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ABSTRACT 

A STATISTICAL FMRI MODEL FOR DIFFERENTIAL T2* CONTRAST  

INCORPORATING T1 AND T2* OF 

GRAY MATTER 
 

 

M. Muge Karaman 

 

Marquette University 

 

 

Relaxation parameter estimation and brain activation detection are two main study areas 

in magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). 

Relaxation parameters can be used to distinguish voxels containing different types of tissue while 

activation determines voxels that are associated with neuronal activity. In nearly all fMRI studies, 

the first few scans are discarded from the data before computing brain activation to avoid 

magnetic saturation effects. However, these first images have important information on the 

relaxation decay parameters for the type of tissue contained in voxels, which could provide 

pathological tissue discrimination [3]. It is also well-known that the voxels located in gray matter 

contain neurons that are to be active while the subject is performing a task and thus voxel 

relaxivities that are different for different tissue types should be included in a model. In this 

study, we develop a model to obtain both relaxation parameters and determine brain activation 

simultaneously. This model is examined with realistically simulated fMRI data, which includes 

the first few scans as well the remainder of the time series. To compute the activation statistics, 

the estimated T1 and T2* of gray matter are incorporated into the hypothesis testing setting. 

Nonlinear least squares estimation is used for estimating the parameters and the general 

procedure of generalized likelihood ratio test is performed to calculate activation statistics.  
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1. INTRODUCTION 

 

Functional magnetic resonance imaging (fMRI) is a type of specialized magnetic 

resonance imaging (MRI) that maps the changes in brain hemodynamics corresponding to neural 

activity. Magnetic resonance (MR) has the capability of measuring the parameters related to the 

physiological functions including changes in blood flow, blood volume and blood oxygenation 

levels in the brain. Blood oxygen level-dependent (BOLD) contrast-based fMRI is a method used 

to visualize brain functions by measuring the changes in the inhomogeneity of the magnetic field 

that results from changes in blood oxygenation. Ogawa et al. demonstrated that fMRI could be 

used to visualize brain activation by measuring the BOLD signal [6]. 

Magnetic resonance corresponds to the interaction between the applied radio frequency 

(RF) and the nuclear spin of the hydrogen nuclei (protons) in the brain. These hydrogen atoms 

radiate energy with the same frequency as the applied RF pulse. The recovery of that nuclear spin 

magnetization in fMRI follows an exponential decay, which is composed of both longitudinal (T1) 

and transverse (T2*) relaxation, which will be explained in more detail later. 

The data collected during an fMRI experiment is recorded in frequency space, so called 

k-space, and an inverse Fourier transform is applied to the k-space data in order to obtain images 

in image-space. In both MRI and fMRI, voxel time measurements after Fourier image 

reconstruction are complex-valued because of magnetic field inhomogenities and noise [3]. The 

reconstructed k-space data are assumed to be corrupted by additive zero mean and uncorrelated 

Gaussian noise in both the real and imaginary parts.  

In fMRI, we seek voxels in which there is a signal increase associated with specific 

neural activity when a task is performed by the subject. Although many fMRI studies obtain a 

statistical measure of functional activation based on magnitude-only image time courses, 
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discarding the phase component, Rowe and Logan illustrated that the complex-valued activation 

model has superior power in detecting activation over that of the standard magnitude-only 

activation model [7,8]. Therefore, the statistical fMRI model for detecting activation introduced 

in this manuscript is based upon the complex-valued activation model of Rowe and Logan, and 

will be briefly summarized in the next section. 

The quantification of T1 and T2* relaxation times and spin density has become a popular 

area of study in the field of fMRI as being a fundamental way of characterizing the tissue 

contained within each voxel since they are not affected by different machine settings. Knowledge 

of the relaxation parameters within a voxel can be used to reduce the number of voxels declared 

active that have partial voluming (part of their volume occupied by grey matter and part of their 

volume occupied by another type of tissue). Using only the magnitude of complex-valued 

magnetic resonance images has become the gold standard for the estimation of the relaxation 

parameters [4]. However, Baselice et al. recently utilized complex-valued images for relaxation 

parameter estimation [1]. Also, least squares estimation has become a commonly used technique 

for estimating the relaxation parameters. 

In this manuscript, we expand upon previous models by proposing a statistical fMRI 

model that uses complex-valued time courses to simultaneously estimate the relaxation 

parameters (T1 and T2*) and to detect brain activation, which has been incorporated into the 

model by a differential T2* contrast parameter δ. The tissue parameters T1 and T2* are estimated 

from theoretically simulated fMRI data, where the first few scans of the brain are not discarded, 

unlike the common practice of conventional studies. Nonlinear least squares, which is one of the 

most common techniques for parameter estimation, is used for simultaneously obtaining the 

relaxation parameters of different tissues and estimating activation model parameters. We will 

utilize a single pulse sequence with three parts, where in the first two parts the subject does not 

perform the task while in the third part the subject performs the task as in a standard fMRI 
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experiment. In the first part, several images are acquired at a constant echo time; in the second 

part, the echo time is varied; and in the third part the echo time is constant. This pulse sequence 

allows us to have the three parts for: a) T1 estimation, b) T2* estimation and c) detecting 

activation, while all of the model parameters are estimated simultaneously using data from the 

entire scan. For detecting activation, maximum likelihood estimators are numerically calculated 

under both the restricted null and unrestricted alternative hypotheses. As the active voxels are 

located in gray matter, both the T1 and T2* values of gray matter are included in the hypothesis 

testing setup in such a way so that the voxels located in gray matter can be detected. Activation 

statistics are derived from the generalized likelihood ratio test and thresholded activation maps 

are obtained from a 5% Bonferroni family-wise-error rate (FEW) thresholding technique [8, 17].      

