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Abstract 

To increase k-space acquisition speed and reduce variability inherent within the 
acquired signal, accelerated imaging techniques and signal processing operations are 
implemented before statistical analysis of functional MRI (fMRI) data. In this study, the 
spatial correlations of partially sampled dual-task k-space data are estimated in terms of 
temporal frequencies. Given a dual-task experimental design with different task periods, 
two distinct task-activated peaks are expected. Although, processing operations and 
parallel reconstruction methods generally induce correlations, through spreading voxel 
task-activated peaks temporally and spatially into neighboring frequencies and voxels. If 
the period of both tasks falls within a close range, correlation will be induced between 
voxels activated by different tasks, as a result of increased overlapping frequency content. 
A comparison of fully and partially sampled k-space will yield artificial spatial 
correlations and false activation, as a result of induced task-activated peaks in previously 
aliased regions. Without knowledge of the expected task-activated regions, it is difficult 
to resolve the task to the associated region after processing. 
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1. Introduction 
 

 In fMRI, the measured blood oxygen level dependent (BOLD) signal used to detect 
neural activity is spatially Fourier encoded [1,2]. The reconstructed image is the inverse 
Fourier transform of the acquired complex-valued k-space data. With parallel 
reconstruction methods, data acquisition timing is optimized resulting in faster 
observation of brain function. To mitigate noise inherent from data acquisition 
procedures and unwanted physiological sources, processing operations are applied before 
the statistical analysis of the data. Although, it is well documented that parallel 
reconstruction techniques and signal processing operations modify a voxel’s temporal 
spectrum and generally induces correlation [3-6]. Specifically, parallel image 
reconstruction methods associated with accelerated imaging, SENSitivity Encoding 
(SENSE) [7] and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) 
[8], have also been shown to induce long range spatial correlation between previously 
aliased voxels [9,10]. In this study a Fourier frequency framework is described where the 
spatial correlations induced from parallel image reconstruction procedures are 
represented in terms of temporal frequencies. This representation of correlations is 
written as a summation of temporal frequencies, such that specific frequencies or portions 
of a voxel’s temporal frequency spectrum that contribute substantially to spatial 
correlation are identified.  
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  The linear relationship between the image domain and spatial frequency domain is the 
basis for this study, and critical to describing the statistical implications of signal 
processing and reconstruction in fMRI studies. The spatial correlations are described as a 
linear combination of second order voxel temporal frequencies using both the magnitude 
and phase components of the data [11]. The standard in fMRI analysis is to discard the 
phase portion of the data and implement a magnitude-only (MO) analysis to detect 
regions of activation [12,13].  In comparison, executing a complex-valued (CV) model in 
fMRI analysis has shown to detect increased regions of activation [14,15]. Including 
phase information in the data increases the statistical power of the model. While both MO 
and CV models describe activation in the image domain, analysis within the frequency 
domain is valuable. It has previously been shown how complex-valued temporal 
frequencies contribute to the correlations between voxels in the cerebral cortex for 
magnitude-only non-task data [16]. The complex-valued frequency description of 
correlation, compared to the MO or CV time-series correlation, allows the correlation to 
be divided into distinct partitions. This property of the Fourier temporal frequency 
framework derived in this manuscript is valuable for examining the residual signal 
leakage from accelerated data acquisition and reconstruction methods. For example, with 
subsampled data with an in-plane acceleration factor of 3, three voxels will initially have 
the same voxel location before separation. The nature of the acquisition of this data and 
correlation induced during the separation process with SENSE or GRAPPA, results in 
aliasing artifacts of signal leakage among the three aliased voxels. 
 

In this manuscript, the utility of this temporal Fourier frequency representation of 
spatial correlation is established with a simulation of dual-task fMRI data and SENSE 
reconstruction. Given a dual-task experimental design with different task periods, two 
distinct task-activated peaks are expected. Signal processing will alter the activated 
voxel’s temporal frequency spectrums, by spreading voxel task activated peaks 
temporally and spatially into local frequencies and voxels. Previously aliased voxels from 
subsampling during accelerated data acquisition, will also have increased overlapping 
frequency content as a result of the parallel MRI reconstruction techniques. If the 
frequency of the two tasks fall within a close range, false activation among voxels 
activated by different tasks, may be detected as a result of increased overlapping 
frequency content. The application of the theory to complex-valued data validates the 
increased statistical power of using complex-valued models. Identifying frequencies 
contributing to induced correlations is critical for developing methods to remove noise, 
such that the signal of interest is preserved, and accurate conclusions are drawn from the 
subsampled data. 
 

