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ABSTRACT 
A TEMPORAL FREQUENCY DESCRIPTION OF THE SPATIAL CORRELATION  

BETWEEN VOXELS IN FMRI DUE  
TO SPATIAL PROCESSING 

 
 
 

Mary C. Kociuba 
 
 

Marquette University, 2013 
 
 

  To correct the noise inherent within an acquired signal in fMRI and identify 
true biological spatiotemporal correlations, spatial and temporal filters are applied 
during the time series data processing. It is well known that spatial preprocessing 
induces correlation between voxels; applying a low pass spatial filter produces a 
smoother image, yet artificially increases the correlations between neighboring 
neural regions. The exact theoretical statistical relationships for the spatial 
covariance and spatial correlation matrices can be represented as a linear 
combination of second order voxel temporal frequencies. Developing this 
framework provides a means for quantifying the consequences of reconstruction 
and processing operations on the voxel temporal frequency spectrums, through 
identifying the temporal frequency bands that contribute significantly to induced 
correlations of no biological origin. 
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I.  INTRODUCTION 
 
 
 

Functional magnetic resonance imaging (fMRI) is a noninvasive imaging 

method for observing activity in the brain. Brain activity is commonly detected by 

observing fluctuations in the blood oxygenation level dependent (BOLD) signal over 

time. As neural activity increases, the flow of diamagnetic oxygen-rich blood 

increases in the active region of the brain, resulting in decreased magnetic 

susceptibility of the blood, which is reflected in a higher measured signal in the 

region [Ogawa, 1990]. To observe these changes over time, a time series of images 

of the brain is reconstructed from the acquired signal. In an effort to reduce noise 

inherent within the signal, from sources such as subject movement and 

physiological BOLD fluctuations, various spatial and temporal processing operations 

are applied to the data.  However, temporal and spatial processing operations 

applied to the data will introduce artificial neural correlations of no biological 

origin. To correctly identify the connectivity in the brain that is of true biological 

origin, the statistical spatial and temporal relationships within the data must be 

modeled accurately, such that the impact of the spatiotemporal processing 

operations can be accounted for when interpreting processed data.  

Spatial and temporal processing operators are typically applied to the 

acquired and reconstructed data to reduce the effects of noise. For example, low 

pass filters are commonly applied to the data, to remove the high frequency noise 

associated with cardiac and respiratory oxygenation fluctuations that are acquired 

with the measured signal. Applying a low pass filter produces a smoother image, yet 
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artificially increases the correlations between neighboring regions. Previous studies 

verified that artificial spatial correlations are induced as a result of spatial 

reconstruction operators [Nencka, 2009], or parallel image reconstruction methods 

[Bruce, 2011] utilized during fMRI image processing. Recent studies [Davey, 2013] 

have investigated the degree to which filtering induces spatial correlations in 

resting state data functional connectivity MRI (fcMRI) data. Reconstructed images 

consist of biological, as well as artificially induced spatial correlations. In a fcMRI 

study, Biswal discovered that neural spatial correlations exist during the resting 

state between nonadjacent regions of the brain. During a resting state (non-task 

state), subjects exhibit synchronous low frequency (<0.08 Hz) physiological BOLD 

fluctuations at correlated regions. The regions correlated during the resting state 

also exhibit spatial task activated correlations, suggesting resting state functional 

connectivity is related to task activated correlated regions [Biswal, 1995]. In 

addition to connectivity observed within a single slice, functional connectivity 

correlations exist across the entire brain [Lowe, 1998].  

The broader impact of this study will aid in the advancement of the 

understanding of brain activity associated with neurological disorders including 

degenerative diseases, development disorders, and mental health disorders. Studies 

show that patient populations with a specific neurological disorder exhibit similar 

functional connectivity. In fact, Alzheimer’s disease, a degenerative neurological 

disease, patients display abnormal functionality in the hippocampus region of the 

brain years before the onset of the disease [Li, 2001]. Classifying a disease specific 

neurological biomarker identified with fMRI provides a noninvasive method to 
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monitor and detect the progression of neurological disease or benefit of prescribed 

therapies through observing connectivity in the brain during the course of a disease. 
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II. RESEARCH STATEMENT 
 
 
 
Reconstructed images consist of biological, as well as artificially induced 

correlations resulting from temporal and spatial image reconstruction processes. 

The ultimate goal of this research is to develop a framework to identify true 

biological correlations within processed data. Analyzing the operators applied to the 

data during the reconstruction process facilitates a means of quantifying the effects 

that spatial reconstruction operators have on specific temporal frequency bands. 