The main advantage of this model is that it provides a practical technique for relaxation 

parameter estimation and detecting brain activation by obtaining these parameters simultaneously 

from the correct physical model. It also makes use of the generally discarded TR images at the 

beginning of the time series, which in fact contain important biological information on various 

tissue types in the brain. To the best of our knowledge, this study is the first to detect brain 

activation by incorporating simultaneously estimated T1 and T2* values of the gray matter. As 

such, the model outlined in this manuscript contributes to the field by quantifying the activation 

statistics in a more accurate and informed way. 

2.  THEORY 

In fMRI, the measured signal is a combination of the total number of nuclei (proton spin 

density) reduced by the T1 and T2* relaxation components. Further, we obtain a complex-valued 

measurement of the object plus complex-valued noise after image reconstruction. In this section, 

the role of the relaxation decay times in fMRI will be briefly summarized; and the commonly 

used fMRI magnitude-only activation model [15,16] along with the more recent complex-valued 
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activation model [8] will be presented. Our advanced statistical fMRI models, built upon the 

existing complex-valued fMRI activation model of Rowe and Logan (2004) with the 

enhancement of simultaneously determining the relaxation parameters and the differential T2* 

contrast, will also be introduced. The numerical and statistical methods which will be used to 

estimate the relaxation parameters and determine the brain activation will also be described. 

2.1 Relaxation and Magnetization in fMRI 

In MRI/fMRI, when a brief radio frequency is applied, the hydrogen atoms absorb energy 

(excitation) and their equilibrium state is perturbed. These hydrogen atoms emit energy which is 

called the relaxation process and then they return from the tipped state to their original lower 

energy state of being aligned in the direction of the magnetic field. The characteristic times 

involved in the relaxation of the nuclear spin magnetization vector, M, are known as relaxation 

times. Longitudinal, or spin-lattice, relaxation time, T1, is the decay constant for the recovery of 

the z component of the magnetization, Mz, towards its thermal equilibrium value, Mz,eq. The 

transverse, or spin-spin, relaxation time, T2, is the decay constant for the component 

of M perpendicular to external magnetic field, B0, designated Mxy. While all hydrogen nuclei in a 

magnetic field precess with the same frequency in an ideal system, there is an additional 

dephasing of the magnetization introduced by external field inhomogenities. This reduction in the 

initial value of Mxy can be characterized by a separate decay time, T2*, which is the decay 

parameter for the magnetization including both T2 from completely random interaction between 

spins and magnetic field inhomogenities B0 [3]. 

The inhomogeneity of the magnetic field is considered to be an artifact, and despite many 

efforts to make the overall magnetic field as uniform as possible, local magnetic field 

susceptibility differences between brain tissue are still present.  
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The changes in blood oxygenation cause changes in magnetic field inhomogeneity and 

thus in decay parameter T2*, as the T2* signal is relatively sensitive to inhomogenities in the 

magnetic field. This leads to changes in image intensity in T2*-weighted images, which are thus 

used to study brain activity in brain functional imaging studies [5]. 

The spin density and relaxation times provide the three most intrinsic and basic contrast 

mechanisms in MRI/fMRI. It is thus of interest to measure and exploit differences in these 

parameters in order to develop image contrast between different brain tissue since the resulting 

measured values could be used for tissue characterization and provide useful information on local 

environment interaction.  The quantization of the relaxation parameters helps to both predict the 

signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for a given sequence and makes it 

possible to better understand the contrast mechanism and the tissue characterization.  

The Bloch equations describe the behavior of a magnetization vector in the presence of 

an externally applied magnetic field subject to the relaxation process [3]. According to the 

solution of the Bloch equations, magnetization can be characterized by the tissue parameters (T1, 

T2 or T2*, M0) and imaging parameters (TR, TE,  ) where 0M  is the spin density, TR is the 

repetition time, TE is the echo time and   is the flip angle. Thus, the signal change can be 

induced by a change in spin density, T1, and/or T2*. In a T2*-weighted gradient echo (GRE) fMRI 

experiment, for a stationary voxel, the magnetization after the     excitation,     for a series of 

excitations with a repetition time of TR, echo time TEt and flip angle of  is given by: 

 1 1 2*

1 0cos( ) 1 sin .

tTETR TR

T T T

t tM M e M e e 
  



  
    

                                                                  (1) 
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2.2 Models 

In this section, the two commonly used fMRI activation models: magnitude-only [15,16] 

and complex-valued [8,16] fMRI activation model are described. Then, our proposed statistical 

fMRI activation model for T2* contrast without incorporating the relaxation parameter values of 

gray matter is introduced. Lastly, we present a further improved model that includes the 

relaxation parameters of gray matter are into the model that estimates the activation parameter 

and activation statistics.  

2.2.1 Complex Activation (CA) Model 

As previously noted, an RF pulse is used to tip the aligned hydrogen nuclei to construct 

an image within a slice of the brain. The nuclei then return to their original aligned positions by 

inducing a current in a receiver coil, which provides the basic MR signal. Each measurement of 

the signal can be approximately expressed as the Fourier transformation of the spin density at a 

single point in the frequency domain (k-space). In MRI/fMRI, the signal is corrupted by additive 

thermal noise whose standard source is the human subject, as the human body itself generates 

electromagnetic noise due to its structure that is comprised of ions and electrons. Other sources of 

noise and unwanted signal can be from the reception coil, the analog to digital conversion, and 

movement of the subject such as chest movement, respiration and head movement. Thus, the raw 

k-space data is complex-valued, and it is assumed that both the real and imaginary components 

are measured with independent normally distributed error. 

In order to obtain MR images in the spatial domain, an inverse Fourier transform, which 

is a linear and orthogonal operation, is required.  After the inverse Fourier transform, images or 

voxel measurements are complex-valued and still corrupted by noise in both real and imaginary 
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parts. The magnitude of a complex-valued observation at time t is Ricean distributed and can be 

approximated by the normal distribution at high SNR [7,9,10].  

The complex-valued image measured over time in a given voxel is: 

   cos sin ,

1, ,

t tt t t R t t Iy M i M

t n

      


                                                                             (2) 

where    
'

2

2, ~ 0
t tR I N , I   , the true population magnitude is tM and the phase is

t . 