2. Background & Theory  
 

2.1 The SENSE Model 
In fMRI, the common parallel image reconstruction methods for in-plane acceleration 

include SENSE and GRAPPA. SENSE is an image space model and GRAPPA is a k-
space model. The framework described in this work will be demonstrated with SENSE, 
which reduces scan time with use of phased receiver coil arrays and omitting 
measurements of the k-space readout, as illustrated in Figure 1. The receiver coils are 
necessary to remove the “fold over” artifacts, a result of failure to meet the Shannon-
Nyquist sampling criteria, as seen in Figure 2a for an acceleration of 1, 2 and 4, and thus 
spatially compensate for the skipped lines in k-space. As seen in Figure 1a, a fully 
sampled k-space array corresponds to an acceleration factor of A=1, increasing the 
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acceleration factor corresponds to a distance between acquired lines of AΔky as seen in 
Figure 1b and 1c.   
 

 
Figure 1:  Acquisition of a) full k-space with A = 1, b) k-space subsampled with A = 2 in 
the PE direction, and b) k-space subsampled with A = 4 in the PE direction. Sampled 
lines are marked with a straight line, and dotted lines are the skipped lines of k-space. 
 

The receiver coil sensitivity profiles are estimated from fully sampled calibration 
images, and required to compensate for the missing phase encoding lines in the 
subsampled arrays. The complex-valued coil sensitivity maps are normalized in each 
voxel through averaging the coil sensitivity maps then dividing by a time-series 
calibration average sensitivity from each voxel. Optimal coil geometry and distinct coil 
sensitivity profiles of aliased voxels, leads to improved images during the voxel 
separation. Figure 2b is an illustration of the magnitude of four coils, each coil located on 
the four sides of the slice. Using multiple phased coils instead of a single coil to cover the 
same volume increases the signal-to-noise ratio (SNR) by increasing the number of 
averages for each image. However, as the number of coils is increased the sensitivity at 
each coil is reduced, thus there is an optimal SNR and noise trade-off regarding the 
number of coils used in MR imaging studies.  

 

 
Figure 2:  Acquisition and reconstruction to image space of a) k-space readout with A = 
1, 2, and 3, b) illustration of the magnitude coil spatial locations in a four coil acquisition 
scheme, c) aliased slice images reconstructed with A=2, at each receiver coil located as in 
(b), and d) the slice image reconstructed from (c) and coil sensitivity profiles.  
 

An aliased slice with a subsampled k-space readout of A=2 measured at each receiver 
coil, configured as in Figure 2b, at a given time repetition (TR) is illustrated with Figure 
2c. For NC receiver coils, the complex-valued coil sensitivities at the jth coil measuring 
the zth voxel location is represented as Sjz=SjRz+iSjIz, where i is the imaginary unit. Voxel z 
in the aliased coil images is described with a complex-valued vector ajz=ajRz+iajIz of NC 
voxel measurements from the sub-sampled spatial frequencies, that are derived by 
𝑎!" = 𝑆!"𝑣!" + 𝜀!" . Here SjC = SjR+iSjI is an NC×A matrix with the fully sampled complex-
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valued coil sensitivities, the magnitude is illustrated in Figure 2b, for the A aliased voxels 
in the NC coils, vjC=vjR+ivjI is a vector of the A complex-valued un-aliased voxel values, 
and εjC=εjR+iεjI is a vector of the NC complex-valued additive measurement noise in each 
aliased voxel. 

 
The aliased slice acquired at each coil is unstacked and reconstructed, through a least 

squares estimation with the fully sampled coil sensitivity maps. Thus, the images are 
measured as illustrated with Figure 2c for a single TR, then using the spatial information 
of the complex-valued coil sensitivity profiles the images are reconstructed as in Figure 
2d. In the SENSE reconstruction model, the SNR is not uniform throughout the 
reconstructed image, and SENSE is often implemented with an acceleration of only 2 or 
3. In this manuscript, an fMRI simulation with an acceleration factor of 3 is used. 
 
