis that does not impose restrictions of independence on the p observed BOLD time series or the
q underlying unmixed BOLD signal sources can be made tractable by formally incorporating prior knowledge about
the FMRI experiment, as in a Bayesian framework [18,19].

Bayesian statistics is centered around the use of Bayes’ rule, where the posterior probability distribution of a
parameter (for a FMRI voxel time series, this might be the regression coefficient to the stimulus) is derived from
the prior distribution of that parameter (assessed empirically or otherwise) and the likelihood distribution of the data,
given the value of that parameter [20,21]:

posterior ∝ likelihood × prior.
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In the case of analyzing the acute cocaine effect with FMRI, the prior distribution contains information about the
absorption and clearance of cocaine in the bloodstream, in the form of a pharmacokinetic model. Prior distributions
are also formed for the regression coefficients (in the case of low or nonspecific expectations, large variance terms
are used). The likelihood is the distribution of the data, in terms of the parameters that describe the pharmacokinetic
model, as well as other possible contributions (linear trend and constant offset). After combining the joint prior and
the likelihood with Bayes’ rule, a joint posterior distribution for the regression coefficients and the parameters of the
pharmacokinetic reference function is found.

The acute effects of cocaine on the human brain have been studied with FMRI, though with either no reference
function [1] or an a priori fixed reference function [3]. The single-dose pharmacokinetics of a psychoactive drug has
been used to produce a differential exponential model for the expected BOLD response, but without region-specific
characterization [22].

In this study, BOLD measurement of the acute effect of a dose of cocaine was processed with Bayesian source sep-
aration to find activation maps and intervoxel correlation statistics. The generation of t-scores and z-scores, which are
often utilized in neuroscience to compare the results of FMRI and other procedures, was also demonstrated. Analysis
was restricted to the orbitofrontal cortex (OFC), a relatively heterogeneous paralimbic region of the brain activated by
cocaine [3]. The OFC, the ventral surface of the human forebrain, is the subject of intense investigation in multiple
neuroscience disciplines [16]. Since the noise characteristics of OFC BOLD data area are heavily influenced by static
magnetic field gradients present in the lower brain, specialized MRI acquisition strategies have been developed to
compensate for them [23]. Data from an actual FMRI experiment is used to demonstrate Bayesian source separation,
instead of a simulation that attempts to replicate these circumstances.

2. Theory

Bayesian source separation (BSS) is a multivariate technique used to statistically determine an unobserved ref-
erence function in measured FMRI data, using both the data and a stochastic model of the reference function [18].
BSS was preceded by published applications of Bayesian methodology into ICA signal unmixing, incorporating prior
information toward the estimation of the number of sources and error evaluation [24–26]. The mechanics of BSS have
been recently developed in implementable detail [7,27].

The Bayesian hemodynamic drug response model (Eq. (1)) describes the FMRI signal of a given region of interest
(ROI) with p voxels over n time measurements.

Y = XB ′ + E. (1)

The n×p matrix Y represents the measured FMRI data. The columns of Y are voxel time series made up of sequential
BOLD observations. The n× (q +2) design matrix X = (X1, r) is composed of observed sources X1, a constant offset
term (first column) and a linear trend (second column), and the pharmacokinetic reference function r (last column).
The values of r are considered estimated BOLD amplitudes over time. The columns of X1 account for the baseline
and long-term drifts in the BOLD signal, which are well-known nuisance terms in FMRI [28]. B ′ is the mixing matrix
for the observed sources (the nuisance terms in X) and the unobserved source (r). The sum q + 2 is the number of
regressors in the analysis (there is one regressor for each source), where q is the number of reference functions (in this
case, one). The regression coefficients are represented by the (q +2)×p matrix B ′ = (B ′

1,B
′
2), where B1 corresponds

to X1 and B2 corresponds to r . The n × p error matrix E allows dependencies between voxels of the ROI. The p × 1
error vector for each time point εt (being the ith row of E) is considered to have the multivariate normal distribution,
with zero mean and p × p variance-covariance matrix Σ .