The data gathered during the course of an fMRI experiment is comprised of a sequence of 

individual MR images acquired while the subject performs a set of tasks. Throughout the 

experiment, the subject alternates between remaining still and performing a task allowing the 

task-related activations to be detected by qualifying the relative changes in the measured signal 

between individual images.  The task-related activations are detected by qualifying the relative 

changes in the measured signal between individual images. Using periods of non-task scans is a 

common means of establishing a baseline on which the assumption is made that the brain activity 

scales in a linear fashion. A linear model is generally used to describe the temporally varying 

magnitude tM : 

0 1 1t tt t q qM x x x       
,                                                                                             (3) 

where tx  is the     row of an         design matrix X, and β is a         vector of 

magnitude regression coefficients. Thus, the observed complex-valued data at time t can be 

represented by a     real-valued vector, 
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cos
,

sin

1, , ,

t t

t t

R Rt t

t tI I

y x

xy

t n

 

  

    
            


                                                                                                     (4)                

where yRt is the real part and yIt is the imaginary part. This is a very general linear multiple 

regression model. 

This model can also be written more generally as 

   

0 cos

0 sin

2 1 2 2 1 2 1 1 2 1

X
y

X

n n q q n

 


 

   
    

   

     
 

where the observed vector of data  ,R Iy y y   is the vector of observed real values stacked on 

the observed imaginary values and the vector of errors    , ~ 0R I N ,      is similarly 

defined. It is generally assumed that 2

2I   and .nI   

Recall that fMRI does not directly measure the electrical activity of the neurons, but the 

change in blood oxygenation indirectly caused by that activity. Thus, model parameters are 

estimated under the appropriately constrained null and alternative hypotheses,         

versus         , after which activation is determined with a generalized likelihood ratio 

statistic.  

Unrestricted MLE‟s of the parameters can be derived as 
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 

   
1

2

ˆ ˆ21ˆ tan
ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆcos sin

ˆ ˆ ˆ ˆcos cos1
ˆ

ˆ ˆ ˆ ˆ2 sin sin

R I

R R I I

R I

X X

X X X X

X X
y y

n X X

 


   

    

   


   


  

  
     

 


      
        

                                                                                     (5)                                    

where  
1ˆ

R RX X X y


   and  
1ˆ .I IX X X y


   

The MLE‟s under the constrained null hypothesis 
0 : 0H C   can also be derived as 

 

   
1

2

ˆ ˆ21
tan

ˆ ˆ ˆ ˆ2

ˆ ˆcos sin

cos cos1
,

2 sin sin

R I

R R I I

R I

X X

X X X X

X X
y y

n X X

 


   

    

   


   


  

  
       

   
 


      

        
           

where   

     .
111

1 CCXXCCXXIq






                                                                                      (6)                         

Denoting the maximum likelihood estimators under the alternative hypothesis using hats, 

and those under the null hypothesis using tildes, the generalized likelihood ratio statistic can be 

derived as, 

.
ˆ

~
log2log2

2

2














 nC

                                                                                                            (7)   

This statistic under the null hypothesis is approximately 2

r distributed in large samples, 

where r is the difference in the number of constraints between the alternative and the null 
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hypotheses or the fill row rank of C. This statistic is asymptotically equivalent to the usual t or F 

tests associated with statistical parametric maps. For the complex activation model with    

representing an intercept,    representing a linear drift over time, and    representing a contrast 

effect of a stimulus, we test whether the coefficient for the reference function is 0 by setting 

           so that the hypothesis is        . Note that, when    , two-sided testing can be 

performed using the signed likelihood ratio test [8,13] given by 

ˆ( ) 2logC CZ sign C  
                                                                                            (8) 

2.2.2 Magnitude-Only (MO) Activation Model 

In fMRI, complex-valued time courses are almost exclusively converted to magnitude 

and phase time courses, then the magnitude-only activation is detected while phase voxel time 

courses are discarded [11,12]. This typical method to compute the activation using only the 

magnitude at time t, denoted by tm and written as 

   
1

2 2 2
cos sin ,

t tt t t R t t Im M M       
                                                                       (9) 

where    2

2, 0,
t tR I N I  

 and true population magnitude,     is given by Eq. (3). 

The magnitude-only model in Eq. (9) discards any information on the phase, which is 

given by 

1
sin

tan .
cos

t

t

t t I

t

t t R

M

M

 


 


 

  
  

                                                                                               (10) 
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The magnitude of a complex-valued observation at time t is not normally distributed but 

is Ricean distributed [8,9,10]. The Ricean distribution of the magnitude 
tm is approximately 

normal with mean 
tx   and variance    at high SNRs.  

This model can also be written as 

   1 1 1 1 1

m X

n n q q n

  

     
                                                                       (11) 

where  2~ 0 ,N ,     is the temporal correlation matrix often taken to be 
nI   after pre-

whitening of the data, n is the number of time points and q is the number of non-baseline 

regressors [8]. 

The unconstrained maximum likelihood estimates of the parameters        can be 

derived as 

 

   

1

2

ˆ

ˆ ˆˆ .

X X X m

m X m X n



  


 


  

                                                                                                  (12)                                                                    

In order to construct a generalized likelihood ratio test of the hypothesis         

versus          where C is a full row rank matrix, the likelihood under the constrained 

hypothesis is maximized. The constrained MLE‟s can be derived as 

   2

ˆ

,m X m X n

 

  

 


  

                                                                                                 (13) 

where  is defined as in Eq. (6). 
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Similarly with the complex activation model, the likelihood ratio statistic for the 

magnitude-only model is given by, 

.
ˆ

~
loglog2

2

2














 nM

                                                                                                            (14) 

The likelihood ratio statistic under the null hypothesis has an asymptotic 2

1  distribution 

and with algebra the usual t tests for activation can be derived, given by 

 
.