2.2 A Complex-Valued Fourier Description of Covariance 

In this section, the complex-valued Fourier frequency representation is derived to 
describe how signal processing and image reconstruction methods alter the structure of 
the spatial covariance matrix. Compared to magnitude-only correlations, applying this 
framework with complex-valued data more accurately identifies regions of spatial 
correlation, and reduces the noise in correlation maps.  
 

When a prow × pcol matrix of complex-valued k-space data St is a measured at time t, the 
usual process to reconstruct it into an image without any processing is to compute the 
discrete inverse Fourier transform (IFT). The IFT image reconstruction process for St is 
to pre-multiply it by a prow × prow complex-valued inverse Fourier transform matrix Ω! 
and post-multiply it bythe transpose of a pcol × pcol complex-valued IFT matrix Ω!. The 

jkth element of the pcol × pcol Fourier matrix Ω! is (Ω!)!" =   𝑤
(!!!"#! !!)(!!!"#! !!) where j 

and k have indexing values from 0 to pcol-1 with 𝑤 = !
!
𝑒!!!/! for the IFT and 𝑤 =

𝑒!!!!/! for the forward Fourier transform (FT). To build up the needed real-valued 
matrix framework, consider the representation of the inverse Fourier reconstruction 
operator,  
 

Ω =    Ω! −Ω!
Ω! Ω!

                (1) 

 
where Ω! and Ω! are constructed with the use of the Kronecker product, Ω! = [(Ω!" ⊗
Ω!") − (Ω!" ⊗ Ω!")] and Ω! = [(Ω!" ⊗ Ω!") + (Ω!" ⊗ Ω!")] [17]. Upon representing 
the matrix of complex-valued spatial frequencies St as vector st by stacking the rows of 
the reals upon the rows of the imaginaries, a reconstructed image vector vt can be formed 
that contains the rows of the reals stacked upon the rows of the imaginaries. A complex-
valued image V can be made by unstacking every pcol elements into rows for reals then 
rows for imaginaries. 
 

The observed k-space data acquired over n time repetitions (TRs) can be similarly 
represented. In this framework, the complex-valued spatial frequencies are represented in 
a real-valued 2pn×1 vector, s, with the rows of real voxel values of each image stacked 
over the corresponding rows of the imaginary voxel values for p voxels. An analogous 
explanation describes the organization of the real-valued reconstructed image 2pn×1 
vector, v. The signal vector is reconstructed to the image vector, with the inverse Fourier 
reconstruction operator,  Ω, in Eq. (1) with prow and pcol, and the Kronecker product,  
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𝑣 = (𝐼!⨂Ω)𝑠.                    (2) 
 

A 2pn×2pn permutation matrix, P, reorders the elements of vector v such that, 𝑦 =   𝑃𝑣, 
and the real-valued time series 2pn×1 vector y is now ordered by voxel rather than 
ordered by image. The voxel ordered time-series vector y is Fourier transformed into the 
temporal frequency domain, with the 2n×2n temporal forward Fourier transform matrix, 
Ω!. The bar denotes the FT rather than the IFT, and the subscript signifies the temporal 
dimension such that the Fourier matrix operator is constructed with n rows and 1 column. 
The real-valued 2pn×1 vector f consists of the temporal frequencies of each voxel stacked 
upon the corresponding imaginary temporal frequencies is represented,  
 
𝑓 = 𝐼!⨂Ω! 𝑃𝑣.                                             (3) 
 
Thus, the real-valued vector and matrix representation in Eq. (3) describes the 
reconstruction process as a linear combination of matrix and vector multiplications.  
 

Define a 2pn×1 real-valued voxel time series with real parts stacked over imaginary 
parts for voxel j as 𝑦!, which is reconstructed similar to Eq. (2) with a temporal IFT 
matrix,  Ω!, from its spatial frequencies, 𝑓!, 𝑦! = Ω!𝑓!. Comparable notation to describe 
an additional voxel k, and the spatial covariance between the two voxels is represented as  
 
cov 𝑦! , 𝑦! = !

!!
𝑦!−𝜇!"

! 𝑦!−𝜇!" = !
!!
𝑦!!𝑦!,    

           
where the demeaned time-series are represented as 𝑦! and 𝑦!. If 𝑦! = Ω!𝑓!, the time 
series correlation between two voxels,  
 
cov 𝑦! , 𝑦! = !