The hemodynamic reference function r is not exactly known,1 and is considered the unobserved source. The
available information about r is quantified with a prior multivariate normal distribution (Eq. (2A)) whose mean r0(t)

is given by a model of the neural source of the hemodynamic response (e.g., the single-dose pharmacokinetic model of
intravenous cocaine [22]). The a priori variance of r, δ, is quantified with an inverted Gamma distribution (Eq. (2B))
whose parametric values (mean and variance) are both determined as the maximum difference between the signal peak
and the baseline from the ROI timecourses Δ. Examples described later utilize different strategies for determining r ,

1 The reference function r would be assumed to be fixed and exactly known (no variance) in non-Bayesian analysis, such as general linear
modeling by SPM.
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including simultaneously measured FMRI or behavioral data. The prior distributions for r (Eq. (2A)) and δ (Eq. (2B))
are conjugate priors [7].

p(r|δ) = (2π)−n/2(δ)−n/2e−(r−r0)
′(δIn)−1(r−r0)/2, (2a)

p(δ) = kδ(δ)
−η/2e−tr(δ)−1Δ/2. (2b)

In Eq. (2A), In is an n-dimensional identity matrix. In Eq. (2B), kδ is a constant of proportionality and η is a distribu-
tional parameter (or hyperparameter) to be assessed.

Prior information regarding the mixing coefficients B is quantified with a matrix normal distribution (Eq. (3A)),
and prior information about the covariances of observations Σ with an inverted Wishart distribution (Eq. (3B)).

p(B|Σ) = (2π)−np/2|D|−p/2|Σ |−(q+2)/2e−trΣ−1(B−B0)D
−1(B−B0)

′/2, (3a)

p(Σ) = kΣ |Σ |−ν/2e−trΣ−1Q/2. (3b)

The distributional parameters η,B0 = C, D = (X′X)−1, ν = n, and Q = (Y − XC′)′(Y − XC′) are estimated using
an empirical Bayes approach that uses the current data (C = Y ′XD is the estimate of B found by regression). In
Eq. (3B), kΣ is a constant of proportionality. This is done with the multivariate regression of Eq. (1), resulting in
a completely determined joint conjugate prior distribution. This regression also determines the maximum likelihood
estimates of the parameters for the current FMRI dataset Y .

The joint likelihood of the FMRI observations Y is also given by the matrix normal distribution (Eq. (4)).

p(Y |X,B,Σ) = (2π)−np/2|Σ |−n/2e−trΣ−1(Y−XB ′)′(Y−XB ′)/2. (4)

The joint conjugate prior distribution of the parameters (Eq. (5)) is the product of the prior distributions of these
parameters (Eqs. (2) and (3)).

p(r,B,Σ, δ) = p(r|δ)p(δ)p(B|Σ)p(Σ). (5)

The joint likelihood and joint conjugate prior are formally combined using Bayes’ rule to yield the joint posterior
distribution of the parameters (Eq. (6)).

p(r,B,Σ, δ|X,Y) ∝ p(Y |X,B,Σ)p(r|δ)p(δ)p(B|Σ)p(Σ). (6)

From the combined information contained in the posterior distribution (Eq. (6)), summary measures (such as voxel-
specific means and covariances) can be obtained for each parameter of interest. A formal technique for doing this is by
utilizing posterior marginal distributions [27]. However, it is impossible to analytically derive the marginal posterior
distributions of r,B,Σ , or δ. An alternative strategy utilized here is to use a Markov Chain Monte Carlo (MCMC)
method to numerically determine these functions from their posterior conditional distributions. The marginal posterior
means estimates (denoted as rpost, δpost, B2post and Σpost) are derived by iterative Gibbs sampling. Gibbs sampling, a
stochastic integration algorithm, generates random variates r(i),B(i),Σ(i), and δ(i) with i ranging from 1 to an integer
L+ 5000. The posterior conditional modes are used as the initial samples, which are then processed with 50 iterations
of the iterated conditional mode algorithm, essentially a numerical hill-climbing of the error surface [29], to improve
Gibbs Sampling convergence [27]. The output of ICM provides the initial values for Gibbs sampling r(0),B(0),Σ(0),
and δ(0). The first 5000 generated variates are discarded as stochastic equilibration, or “burn-in,” and the last L are
retained and then averaged to determine the final estimates for the marginal posterior means of the parameters (Eq. (7)).
The posterior reference function r is estimated by rpost and δpost, voxel-wise activation is assessed by the last column
of posterior regression coefficients B2post, and the posterior variance-covariance matrix Σpost is used to assess the
interdependencies of drug responses between different voxels within the ROI. Prevalent and structured relationships
in Σpost indicate the presence of brain activity not modeled by the reference function.