ˆ

ˆ

2

2
2





SE
t 

                                                            (15) 

2.2.3  Statistical fMRI Model for Differential T2* Contrast (DeTeCT Model) 

This model differs from previously described activation models because it describes the 

physical process that has generated the data. The fMRI data is generated according to the 

equation of the temporally varying magnitude of the signal where the differential T2* contrast is 

also included to model the activation. The model parameters are determined by using Least 

Squares (LS) estimation and activation statistics is calculated by performing the general 

procedure of generalized likelihood ratio test. In the rest of the manuscript, this model will be 

called the “DeTeCT Model”, where “D” stands for “Differential”, “T” stands for “Transverse 

relaxation, T2*” and “CT” stands for “Contrast”.                                                

2.2.3.1 Data Generation 

As previously noted, the measured MR signal decays over time depending on the 

relaxation times and the spin density of the given voxel. The fMRI voxel measurements are a 

sequence of individual MR signals which are taken when the subject is performing a previously 
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explained task for a particular period of time, and then not performing for the next period of time. 

The temporally varying magnitude of the signal can be represented by incorporating the effect of 

the task execution to the magnetization. In this manuscript, the temporally varying 

magnitude,   , for an individual voxel, is defined as 

  21 1 *

1 0 1cos( ) 1 sin .

t

t

TETR TR

T zT T

t t tM M e M e e x
  

 




  
     

                                   (16) 

where 
1 1 .t tx x    

In this model, δ is the differential signal change, which is a coefficient for a reference 

function    related to a block experimental design. As we noted before, brain activation causes 

changes in blood oxygenation leading to changes in decay parameter,   
 , and thus the image 

intensity in   
 -weighted images. Therefore, the parameter      is included with the decay 

parameter   
  in the exponential function. The coefficient β1 is the coefficient for a time trend t for 

all voxels. 

The complex-valued observations at time t can be described as 

 cos sin ( )

1, , ,

t tt t t t R Iy M i i

t n

      



                                                                                      (17) 

where    is given by Eq. (16) and    
'

2

2, ~ 0 .
t tR I N , I                                    

2.2.3.2 Estimation of Model Parameters 

In this model, we focus on the estimation of the differential   
  contrast δ and the time 

trend coefficient    of the individual voxels from the generated complex-valued fMRI data. The 
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relaxation parameters,    and   
 , the phase,   and the spin density,   , values of the voxels are 

assumed to be known.  

As previously stated, the observed fMRI signal is complex-valued and the probability 

distributions of the real and imaginary parts of the given signal are normally distributed. 

Moreover, Least Squares (LS) estimation is a method of estimating parameters by minimizing the 

squared discrepancies on the observed data and their expected values. Working in the complex 

domain with the data having normally distributed noise and dealing with an over determined 

system allows for the use of a LS estimator, which is a computationally convenient measure of fit. 

As the unknown parameters of this model,  *

0 1 2, , , , ,M T T    are nonlinear in the 

representation of the signal given by Eq. (16), a nonlinear LS estimation is implemented. 

The nonlinear LS estimator, 
*

0 1 2
ˆ ( , , , , , ) M T T    is obtained by minimizing the 

function, 

      ,sincos
2

1
,,,,,,,,,,

1

22*

210

2 



n

t

tItRttIR MyMy
n

zTETRyyTTM
tttt



(18)     

with respect to the unknown parameters, *

0 1 2, , , , ,M T T    ; where tM  is given by Eq. (16). In 

this objective function, 
t tt R Iy y iy   is the observed signal of an individual voxel at time t; and 

costM  and sintM   are the expected real and imaginary parts of the signal. 

It is well known that the LS procedure corresponds to the maximum likelihood estimate 

(MLE) when appropriate probabilistic assumptions about underlying error distributions can be 

made, as in the proposed model. Since the nonlinear LS problem has no closed form solution and 

is usually solved by iterative refinement, the parameters of the model in this manuscript will be 

determined numerically.   
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2.2.3.3 Activation 

The main issue in analyzing functional MRI images is comparing images in a statistically 

meaningful way. In this manuscript, the simple matter of detecting „activation‟, the local increase 

in the effect of the task, with most of the brain unaffected by the task, is the primary focus of 

study. The model parameters are estimated under appropriately constrained null and 

unconstrained alternative hypotheses, after which activation is determined, which is characterized 

by differential   
  contrast, δ, with a generalized likelihood ratio statistic.  

According to the parameterization in this setting, “active” or “on” regions in the brain 

contain voxels with values δ    while “inactive” or “off” regions contain voxels with δ     

Maximum likelihood estimates of the parameters  *

0 1 2, , , , ,M T T     can be determined for 

both restricted alternative and null hypotheses. The hypotheses pair, 

0 1: 0 versus : 0H H  
                                                                                                      (19)             

detect task related voxel activation. Parameter estimates under the null hypothesis,  

 *

0 1 2, , , , ,M T T     and the alternative hypothesis,  *

0 1 2
ˆ ˆ ˆˆ ˆ ˆ, , , , ,M T T     were both determined 

by numerical minimization of Eq. (18) with respect to the parameters. The generalized likelihood 

ratio statistics, λ, the ratio of the likelihoods with restricted null and alternative hypotheses 

parameter estimates inserted leads to the large sample 2

1 distributed statistic 2log C  that is 

given in Eq. (7). Two-sided testing has been performed using the signed likelihood ratio test 

which is given by Eq. (8).   

 



16 
 

2.2.4 Statistical fMRI Model for Differential T2* Contrast Incorporating    and   
  of Gray 

Matter (DeTeCT-ING Model)  

In this proposed model, we obtain both relaxation parameters and determine fMRI 

activation by incorporating    and   
  of gray matter with the idea that active voxels in brain are 

located in gray matter. We differentiate this model from the DeTeCT Model, by including the 

relaxation parameter values of gray matter into activation statistics. Therefore, we include the 

suffix “-ing”, which stands for “Incorporating GM” into the name of the model.  

2.2.4.1 Data Generation 

In this model, the complex-valued observations at time t are generated according to Eq. 

(16), similarly with the DeTeCT Model. 