!!
Ω!𝑓!

! Ω!𝑓! = !
!
𝑓!′𝑓! =

!
!
(𝑓!"! 𝑓!" + 𝑓!"! 𝑓!"),                                   (4) 

 
which is described in terms of the real and imaginary components for each voxel 
temporal frequency spectrum. This notation is extended to describe spatial correlation 
between the two voxels, 
 

 corr 𝑦! , 𝑦! = !"# !!,!!

!"# !! !"# !!
=   

!!"
! !!"!!!"

! !!"

(!!"
! !!"!!!"

! !!")(!!"
! !!"!!!"

! !!")    
.                        (5) 

 
The spatial covariance in Eq. (4) can be expanded to a p×p spatial covariance matrix, Σ, 
such that the entry (j,k) in Σ represents the spatial covariance between two demeaned 
real-valued represented voxel time series of voxel j and voxel k, 
 

Σ = !
!

𝑓!!! 𝑓!! + 𝑓!!! 𝑓!! ⋯ 𝑓!!! 𝑓!" + 𝑓!!! 𝑓!"
⋮ ⋱ ⋮

𝑓!"! 𝑓!! + 𝑓!"! 𝑓!! ⋯ 𝑓!"! 𝑓!" + 𝑓!"! 𝑓!"
,                                 (6) 

 
Additionally, Eq. (5) is also expanded to matrix form to represent p voxels, by defining 𝐷 
as the diagonal matrix consisting of the diagonal elements of Σ as in Eq. (6). A symmetric 
p×p spatial correlation matrix constructed from the spatial covariance is formed with the 
multiplication 
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𝑅 = 𝐷  !! !Σ𝐷  !! !.                (7) 
 

By aggregating the second order temporal frequencies into biologically meaningful or 
experimentally relevant bands, the influence processing steps and reconstruction 
algorithms have on each voxel’s temporal frequency spectrum can be quantitatively 
measured. In an fMRI study, the frequency corresponding to the activation is considered 
when dividing the spectrum into bands. Note in this study, the temporal spectrum is not 
divided evenly into bands, since each band has a varying degree of relevance to the study. 
To understand the contribution each temporal frequency band yields to spatial 
correlation, the correlation is expressed as, 
 

𝑟! =
(!!"
! !!"!!!"

! !!")!  

(!!"
! !!"!!!"

! !!!)ℓ𝓁
!!
ℓ𝓁!! (!!"

! !!"!!!"
! !!"

!!
ℓ𝓁!! )ℓ𝓁  

,                   

 
where the numerator consists of the covariance between two voxel’s demeaned temporal 
frequency spectrums for a frequency band b, the denominator is the variance of each 
voxel’s temporal spectrum, and pb is the total number of bands. The spatial covariance 
matrix can be written as a summation of covariance of each band 
 
Σ = Σ! +⋯+ Σ!!,                                                    
 
and the Eq. (7) spatial correlation matrix can be written as a summation of correlation of 
bands 
 
R = 𝐷  !! !(Σ! +⋯+ Σ!!)𝐷  

!! !.                       
 

In addition to analyzing the spatial correlation as bands, observing the spectral 
decomposition for each voxel of interest provides visual insight to the potential temporal 
frequency contribution for each voxel towards the spatial correlation. For the ℓ𝓁th band in 
the temporal frequency spectrum for any voxel, the potential spatial correlation 
contribution of that frequency is described as 

 

𝑟ℓ𝓁 =
!!"
!
ℓ𝓁  
!!!"

!
ℓ𝓁

!!"
! !!"!!!"

! !!"
 .                                              (8) 

 
Note, 𝑟ℓ𝓁  describes the correlation contribution at each temporal frequency such that 

𝑟ℓ𝓁!
ℓ𝓁!! = 1.    