rpost = r̄ = 1

L

L∑

i=1

r̄(i), (7a)

Bpost = B̄ = 1

L

L∑
B̄(i), (7b)
i=1
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Σpost = Σ̄ = 1

L

L∑

i=1

Σ̄(i), (7c)

δpost = δ̄ = 1

L

L∑

i=1

δ̄(i). (7d)

The marginal posterior variance-covariance matrix of the posterior mean/mixing matrix Bpost is obtained after con-
structing a vector of the posterior means and mixing coefficients [27].

b = [
B ′

1 . . . B ′
q+2

]′
, (8)

Ψ = 1

L

L∑

i=1

b̄(i)b̄
′
(i) − b̄b̄′. (9)

Since the distribution of Bpost was specified to be matrix normal (Eq. (3A)), the distribution of b, the stacked columns
of B , is vector normal.

p(b|Y) ∝ |Ψ |−1/2e−(b−b̄)Ψ −1(b−b̄)′/2. (10)

Since there is always interest in FMRI to assess the voxelwise significance of the calculated statistics, the marginal
distribution of the vector b (Eq. (10)) is used to derive standard normal z-statistics. If Ψk is the kth p × p submatrix
along the diagonal of Ψ , then it represents the covariance matrix of the multivariate normal Bk , the kth column of B .

p
(
Bk|B̄k, Y

) ∝ |Ψk|−1/2e−(Bk−B̄k)
′Ψ −1

k (Bk−B̄k)/2. (11)

The marginal distribution of a scalar coefficient within Bk is normal (and any subset of coefficients within Bk is
distributed as multivariate normal), from which statistical significance can be obtained. This assessment is of one
regression coefficient of a single voxel, whose associated variance is the j th diagonal element of Ψk .

p
(
Bkj |B̄kj , Y

) ∝ (Ψkj )
−1/2e−(Bkj −B̄kj )2/(2Ψkj ). (12)

Finally, a z-score can be obtained from the results of Eq. (12), where z has a normal distribution with zero mean and
unit variance.

z = Bkj − B̄kj√
Ψkj

. (13)

3. Experimental procedures

3.1. FMRI experiments

This human study was carried out in accord with the Declaration of Helsinki and approved by the Medical College
of Wisconsin IRB. BOLD time series were collected from a cocaine-dependent human subject (male, right-handed,
non-treatment seeking) as described previously [3]. All experiments were performed on a 1.5 Tesla scanner (GE
Medical Systems, Milwaukee, WI). A hybrid MESBAC-EPI sequence (flip angle = 50 ◦, TE = 30 ms, 5 mm slice
thickness) was used to acquire whole-brain BOLD images. Briefly, the MESBAC technique acquires 4 images of each
of 4 slices covering the midbrain and OFC with incremental changes in the z-gradient, and these images are combined
in reconstruction to produce a composite, susceptibility-compensated image of the lower brain [23]. The MESBAC
slices were acquired in an interleaved fashion with 16 single-shot EPI slices covering the remainder of the brain. The
result is dramatically reduced distortion in OFC FMRI data, at the cost of temporal resolution (effective TR = 8 s).
This tradeoff is feasible for pharmacological investigations, where drug-elicited changes in brain activity are expected
to occur over many seconds [23].

The subject received a cocaine infusion and saline infusion in separate FMRI runs in random order. Each run
lasted for 20 min, during which the entire brain was imaged every 8 s (150 time points). After seven minutes a single
20 mg/70 kg dose of cocaine (or control dose of saline of equal volume) was administered intravenously (IV) over
30 s.
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High and craving ratings were given by the subject via joystick along a visual analog scale (VAS), following visual
prompts that appeared on the screen throughout the scan. The VAS is a horizontal bar anchored at the left end with
the words least ever and at the right end with most ever. Requesting the subject to make his or her own assessment of
drug effects in relation to past experiences is accepted as reliable in studies of abused substances [30]. In addition to
the FMRI runs, high-resolution whole-brain anatomical images were obtained.