2.2.4.2 Estimation of Model Parameters 

Here, we concentrate on simultaneous estimation of the relaxation parameters,    and   
 ; 

and the differential   
  contrast of the individual voxels from the generated fMRI data. As 

previously noted, the nonlinear unknown parameters can be estimated by implementing nonlinear 

LS estimation which corresponds to the MLE for our model. The estimation of the parameters 

*

0 1 2, , , ,  and M T T     for the proposed model is as follows.  

The nonlinear LS estimator,  *

0 1 2
ˆ M , , , , ,T T    is obtained by minimizing the 

function, 

      ,sincos
2

1
,,,,,,,,,,

1

22*

210

2 



n

t

tItRttIR MyMy
n

zTETRyyTTM
tttt



(20) 
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with respect to the unknown parameters, *

0 1 2, , , , ,M T T    ; where 
tM  is given by Eq. (16). In 

this objective function, 
t tt R Iy y iy  is the observed signal of an individual voxel at time t; and 

costM  and sintM   are the expected real and imaginary parts of the signal. 

2.2.4.3 Activation 

The model parameters are estimated under appropriately constrained null and alternative 

hypotheses, after which activation is determined, which is characterized by differential   
  

contrast, δ, with a generalized likelihood ratio statistic. Unlike the DeTeCT Model, we 

incorporate 
1T  and *

2T values of the gray matter into the hypothesis testing. Here, it has been 

taken into the consideration that the neural activations are controlled by the voxels in gray matter 

of the brain. According to the parameterization in this setting, “active” or “on” regions in the 

brain contain voxels with values        
 ,   

    
 
  

 and δ    while “inactive” or “off” 

regions contain voxels with        
 ,   

    
 
  

 and δ    where     
 and   

 
  

 are the 1T  

and *

2T values of the gray matter.  

Maximum likelihood estimates of the parameters  *

0 1 2, , , , ,M T T     can be 

determined for both restricted alternative and null hypotheses. The hypotheses pair,  

* *

0 1 1 2 2: ,  ,  0
GM GM

H T T T T     vs. 
* *

1 1 1 2 2: ,  ,  0
GM GM

H T T T T                                   (21)        

detect task related voxel activation. Parameter estimates under the null hypothesis, 

 *

0 1 2, , , , ,M T T    and the alternative hypothesis,  *

0 1 2
ˆ ˆ ˆˆ ˆ ˆ, , , , ,M T T     were both determined 

by numerical minimization of Eq. (20) with the respective parameters. The generalized likelihood 

ratio statistics, ,C leads to the large sample 2

1 distributed statistic 2log C  that is given in Eq. 
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(7). The signed likelihood ratio test given by Eq. (8) has been used for two-sided testing similarly 

with the DeTeCT Model. 

3.  FMRI SIMULATION 

Data for all of the models introduced was generated to simulate voxel activation from a 

bilateral finger tapping fMRI block design experiment according to the regarding models. The 

block design consisted of 20 s off followed by sixteen epochs of 15 s on and 15 s off with an 

observation interval of 1 s or a 1000 ms.TR   

Before applying the complex and magnitude-only activation models to the simulated 

data, the first 20 observations were excluded as common practice in fMRI studies. Unlike 

traditional studies, these first observations were not discarded in the DeTeCT and DeTeCT-ING 

Models as they contain information on different tissue characterization. 

The simulation of the last model consisted of 510n   time points where the true 

activation structure is known to be within the regions of interest (ROIs) so that the model can be 

evaluated.  A       slice of the human head with two      ROIs is realistically simulated 

according to the Shepp-Logan phantom standards proposed in [2]. The spin density and the 

relaxation parameter values of the simulated tissues measured at 3.0 Tesla are given in Table 1 

[14]. The parameter values of the voxels that consist of different kinds of tissues were obtained 

by averaging the regarding tissues. For all voxels inside the phantom in this simulation, the phase 

and the flip angle were generically selected to be       ,         while       and    . 

The differential   
  contrast, δ, was given a constant value of 1.5 for the voxels in ROIs while 

defined to be zero for the inactive regions.  
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The presented results in this manuscript are calculated over 50 simulations which are 

performed using the MATLAB programming language on a dual quad-core PC with 24 gigabytes 

of RAM running Microsoft Windows 7. 

Table 1.Spin Density and the relaxation times in msec for the Shepp-Logan Phantom. 

Tissue         
  

CSF 100 4000 2200 

Gray Matter 83 1331 42 

White Matter 71 832 49 

 

The true parameter values are illustrated in Figure 1 for a       slice of the Shepp-

Logan phantom. The maps of the true spin density, 
0M ; longitudinal relaxation, 

1T ; transverse 

relaxation, *

2T ; differential *

2T  contrast,  ; linear trend, 
1 and phase angle,  are illustrated in 

Figs. 1a, 1b, 1c, 1d, 1e and 1f, respectively. The voxel relaxivities and proton spin density are 

different for different tissue types as illustrated in Figs. 1a, 1b and 1c. Two     ROIs which are 

lightened in Fig. 1d are designated to have activation. The coefficient for the reference function

is zero outside the ROIs and has constant value of 1.5 inside each ROI. 1 .01   and / 4   

are assumed constant across voxels inside the phantom brain whereas they are both zero outside 

as illustrated in Figs 1e and 1f.   
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a b c 

   

d e f 

   

Figure 1. True parameter maps generated according to 2D Shepp-Logan phantom standards for a 96 96

slice. a) True 
0

M  map, b) true 
1

T  map, c) true 
*

2
T map, d) true  map, e) true 

1
  map, f) true   map. 

    

Simulated fMRI data is constructed according to the proposed model given by Eq. (16). 