This essay will outline the process of deriving the exact theoretical statistical 

relationships for the spatial covariance and spatial correlation matrices as a linear 

combination of second order voxel temporal frequencies. With an understanding of 

these matrices, the benefit of developing a matrix notation framework with respect 

to the application of spatial processing operators will be discussed. The final portion 

of the essay will provide insight into the next steps of the research that aims to 

quantify which frequency bands the artificial spatial correlations are induced into.    

 

 

 

 

 

 

 

 



 5 

III. FREQUENCY REPRESENTATION 

 

 In MRI the data acquired is Fourier encoded from magnetic field gradients, 

thus the spatial information measured regarding an object in the scanner is ideally 

the Fourier transform of the object. The inverse Fourier transform (IFT) is applied 

to the acquired k-space data, resulting in a reconstructed image. If the spatial IFT is 

represented as the complex-valued matrix,           , and complex-valued 

spatial frequencies are represented in matrix form as           , then the 

complex-valued image is represented in the matrix form,           
  [Rowe, 

2007]. This relationship between the image domain and the spatial frequency 

domain provides a means to represent spatial covariance and spatial correlation 

matrices in terms of temporal frequencies. By converting the voxel time-series into 

its constituent temporal frequencies, one can determine the frequency bands that 

contribute significantly towards the spatial correlation between voxels. 

 To find the spatial correlation between p voxels over n time repetitions 

(TRs), define   as 2n real-valued nrow×ncol image representations of   , which is n 

complex-valued nrow×ncol images, and   is a vectorized version of   of length 2pn 

where p = nrowncol. The vector y is formed by concatenating images that are ordered 

by row with all real voxel values of an image stacked over all of the corresponding 

imaginary voxel values. The time-series is then permuted with a permutation 

matrix,  , such that      , and v is 2pn×1 vector ordered by voxel with the real 

components stacked over the imaginary components for each voxel time-series. The 

voxel time-series are Fourier transformed into the temporal frequency domain, such 
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that   (    ̅ )   is a 2pn×1 vector with the real temporal frequencies of each 

voxel stacked upon the corresponding imaginary temporal frequencies. 

 
 
A. Simulation: Impact of Smoothing 
 
 

 
 As discussed in the introduction, spatial smoothing operators are commonly 

applied after the image reconstruction process to increase image contrast,    

(    ̅ ) (     ) . While spatial smoothing minimizes the influence of noise in 

reconstructed images, the application of a spatial smoothing operator,   , induces a 

correlation between a voxel and its neighbors. In a MATLAB Monte Carlo simulation, 

a time series of 256 images of a 55×55 Shepp-Logan phantom was generated, where 

each image was smoothed with a Gaussian kernel with a full-width-at-half-

maximum (FWHM) of 3 voxels.  After computing the voxel correlation matrix, the 

correlation between a particular voxel (such as the center one) and all other voxels 

can be represented as an image.  As illustrated in Fig. 1a, before smoothing the 

images, the centrally located voxel appears to have no correlation with the other 

voxels; however, the post-smoothing image in Fig. 1b reveals the centrally located 

has a significantly increased spatial correlation with neighboring voxels. Note, in 

this simulation the degree and the extent the induced correlation extends to 

neighboring voxels are dependent on the FWHM of the smoothing operator. 
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 In addition to observing the effects of smoothing on the spatial correlation 

maps, Fig. 2 demonstrates the impact of the smoothing operator on two neighboring 

voxel temporal frequency spectrums. Examining how the smoothing operator 

modifies the temporal frequency spectrums in Fig. 2, first indicates the smoothing 

operator forces the two temporal frequency spectrums to appear to be more in sync 

throughout their entire spectrums, and second, Fig. 2b reveals artificially induced 

peaks in the temporal frequency spectrums as indicated with arrows.  Thus, specific 

temporal frequency bands may induce spatial correlations with greater magnitude 

when compared to other temporal frequency bands. To further understand the 

extent of the impact of spatial and temporal processers on functional connectivity, 

consider three voxel time series, va, vb, and vc. Assume va and vb are correlated, vb 

and vc are correlated, but va and vc are not correlated. In the following sections, it 

will be shown that the correlations between va and vb, as well as vb and vc, arise from 

overlapping temporal frequency spectrums. Although va and vc are not correlated 

because they do not share overlapping temporal frequency spectrums, spatial 

a.                                         b. 

Figure 1. Frequency correlation map between 
a centrally located voxel and all other voxels: 
(a) before smoothing (b) after smoothing. 
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preprocessing alters the frequency spectrums of each voxel, such that va and vc now 

have overlapping frequency content, and thus an induced correlation. 

 

 

 
B.  The Spatial Covariance Matrix  
 
 

  For the demeaned time series of any two voxels, vj and vk, the spatial 

covariance between the time-series of voxel j and the time-series of voxel k can be 

represented as    (     )  
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a. b. 