3.2. Data analysis

The application of BSS is demonstrated below in multiple examples representing various circumstances (using the
same FMRI experiment as the data source). The raw BOLD and anatomical data were preprocessed with a despiking
algorithm and a rigid volumetric motion-correction algorithm in AFNI [31], then exported to Matlab (MathWorks,
Natick, MA). The motion parameters were within the allowable range for MESBAC BOLD acquisition (less than
1.5 mm drift in any direction, and less than 1.5 ◦ rotation from base position).

The BOLD time series were then processed with BSS: the data matrix Y in Eq. (1) is comprised of the BOLD
data, and X contains linear noise terms and the prior reference function r . The initial estimate of r is specific to
the example, where Examples 1A, 2A, and 3 use a pharmacokinetic model, Example 1B uses the VAS high time
series, and Example 2B uses BOLD data collected from anatomically and functionally connected brain regions. The
size of the data matrix Y (and consequently the dimension n for the entire analysis) also changes between examples:
Example 1 uses a single ROI (64 voxels), Example 2 uses four ROIs (144 voxels), and Example 3 processes an entire
brain slice (724 voxels). The likelihood estimate of Y and the prior coefficients B are determined by multivariate
linear regression. Following the application of Bayes’ rule, the posterior estimates of r, δ,B , and Σ are determined
by Gibbs sampling. For all examples the posterior regression coefficients B2 represented the voxels of interest in a
general brain-mapping sense: suprathreshold t-scores, derived via Eq. (12), are presented for comparison between
prior and posterior B2. Prior and posterior estimates of r0(t) are presented to illustrate the influence of the data Y on
the reference functions. The posterior variance-covariance matrix Σpost was converted into correlation statistics and
displayed in a matrix; off-diagonal values of the matrix represented interaction between voxels found by BSS analysis.
These values were summarized in Example 2A (as a percentage of significantly correlated pair of voxels, out of the
total combinations of voxels belonging to different ROIs) to estimate interregional interaction. In Example 2B, the
influence of one functionally-defined circuit on another was estimated by the posterior estimate of δ, which contained
the covariance present between reference functions.

4. Demonstrations of BSS with acute cocaine BOLD data

4.1. Example 1. Single ROI under acute cocaine challenge

The chosen ROI is a 64-voxel region in the left medial OFC (Fig. 1A), an area conclusively related to cocaine-
induced brain activity [3]. The shape of the BOLD signals in several voxels (Fig. 1B) appear to reflect the pharma-
cokinetic characteristics of cocaine, with a rapid rise time and a decay lasting several minutes. BSS was used to process
this data using a reference function supplied by a pharmacokinetic model (Example 1A) and subject-reported VAS
data (Example 1B). Maps of t-statistics were generated for voxel-by-voxel comparison between the two cases (Fig. 2).

4.1.1. Example 1A. Prior hemodynamic reference function based on a drug-response model
The prior reference function r0(t) is a γ -variate function estimating a two-compartment pharmacokinetic model:

r0(t) = u(t)R0t
6e−t/10, where R0 is a scaling parameter, t is the peristimulus time (t = 0 at the start of the cocaine

infusion), and u(t) is a unit step function. This model assumes that the hemodynamic response to intravenous ad-
ministration of cocaine is directly related to the absorption and clearance of the drug [22]. The rapid absorption of
cocaine into the brain tissue from the blood following IV administration allows this assumption. Also, the relatively
fast absorption and slower clearance of cocaine [32] justifies an approximate model with the γ -variate. A more com-
plex model may be feasible with a higher time resolution in the BOLD data in future studies. The posterior regression
coefficients demonstrate activation on the left side of the ROI (Fig. 2A), as might be expected when looking at the
nonlinear signal changes present in the first four columns of the raw data matrix (Fig. 1). Also notable is that the
limited amount of data has begun to add irregular fluctuations into the posterior reference function (Fig. 2B).
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(A) (B)

Fig. 1. Raw data used in Example 1. (A) ROI of Example 1. 64 voxel timecourses are selected from an axial slice of the left medial orbital gyrus.
The left side of the image corresponds to the left side of the subject’s brain, as in all anatomy shown in subsequent figures (left is left). (B) Raw
BOLD timecourses (149 observations) that make up Y . Note the contribution of linear noise terms and nonlinear BOLD signal changes presumed
to correlate with intravenous BOLD infusioa.