This model dictates that at time t  
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

     
                

     
                                     (22)                                          

where 
tR and 

tI are independent and identically distributed normal random variables with mean 

zero and variance   .  For each voxel, time depending echo time,       is assumed to consist of 

four parts. It is fixed as having a value of 42.7 at the first 10 time points. Then 5 TE values are 

equispaced in the interval             and this procedure is repeated again for the next 5 time 

points. Finally, the last 490 TE values are fixed as 42.7 as illustrated in Fig. 2a. In this simulation, 
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the time trend X is a column of counting numbers, where the reference function, 
tz consists of 

blocks of 0‟s and 1‟s, as being related to the block experimental design. We illustrate  and tz X in 

Figs. 2b and 2c, respectively. 

a     

 
b 

 
c 

 
Figure 2. a) Echo time,    ; b) reference function, tz ; time trend, c) X. 

 

The average effective magnetizations, tM  of each tissue type in the presented models for 

one simulation are given in Fig. 3. The average tM  for the models CA and MO given in Eq. (3) 

is illustrated in Fig. 3a, where the average tM  for the models DeTeCT and DeTeCT-ING given 

in Eq. (16) is illustrated in Fig. 3b. As we noted before, the magnetization follows the linear trend 

that characterizes the generated fMRI data for both of the model sets. However, the magnetization 

has different initial values for different tissues in the only DeTeCT and DeTeCT-ING Models, 

thus the effect of the relaxation parameters on the magnetization can only be seen in Fig. 3b at the 

first 20 time points. The models CA and MO do not take into the consideration the relaxation 

parameters and the tissue differences, as we noted before. Furthermore, the first scans which 
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include the important biological information of the tissues are discarded from the data. Therefore, 

the magnetization follows the same linear trend regardless of the tissue type for the CA and MO 

Models as it can be seen in Fig. 3a. 

         a            b 

  
Figure 3. a) Average tM  for CA and MO Models, b) average tM  for DeTeCT and DeTeCT-ING Models. 

 

The anatomical mask of the 96 96  2D Shepp-Logan phantom with two ROIs included 

in gray matter is illustrated in Fig. 4. It can be observed that two ROIs are located 

symmetrically on both the right and left-hand side of the brain.  

 

 

The parameter maps of the DeTeCT and DeTeCT-ING Models under the null and the 

alternative hypothesis given in Eqs. (19) and (21), are estimated by using the nonlinear LS 

 

Figure 4. Anatomical mask with ROIs 
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estimator for each voxel in the considered slice of the phantom. The calculated sample mean and 

variance of the estimated parameters of the DeTeCT Model under the null and the alternative 

hypothesis,
0 1: 0 versus : 0H H   , are given in Figs. 5 and 6, respectively. The similarity 

between the calculated sample means of the parameters, 
1  and  , given in Figs. 5d and 5e and 

the true parameter maps given in Figs. 1e and 1f is higher compared to the similarity between the 

calculated sample means of the parameters, 
0 1,M T and *

2T , given in Figs. 5a, 5b and 5c and the 

corresponding true parameter maps given in Figs. 1a, 1b and 1c, respectively.  This could 

possibly be explained as a result of the nonlinear least squares estimation of the parameters 

0 1,M T and *

2T in Eq. (22) in which the parameter 
1  is linear and   is a parameter of a 

trigonometric function. In both the sample mean and sample variance maps of the estimated 

parameters
0 1,M T , *

2T , 
1 , and  , in Figs 5a-5d, 5f there appears to be a poor estimation of 

those parameters in some tissues such as CSF. This is the result of having a nonlinear objective 

function given in Eq. (18) and six different parameters to be optimized in this system. The 

differences in the parameters in different tissues which are not taken into the consideration in CA 

and MO Models can be considered as another reason of that result. As previously noted, 

statistically significant task-related activation was detected using a 5% Bonferroni family-wise-

error rate (FEW). The mean of the differential coefficient for the reference function  and the Z 

statistics map calculated by using a 5% FWE given in Eq. (8) are illustrated in Fig. 5f. (A map of 

estimated values for δ under the null hypothesis is not shown as it is all zeros.) One can observe 

that the DeTeCT Model which uses the complex-valued measurements can detect task-related 

changes as can be seen by the highly active square ROIs in the Z map of Fig 5f. (right). The high 

 values in CSF in Fig. 5f (left) could possibly be explained by the nonlinear least squares 

estimation of that parameter, similarly with the parameters 0 1,M T and *

2T in Eq. (22).  
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The sample variances of the estimated parameters
0 1,M T , *

2T ,
1  and  , under the null 

and the alternative hypothesis appear to be similar to each other as illustrated in Figs 6a-6e.  

However, one can see that the sample variance of the estimated
0

M under the alternative 

hypothesis given in Fig. 6a (left) is higher outside the phantom brain compared to the sample 

variance of the estimated
0

M under the null hypothesis given in Fig. 6b (right). A similar result 

can also be observed in the sample variance of the parameter 
1  

outside the phantom brain as 

illustrated in Fig. 6d. There is a slight difference in the sample variances outside the phantom 

brain as it can be seen in Fig. 6d (left) and Fig. 6d (right).  (A map of estimated variances for δ 

under the null hypothesis is not shown as it is all zeros.)  

a b 

  

c d 

  

e f 

  

Figure 5. Calculated sample means of the estimated parameters of DeTeCT 

Model. a)  
0

M̂ and  
0

M , b)  
1

T̂ and  
1

T c)  *

2
T̂ and  *

2
T , d)

 
1

ˆ  and  
1

  , e)  ˆ  and    , f)  ˆ  and  Z .        
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Similarly with the DeTeCT Model, the parameters of the DeTeCT-ING Model, estimated 

under the null and the alternative hypothesis, 
* *

0 1 1 2 2: , ,  0
GM GM

H T T T T     versus

* *

1 1 1 2 2: , ,  0
GM GM

H T T T T    , are illustrated in Figs. 7 and 9, respectively. 