      
3. Methods 

 
In MATLAB (Mathworks, Natick, MA), a T2* weighted 96×96 digital phantom [18] 

with a 240 mm field of view (FOV) is generated with 720 TRs, with an in-plane 
acceleration A = 3. The data is generated with an SNR equal to 20, and the contrast-to-
noise ratio (CNR) equal to ½. Four coils are located on the sides and the images are 
SENSE reconstructed. Complex-valued activation is simulated with a sinusoid added to 
the magnitude time-series, and a phase shift is added to the phase time-series for three 
4×4 voxel blocks in located in the aliased positions in the phantom, as describe in Figure 
3. There are two tasks between the three voxel locations, where task 1 corresponds to a 
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task of fifteen 24-second periods, and task 2 corresponds to sixteen 22-second periods. 
The data is processed with spatial smoothing using a Gaussian kernel with a full-width-
half-max (FWHM) of 2 voxels. The temporal spectrums are high-pass band filtered 
(<0.009 Hz), and low-pass band filtered (>0.08 Hz). For the analysis, three voxels, one 
from each 4×4 voxel block, are analyzed. The spatial correlations in terms of the voxel 
temporal spectrums are analyzed with and without the in-plane subsampling, and 
complex-valued activation [15] is computed for each task design.  
 
Figure 3: The two tasks are 
assigned and the three voxel 
blocks are chosen based on the 
overlapping aliased voxel 
location as illustrated in the 
figure.  
  
 

4. Results 
 

The peaks in Figure 4a are associated with task period assigned to each voxel location. 
In this dual-task fMRI simulation, since the two tasks are performed at different periods, 
two distinct task-activated peaks are expected. Since both task-activated peaks fall within 
a close range, correlation will be induced between voxels activated by different tasks, as a 
result of increased overlapping frequency content from the reconstruction process. As 
expected from examining the temporal frequency decomposition, there is signal leakage 
from the SENSE un-aliasing, between the dual-task locations, apparent in the z-statistic 
activation maps, as shown in Figure 4b. 
 

 
Figure 4:  a) The correlation contribution using Eq. 8 of the 3 voxel temporal frequency 
spectrums, with and without an in-plane acceleration of A = 3, b) complex-valued task 
activation for the task 1 and task 2 block designs, with and without an in-plane 
acceleration of A = 3.  

 
Figure 4a is a visualization of the correlation contribution at each frequency, so that the 

sum of the values for each voxel’s spectrum equals 1, as developed in Eq. (8). Thus the 
more overlapping content between the two voxel’s temporal spectrums, the stronger 
spatial correlation between the two voxels. With in-plane acceleration of A=3, as shown 
in Figure 4a, voxel 2, which is associated with task 2, shares an increased overlapping 
frequency content at the task-frequency with voxel 1 and voxel 3, which are associated 
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with task 1. Although, the spatial correlations look similar in Figure 5 between the two 
accelerations, there is a subtle increase in the correlation between the two voxels with the 
same task. This increase is expected, since SENSE reconstructed images have an 
increased SNR in neural regions previously aliased with other neural regions, compared 
to images acquired with no in-plane acceleration. 
  

 
Figure 5: The spatial correlation maps with and without an in-plane acceleration of A = 
3, for each voxel of interest.  
 

5. Discussion and Conclusions 
 

Temporal resolution is important to distinguish neural events through time, and spatial 
resolution is important for precisely identifying brain regions of interest. Although, 
achieving satisfactory spatial and temporal resolution is difficult. If more lines of k-space 
are measured for each slice acquisition, the time for successive acquisition of slices is 
extended, and spatial resolution is increased with reduced temporal resolution. If fewer 
lines of k-space are measured for each slice acquisition, the time for successive 
acquisition of slices is reduced, and spatial resolution is reduced with increased temporal 
resolution. Thus faster observation of brain function means a trade off between spatial 
and temporal resolution. Although, parallel MRI acquisition methods serve to improve 
temporal resolution, while mitigating aliasing artifacts between previously aliased voxels. 
Yet, reconstruction operations induce correlation between voxels activated by different 
tasks, as a result of increased overlapping frequency content. Strategic experimental 
design in parallel MRI (pMRI) models may be important to maintain minimal signal 
leakage in reconstructed images, such that conclusions from the statistical analysis are 
not impacted. Modeling functional MRI analysis around the frequency task peak, or 
considering the effects of processing or reconstruction on critical partitions of a voxel’s 
temporal frequency spectrum, will strengthen the statistical power of the model. More 
specifically, this research may be applicable to functional connectivity MRI, since the 
biological correlation pattern in the default mode network (DMN) is similar to a SENSE 
aliasing pattern. Thus, it is important to distinguish between the processing and 
reconstructed induced correlation and the true underlying correlation from the biological 
signal of interest.    
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