4.1.2. Example 1B. Prior reference function based on concurrently measured subject rating data
The prior reference function r0(t) is a scaled time series acquired from a joystick controlled by the subject during

the FMRI scan. The subject’s high VAS ratings were interpolated with rectangular interpolation (Fig. 2D). A smaller
proportion of the voxels exhibit significant activation t-scores for this model (Fig. 2C) than the pharmacokinetic model
(Fig. 2A), demonstrating an advantage in sensitivity in using prior knowledge about the drug stimulus over subject-
reported data.

4.2. Example 2. Multiple ROIs in the OFC

A mask was drawn defining 144 voxels that encompassed the ROIs: left medial orbital gyrus (BA 11), right orbital
gyrus, left frontal pole (BA 10) and right posterior orbital gyrus (Fig. 3). These time series were extracted to Matlab
and processed simultaneously with BSS.

4.2.1. Example 2A. Reference function based on a pharmacokinetic model of IV cocaine
First, BSS analysis was performed on the OFC data using a γ -function pharmacokinetic model as r0(t). Regression

coefficients B2 from the pre-Bayes’ rule regression and the post-Bayes’ rule regression are compared to demonstrate
the impact of prior information on activation statistics (Fig. 4).

When the pharmacokinetic model is used as the reference function, the application of Bayes’ rule results in a
dramatically higher amount of successfully detected activated voxels (Figs. 4B and 4C). Regions 1 and 3 appear to be
heavily correlated (p < 0.01 in 47% of voxel pairs), and the activated regions (1, 2, and 3) have notable intraregional
correlation (p < 0.01 in 77, 70, and 64% of voxel pairs). This result is in agreement with a previously published
multiple regression analysis to VAS time series [33], where the left medial OFC (Region 1) and left frontal pole
(Region 3) both had a relation to the subjects’ high ratings. It has been emphasized that common relationships to
a reference function do not indicate that BOLD responses are correlated with each other [46]. Significant intervoxel
correlations derived from the posterior Σ are not expected to fully agree with activation scores, and are in fact evidence



972 P.R. Kufahl et al. / Digital Signal Processing 17 (2007) 965–978
(A) (B)

(C) (D)

Fig. 2. Results from single ROI BSS analysis. (A) Example 1A regression coefficients. T -statistic map of ROI, based on posterior B2 (p < 0.01).
(B) Prior (solid) and posterior (dashed) reference functions in Example 1A. (C) Example 1B regression coefficients. T -statistic map of ROI, based
on posterior B2 (p < 0.01). (D) Prior (solid) and posterior (dashed) reference functions in Example 1B.

Fig. 3. OFC ROIs defined for Example 2 analysis. Regions are identified as (1) left medial orbital gyrus (BA 11), (2) right orbital gyrus, (3) left
frontal pole (BA 10), and (4) right posterior orbital gyrus.



P.R. Kufahl et al. / Digital Signal Processing 17 (2007) 965–978 973
(A) (B)

(C) (D)

Fig. 4. Results of Example 2A. The regional BOLD data Y , regression coefficients B2, which are interpreted as voxelwise activation statistics,
and intervoxel correlation are grouped by region to depict the influence of anatomy on statistical results. (A) Mean raw BOLD time series for the
four ROIs. The horizontal axes are the time point indexes and the vertical axes are BOLD magnitudes, which can be regarded as arbitrary units.
(B) Compilation of t -scores calculated from the regression-generated prior estimate of B2 (p < 0.0001), preceding the application of Bayes’ rule.
Each cell in the chart corresponds to a voxel belonging to one of the four ROIs. (C) Compilation of t -scores calculated from the posterior estimate
of B2 (p < 0.0001), following the application of Bayes’ rule. The voxelwise t -scores in B and C are displayed in identical arrangements for visual
comparison. (D) Correlation (p < 0.01) calculated from posterior estimate of Σ .

of incomplete modeling of the data by reference functions applied in univariate analysis. The negative BOLD signal
in Region 2 also has highly correlated residuals (Fig. 4D), despite the fact that most of the voxels have high t-scores
associated with a fit to the reference function (Fig. 4C).