Figs. 7a-7d (left) show that the calculated sample means of the parameters 
0M ,

1 , and δ, under 

both the alternative and the null hypotheses appear to be similar to the corresponding true 

parameter maps given in Figs 1a, 1d-f. (A map of estimated values for δ under the null hypothesis 

is not shown as it is all zeros.) However, in white matter tissue, the value of the parameters, 
0M  

and
1  which are given in Figs. 7a and 7b appear to be different than the corresponding true 

values of those parameters given in Figs. 1a and 1b, respectively. Also, the value of the parameter 

δ given in Fig. 7d is higher outside the phantom brain compared to its true value given in Fig. 1d 

(left). Similarly with the DeTeCT Model, the DeTeCT-ING Model can detect task-related 

changes in ROIs as illustrated in Fig. 7d (left) which shows the statistically significant difference 

in the δ values within the ROIs and in Fig 7d (left) which gives higher activation statistics in 

those regions compared to the other areas in the phantom brain.  
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a     b 

  

c     d 

  

e     f 

  

Figure 6. Calculated sample variances of the estimated parameters of DeTeCT Model. 

a)  2

0
M̂ and  2

0
M , b)  2

1
T̂ and  2

1
T , c)  2 *

2
T̂ and  2 *

2
T , d)  2

1

ˆ 

and  2

1
  , e)  2 ˆ  and  2

  , f)  2 ˆ  and  2

Z .        

 

a        b 
  

c      d 

   

Figure 7. Calculated sample means of the estimated parameters of DeTeCT-ING Model. a)  
0

M̂ and

 
0

M , b)  
1

ˆ  and  
1

  , c)  ˆ  and    , d)  ˆ  and  Z .        
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To better illustrate the differences between the null and the alternative hypothesis 

estimation, we present the corresponding difference maps for
0M ,

1 , and   in Figs. 8a-8c. 

Difference maps in Fig. 8a and Fig. 8b indicate that the most apparent difference in all parameters 

inside the phantom brain occurs in the ROIs since the only difference in the hypothesis setting 

given in Eq. (21) is in those regions. In Fig. 8b, the difference map indicates that the difference in 

the estimation of the parameter, 
1  

under the null and the alternative hypothesis increases outside 

the phantom brain. The difference maps also show a large difference in the estimated phase 

outside the phantom in Fig. 8c. 

a b c 

   

Figure 8. Difference maps between the sample means of the estimated parameters of DeTeCT-ING 

Model. a)     
0 0

ˆabs M M  , b)     
1 1

ˆabs     , c)     ˆabs     .        

 

The parameters 0M , 
1 ,  , and δ, estimated in DeTeCT-ING Model shown in Figs. 9a-

9d appear to have lower sample variances compared to those estimated in Figs. 6a and 6d-f  for  

the DeTeCT Model . This decreased variance is a result of having fewer parameters to be 

estimated according to the hypothesis pair given in Eq. (21) in which at least two parameters are 

set to constant values.  

The variability in the estimated parameter map images is the result of the noise in the 

signal as well as the systematic error of the numerical optimization procedure. In areas without 

signal, such as outside of the phantom brain, have not been masked after estimation. Thus, the 
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parameters for the voxels which are outside of the phantom brain may not have been estimated 

precisely as we would expect. It should also be noted here that the results of the numerical 

optimization process would yield more accurate results as we increase the number of the 

simulated experiments that have been done. The similar result is to be expected if the standard 

deviation of the noise is decreased. 

a b 
  

c d 

   

Figure 9. Calculated sample variances of the estimated parameters of DeTeCT-ING Model. a)  2

0
M̂

and  2

0
M , b)  2

1

ˆ  and  2

1
  , c)  2 ˆ  and  2

  , d)  2 ˆ  and  2

Z .        

 

To better illustrate the observed results for our new models, we compare the sample mean 

and variances of the parameters which are estimated by using the CA, MO, DeTeCT and 

DeTeCT-ING Models. For all of the models, we used the same data which have been generated 

by Eq. (16) that takes into account the physical magnetization as in real case. We present the 

descriptive statistics of the parameters, 1 , which is one of the two parameters that are estimated 

in all of the models under the null and the alternative hypothesis.  

Calculated sample means of 1  under the alternative and null hypothesis according to 

CA and MO Models appear to be similar and have higher values in CSF areas as illustrated in 
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Figs. 10a and 10b. Note that, the CA and MO models assume a linear model to represent the 

magnetization over time and do not consider that the true form of the magnetization, and thus the 

signal is different in different tissues. The generated data using the true physical magnetization in 

Eq. 16, introduced in models DeTeCT and DeTeCT-ING, mimics the known truth for  fMRI data 

better than the linear magnetization representation in the CA and MO models. As a result of this, 

the sample mean of the parameter 
1  estimated according to DeTeCT and DeTeCT-ING Models 

shown in Figs. 10c and 10d produce better results than for the CA and MO models as can be 

observed in Figs. 10a and 10b.  

a b 

  

c D 

  

Figure 10. Calculated sample means of
1

 under the alternative and the null hypothesis, respectively.  

a) CA Model, b) MO Model, c) DeTeCT Model, d) DeTeCT-ING Model.  
 

The absolute differences between true 1  map given in Fig. 1e and the sample mean of 

the estimated 1  according to the models given in Figs. 10a-d are illustrated in Fig. 11. It is 

obvious that estimation of 1  is better when it is done by using DeTeCT and DeTeCT-ING 

Models as can be seen in Figs. 11c and 11d as compared to Figs. 11a and 11b.   
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The activation statistics are computed from a generalized likelihood ratio test for the 

models which use the complex-valued voxel observations (CA, DeTeCT and DeTeCT-ING 

Models) and the one which uses the magnitude of the complex-valued observations (MO Model), 

by using the Eqs. (8) and (15), respectively. In Figs. 12a-h, we present the calculated sample 

mean and sample variances of the activation statistics maps of the models CA, MO, DeTeCT and 

DeTeCT-ING. One can observe that the sample mean of the activation statistics of the CA and 

MO Models given in Figs. 12a and 12b is higher than those of the DeTeCT and DeTeCT-ING 

