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DECREASING FALSE POSITIVES AND NEGATIVES FROM SPATIOTEMPORAL PROCESSING OF FMRI 

M. Muge Karaman1, Daniel B. Rowe1,2, and Andrew S. Nencka2 
1Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI, United States, 2Department of Biophysics, Medical College of 

Wisconsin, Milwaukee, WI, United States 
 

Purpose: In fMRI and fcMRI, many studies have aimed to attenuate the noise through spatial and temporal data processing 
operations. Although such processing improves the appearance of the data, recent studies1,2 show that such processing induces 
artificial correlations that are not of any biological origin. The traditional fMRI and fcMRI models often assume independence 
between voxels and therefore do not account for the spatial correlation between voxels or temporal correlation within each voxel’s 
time series. As these induced correlations are of no biological origin, they may result in increased Type I/II errors in fMRI and fcMRI 
if unaccounted for.  In this work, we use novel computational tools to theoretically determine these induced correlations through the 
use of linear operators that can be integrated into the fcMRI analysis; and expand the current complex-valued (CV) fMRI activation 
model to incorporate an analytically derived exact spatiotemporal covariance structure of the processed time series. 
Methods: The development of linear matrix representations of processing operations makes it achievable to determine the exact 
spatiotemporal covariance (cov) structure of the reconstructed images after processing2. In such a framework, the vector of the 
processed time series images, yT, can be calculated by yT=OTsT, where sT=[s1,s2,…,sn]

T is a stack of n k-space signal vectors, with each 
of the n vectors representing a 2p×1 image frequency vector, and OT is the product of the applied operators. With an estimate of the 

inherent cov in acquired data, Γ, the image-space cov matrix can be computed by cov(yT)=Σ=OTΓOT
T. 

The image time series correlation (corr) matrix, Σρ, (representing the spatial corr) and the voxel time 
series corr matrix, Σv (representing the temporal corr), which are both considered in fcMRI studies 
can then be estimated from Σ. The conventional fMRI models detect activations on a voxel-by-voxel 

basis with the assumption of an identity cov structure. In order to incorporate the spatiotemporal cov 
matrix, Σ, into the final analysis, the CV-fMRI model3 can be expanded as given in Eq. 1, where Ci and 
Si are matrices with the cosine and sine of the ith voxel’s modeled phase along the diagonal, Xi and βi are 

the design matrix and the magnitude regression coefficient vector of the ith voxel. This model can be represented in matrix form as yT= 
JXβ+ηT, where ηT~N(0,Σ). The model’s parameters can then be derived through a CV weighted least squares estimation. The matrix 
representations of processing operations can be very computationally intensive, requiring large amounts of memory. An efficient 
implementation with the use of matrix partitioning, sparse matrix multiplication techniques, and utilization of the block diagonal 
forms in matrix multiplication was used to present the results in this study. To theoretically compute the induced corrs by smoothing 
(Sm), Gaussian Sm with fwhm of 3 pixels; and temporal filtering (TF), band pass filtering from 0.01 and 0.1 Hz, a single slice 64×64 
image was considered in a time series of 84 repetitions. To illustrate the effects of such processing in fMRI activation statistics, a 
64×64 slice is selected with two ROIs designated to have bilateral activation similar to a finger tapping experiment (20s rest, 4 epochs 
of 8s on, 8s off). CV fMRI data is generated by a multiple regression model with i.i.d. noise N(0,0.01) for 1000 simulations. 
Results: The induced spatial corrs (in real data), Σρ, of the center voxel (cv) by a) Sm, b) TF, c) Sm and TF in the presence of a 
nonidentity spatial k-space cov are given Fig. 1. The spatiotemporal corr plots of the cv of a 12×12 slice in 16 repetitions are 

illustrated in Figs. 2a-c. Figs. 3a-b show the activation z-statistics of the processed data (Sm 
and TF) from voxel-based CV-fMRI model3, and the generalized CV-fMRI model in Eq. 1. 
Discussion: Figs. 1a-1c show that Sm and inherent spatial corr result in induced corrs in the 
neighborhood of the cv. As expected, Sm induces non-negligible spatial corrs whereas TF 
induces only temporal corrs as given in Figs. 2a and 2b. When combined, Sm and TF induce 
notable spatiotemporal corrs in the originally spatially correlated data. Not accounting for the 
induced corrs in the fMRI model produces false negatives as presented in Fig. 3a, and such 
errors can be avoided with the above generalized fMRI model that accounts for these effects. 
Conclusion: The proposed model with its application to fcMRI and fMRI analyses enables 
researchers to analytically quantify artificial correlations induced by data processing, and draw 
more accurate and reliable functional connectivity and cognitive brain activity results. References: 1. Nencka et al. J. Neurosci. Meth 
2009;181:268-282. 2. Karaman et al. ISMRM. 2013;21:2232. 3. Rowe, Logan. NeuroImage 2004;23:1078-1092. 

    

Fig. 1. Spatial correlations induced in real data under different settings. Fig. 2. The computed spatiotemporal correlation plot for the centered voxel. 

  

Fig. 3. Activation maps (with Bonferroni 
correction at α level of 0.05) from the processed 
data (Sm and TF) with the assumption of  
a) ηT~N(0,σ2I2⊗In), b) ηT~N(0,Σ). 
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