4.2.2. Example 2B. Correlated reference functions derived from BOLD data of subcortical afferents
Another BSS analysis was performed using r0(t) derived from simultaneously acquired data in two functionally

connected regions, the left nucleus accumbens (NAc) and left amygdala (Amy). The means of the reference functions
were the means of the BOLD data acquired from the NAc and Amy (Fig. 5), and the prior variances were set to be
equal, with zero cross-terms (Fig. 6, top). A necessary adjustment to the BSS algorithm comprised of replacing the
matrix inversion steps with pseudoinverse calculations, extending the computation time but preventing the occurrence
of ill-conditioned matrices.

The BSS analysis revealed an inverse correlation between posterior reference functions, illustrated by the off-axis
contour plot of the reference function covariances (Fig. 6, bottom). The posterior confidence in the NAc reference
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(A) (B)

Fig. 5. Subcortical BOLD responses used as prior reference functions. (A) Mean BOLD response from the left NAc. (B) Mean BOLD response
from the left Amy. These reference functions were calculated from BOLD data acquired simultaneously with the BOLD data forming the data
matrix Y . The horizontal axes are the time point indexes and the vertical axes are BOLD magnitudes, which can be regarded as arbitrary units.

Fig. 6. Covariance parameters for prior and posterior reference functions for Example 2B. For illustration, reference means are set to zero. Each
distribution is shown as a mesh diagram (left) and as a contour plot (right). Top row: Symmetric bivariate normal distribution derived from the
prior assumption of equal and orthogonal variances. Bottom row: Asymmetric posterior distribution illustrating unequal confidence (with greater
uncertainty associated with the Amy reference function) and cross-terms in the reference variance-covariance matrix δpost.

function was much greater than that for the Amy reference function (resulting in the asymmetric distribution in Fig. 6),
a result clearly predicted by the obvious difference in contrast-to-noise in the subcortical BOLD responses (Fig. 5).

Despite the relatively high posterior variance in the Amy reference function, the presence of cross-terms in the ref-
erence variance-covariance matrix δpost implies that BSS analysis found evidence that both neural afferents influence
the OFC cocaine response. Comparison of the prior and posterior activation maps (Fig. 7) reveals that the application
of prior information via Bayes’ rule improved the activation statistics for both NAc and Amy reference functions. The
posterior NAc-activated OFC voxels exhibited higher z-scores than the prior results in the same locations (Fig. 7, top).
The sparse prior Amy-related activation was improved following BSS with more activated voxels and higher z-scores
(Fig. 7, bottom). Significant correlation was found between OFC BOLD responses, with blocks of heavy intercorre-
lation within anatomical regions (Fig. 8). Such structure in the data is assumed not to exist in more traditional FMRI
analysis techniques.

4.3. Example 3. Processing of a larger dataset with eigenfactorization

The entire slice containing the OFC (excluding nonbrain and cerebellar voxels) was processed with BSS, to eval-
uate the capability of the method to process a larger set of voxels. The computation time for Examples 2A and 2B
were approximately 90 and 120 min with Cholesky factorization, and matching results were achieved with eigenfac-
torization after approximately 3 and 5 h, respectively. The computation time associated with Example 3 and datasets
of similar size (724 voxels) reached 15 h. All calculating was performed with an Intel 1.5 GHz processor system using
1 GB memory, running Matlab 6 (MathWorks, Natick, MA).



P.R. Kufahl et al. / Digital Signal Processing 17 (2007) 965–978 975
Fig. 7. Activation maps for Example 2B. For all maps, z-scores are presented with the threshold z > 3.4 (left is left). Top row: Activation maps for
the NAc reference function. Bottom row: Activation maps for the Amy reference functioa left column: Activation maps calculated from regression
parameters prior to the application of Bayes’ rule. Right column: Activation maps calculated from the posterior regression coefficients B2post.

Fig. 8. Correlation between OFC voxels (p < 0.01). The correlation matrix was calculated from the posterior estimates Σpost and sorted along the
axes so that anatomical ROIs form blocks of rows/columns.

(A) (B)

Fig. 9. Regression coefficients of Example 3 mapped onto the OFC anatomy. (A) Regression coefficients prior to application of Bayes’ rule (left is
left). Both maps reflect the voxel threshold t = 13.6. The activation map reflects the good approximation that can be obtained from linear regression
of the data. (B) Regression coefficients following application of Bayes’ rule (left is left).
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Fig. 10. Correlation matrix for 724-voxel region of Example 3. Threshold imposed at p < 0.05.