Figure 2. The temporal frequency spectrums for two neighboring voxels:  (a) before smoothing (b) after smoothing.   
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  Using the identities:        

 
  ,        

 
  , and        , the spatial 

covariance between the demeaned time-series of any two voxels, vj and vk, can be 

represented as a summation of second order temporal frequencies by  
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To find the expected value for the spatial covariance in terms of temporal 
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  Furthermore, the spatial covariance between two voxels in Eq. (1) can be 

expanded into a p×p symmetric covariance matrix,   , for all voxels, such that the 

jth row and kth column of    represents the spatial covariance between the time-

series for voxels j and k in terms of temporal frequencies, 
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 Represent the voxel time-series in the p×2n matrix form as    
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 .  Note, V is a p×2n matrix with the jth row comprised of a vector 

with the real time-series component for voxel j stacked upon the imaginary time-

series component for voxel j. Then the p×p spatial covariance matrix for the voxels 

time-series is constructed as a series of matrix multiplications,   [  ]  
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   (  )  as defined and described below. 
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, then the expected value for this p×p spatial covariance matrix is 

represented as   [  ]   
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  Note, the   matrix is a 4pn
2×p matrix of 1’s and 0’s, and the p×4n

2
p matrices 

   (  ) and    (   )  are composed of temporal covariances, and are further 
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described in the appendix. The element representation of the covariance and 

correlations of the spatial covariance matrix are also presented in the appendix.  

 

C. The Spatial Correlation Matrix 

 

  For the demeaned time series of any two voxels, vj and vk, the spatial 

covariance between voxels j and k can be represented as a summation of second 

order temporal frequencies by 
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Also, by using the derivations from the previous section, the expected value of the 

spatial covariance matrix is represented as a summation of second order temporal 

frequencies by  
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Define     as a diagonal matrix consisting of the diagonal elements of  [   ], a p×p 

matrix with only the expected value of the spatial variances on the diagonal. A 

symmetric p×p spatial correlation matrix constructed from the expected value of 

the spatial covariance matrix is formed with the multiplication 

       
   ⁄

 [   ]   
   ⁄

, 

where the jth row and kth column of    is the spatial correlation between voxels j 

and k.  



 12 

D. Processing Operator Application 
 
 
 
  Representing the spatial covariance and correlation in matrix form, 

constructed from a series of matrix multiplications allows one to measure the effect 

of the temporal and spatial processing operators. For example, as described in a 

previous section, the smoothed temporal frequencies are constructed with the 

multiplication    (    ̅ ) (     ) . If the 2pn×2pn spatiotemporal covariance 

matrix for the 2pn×1 real-valued time-series y is  ,  [ ]    , and 

    (    ̅ ) (     ), which is the order of operations applied to the time-series, 

then  [  ]      and    [  ]      . Developing a standard framework, such that 

changes in the structure of the spatial covariance matrix or spatial correlation 

matrix are observed when a spatial or temporal operator is applied to the data, 

provides a means to quantify to the processing operators, and reveal the true 

spatiotemporal correlations.  
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IV. FUTURE RESEARCH 
 
 

  Representing these statistical relationships in terms of their constituent 

temporal frequencies provides a framework for identifying the frequency bands that 

contribute substantially to the induced correlations as a result of image 

reconstruction and processing operations. If the temporal frequency bands that 

induce a spatial correlation are identified, potentially a method can be developed to 

regress or filter out the correlation inducing frequency bands such that the true 

spatiotemporal correlation is revealed. Thus, the next steps of this research are to 

decompose the temporal frequency spectrums, to determine which temporal 

frequency bands contribute significantly to the induced correlations between voxel 

regions of interest, and to measure the magnitude of which the temporal frequency 

bands contribute to the induced correlation. Furthermore, the statistical derivations 

of the true values for the spatial covariance and correlation matrices will be tested 

on experimental data.  
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V. CONCLUSION 

  

  To correct the noise inherent within the signal and identify the true 

biological spatiotemporal correlations, spatial and temporal filters are applied 

during the time series data processing. Although, it is well known that spatial 

preprocessing induces correlation between voxels. Deriving the exact spatial 

covariance and correlation matrices in terms of each voxel’s constituent temporal 

frequencies, provides a framework to measure the impact of applying any individual 

spatial and temporal operator or series of spatial and temporal operators. The next 

step of this research is to quantify the magnitude that specific frequency bands 

create artificial correlations within the data, and develop a means to regress or filter 

out the induced spatial correlations, such that the processed data will yield 

increased diagnostic evaluations in human clinical fMRI evaluations. 
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APPENDIX 
 
 

The p x 4pn
2 matrices,    (  )   [
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