Figure 9 demonstrates additional voxels surpassing a stringent voxel threshold following the application of Bayes’
rule. The left map (Fig. 9A) can be considered an initial guess based on the regression in BSS that is used to assess the
hyperparameters. Groups of activated voxels appear in the left anterior medial OFC and left caudal OFC. Following
application of Bayes’ rule, both of these groups are larger in extent, and additional voxels appear in the right anterior
medial OFC (Fig. 9B). The posterior covariances Σpost were converted into correlation statistics and displayed in
Fig. 10. As before, the region under investigation demonstrates significant spatial interdependencies, with positive
correlation statistics passing the p < 0.05 threshold (Fig. 10).

5. Conclusions

The large interest in the development of multivariate analysis techniques is an acknowledgment of the richness of
properly acquired BOLD FMRI time series. The fact that Bayesian source separation consistently detected structure
in the residuals Σpost of human cocaine BOLD data implies that exclusive study of low-frequency, sustained changes
in BOLD data, as suggested earlier [6], omits some information germane to the classification of drug-sensitive brain
regions. The quality of this information depends on the acquisition technique employed, as signal of higher frequency
is generally more sensitive to noise. As susceptibility compensation and perfusion measurement techniques improve,
multivariate analysis of FMRI time series stands to benefit from the inclusion of signal that would otherwise remain
unaccounted in the residuals.

The benefits of using BSS include increased sensitivity to the drug-elicited BOLD response, shown in the posterior
activation t-maps in Figs. 4, 7, and 9. More voxel activation scores passed the same threshold in the posterior map than
in the prior map for all examples, and most voxels above the t threshold in the prior map had greater t-scores in the
posterior map. However, the added sensitivity is heavily influenced by the choice of reference function, as shown in the
Example 1 (Fig. 2). Greater sensitivity is an important advantage in acute drug FMRI studies, due to the limited pool
of subjects and large expense that limit the size of the experiments [1,3]. Another advantage to using BSS is the ability
to make probabilistic estimates of the interaction between voxels, contained in the posterior noise term Σpost, and the
posterior reference parameters rpost and δpost. Posterior estimates of the reference functions could potentially be used
to estimate the pharmacokinetic parameters of cocaine, information that has been previously linked to its abuse poten-
tial [32]. Interactions between the reference functions contained in δpost could be used to infer a confluence of afferent
signal sources. Such utilization of posterior probability information would be feasible in a study of several subjects.

Principal drawbacks to BSS are complexity and computation time. The replacement of Cholesky decomposition
with eigenfactorization—a necessary step in order to process more voxels than time points within each BOLD time
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series—resulted in noticeably longer processing. The computation time also appears to increase at a rate well above
O(n2), where doubling the number of voxels to be processed more than doubles the processing involved.

Traditional FMRI data analysis techniques assume that intervoxel dependencies are not significant [12], or that
they form “smoothness” in the data that allow parameterization akin to PET studies [34,35]. The fact that multivariate
and Bayesian techniques [36–38] are increasingly adapted in FMRI analysis as computation power becomes available
suggests a general willingness to depart from these assumptions.

Spatial ICA, which decomposes BOLD data into statistically independent components represented by single time-
courses and regression-generated brain maps, has effectively replaced temporal ICA in the FMRI literature [39,40],
and may be an interesting alternative to BSS in this application. Additionally, spatial ICA finds statistically indepen-
dent component time series, a more stringent constraint than orthogonality. Further, in ICA the noise present in the
BOLD data is not explicitly modeled [41]. Spatial ICA would likely enjoy more rapid convergence than BSS, but
this advantage is heavily dependent on the strategy used to reduce the large initial dimension of BOLD data [41–43].
A thorough comparison of spatial ICA and BSS in processing drug-elicited BOLD responses is beyond the scope of
the current study and would require data from multiple subjects. This is the topic of a planned forthcoming study.

The BSS technique, while computationally intense, provides flexibility in modeling the cocaine-induced hemody-
namic response and related uncertainties yields a wealth of information related to the cross-dependencies between
active voxels and sources. Additional examples of the application of BSS to pharmacological FMRI data have been
previously presented [33,44,45,47].
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