Models given in Figs. 12c and 12d. It is evident that inside the phantom brain, the lowest sample 

variance in activation statistics appears to be in DeTeCT-ING Model illustrated in Fig. 12h 

compared to the sample variance of the models CA, MO and DeTeCT, given in Figs. 12e, 12f and 

12h, respectively. This result shows that the proposed activation setting in DeTeCT-ING Model is 

better in detecting the fMRI activation comparing to the other models. It can also be seen that the 

sample variance of the CA Model given in Fig. 12e is lower outside the phantom brain compared 

to the sample variance of the MO Model illustrated in Fig. 12f.  

a b 

  

c d 

  

Figure 11. Absolute differences between true and estimated
1

 under the alternative and the null 

hypothesis, respectively. a) CA Model, b) MO Model, c) DeTeCT Model, d) DeTeCT-ING Model.  
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Moreover, the sample variance of the DeTeCT Model given Fig. 12g is lower outside the 

phantom compared to both models CA and MO whose activation statistics‟ sample variances are 

given in Figs 12e and 12f, respectively. 

a                                        b c                                         d 

  

e                                        f     g                                         h    

  

Figure 12. Calculated sample mean and variance of the activation statistics. 

 a)  Z , CA Model, b) ,  t  MO Model, c) ,  Z DeTeCT Model, d)  Z , DeTeCT-ING 

Model, e)  2

Z , CA Model, f)  2

t , MO Model, g)  2

Z , DeTeCT Model, h)  2

Z , 

DeTeCT-ING Model. 
 

As previously noted, statistically significant task-related activation for each of the models 

was detected using a 5% Bonferroni FWE rate. The voxels above the threshold for the models are 

detected as “active” voxels, whereas the voxels below the threshold are detected as “inactive”. 

The fraction of the activations of the models, CA, MO, DeTeCT and DeTeCT-ING calculated 

over 50 simulations are illustrated in Figs. 13a, 13b, 13c, and 13d, respectively. By comparing the 

fraction of the activations calculated by using MO and CA Models in Figs. 13a and 13b, to those 

calculated by DeTeCT and DeTeCT-ING Models in Figs. 13c and 13d; it is evident that 100% of 

the time, DeTeCT and DeTeCT-ING Models are able to detect the activation which was assumed 

to be in ROIs. The fraction of the activation calculated by the models CA and MO is around 0.5; 

whereas it is exactly 1 when the DeTeCT and DeTeCT-ING Models are used.   
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a b c d 

    

Figure 13. Fraction of the activations calculated by using a 5% FWE.  a) MO Model, b) CA Model, c) 
DeTeCT Model, d) DeTeCT-ING Model. 

 

5. DISCUSSION 

A statistical fMRI model for differential   
  contrast, so called the DeTeCT-ING Model, 

was developed by incorporating    and   
  of gray matter tissue, considering the fact that the 

active voxels are located in gray matter, the part of the brain that contains neural cell bodies, due 

to the relatively greater blood flow and volume in there. Furthermore, the physical magnetization 

equation was included into the model rather than using a linear model to describe the 

magnetization which is a common practice in previous studies. 

Activation statistics were numerically evaluated from the maximum likelihood estimates 

of the model parameters including differential   
  contrast for a simulated data set. Unlike the 

previously presented fMRI activation models, we did not exclude the first few images from the 

data since the first scans of the stationary tissue still have the biological information of the brain, 

including the tissue parameters such as relaxation parameter and spin density of the tissues.  

There are two main contributions of the developed model to the current studies in the 

field by utilizing the neglected information as we noted above: Simultaneous estimation of the 

model parameters would be a practical method for the well-known process of detecting activation 

in fMRI; and constructing hypothesis tests by incorporating    and   
  of gray matter would 
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provide more significant activation statistics. The model would also allow one to estimate the 

tissue and the imaging parameters which could be used for tissue characterization, by utilizing the 

information in the first few images.  

The next direction of this work would be applying the proposed model to the real fMRI 

data which is gathered by using the same system parameter values such as repetition time, echo 

time and the flip angle as we have used in our simulations. 

 

  



34 
 

BIBLIOGRAPHY 

 

[1]  Baselice, F., Ferraioli G. & Pascazio, V. Relaxation time estimation from complex magnetic 

resonance imaging. Sensors. 2010;10, 3611-3625.  

[2]  Gach, H. M., Tanase, C., Boada, F. 2D & 3D Shepp-Logan phantom standards for MRI. 

ICSENG '08. 19th International Conference on Systems Engineering. 2008; 521-526.  

[3]  Haacke, E.M., Brown, R., Thompson, M., Venkatesan, R. Magnetic resonance imaging: 

physical principles and sequence design. New York, NY, USA: John Wiley and Sons 1999. 

[4]   Mazaheri, Y., Biswal, B. B., Ward, B. D. & Hyde, J. Measurements of tissue T1 spin-lattice 

relaxation time and discrimination of large draining veins using transient EPI data sets in 

BOLD-weighted fMRI acquisitions. NeuroImage. 2006;32,603-615.  

[5] Ogawa S., Lee T. M., Kay, A. R., Ellermann, J. M., Kim, S. G., Merkle, H & Ugurbil, K.   

Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with 

magnetic resonance imaging. Proceedings of the National Academy of Sciences of the 

United States of America. 1992;89,5951-5955. 

[6]    Ogawa, S., Lee, T. M., Kay A. R., Tank, D. W. Brain magnetic resonance imaging with 

contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 1990;87, 9868-9872. 

[7] Rowe, D. B. Parameter estimation in the magnitude-only and complex-valued fMRI data 

models. NeuroImage. 2005;25,1124-1132. 

[8] Rowe, D.B., Logan, B.R. A complex way to compute fMRI. NeuroImage. 2004;23(3), 1078-

1092. 

[9] Gudbjartsson, H., Patz, S. The Rician distribution of noisy data. Magn. Reson. Med. 

1995;34(6), 910-914. 

[10] Larkman, D.J., Nunes, R.G.  Parallel magnetic resonance imaging. Phys Med. Biol.  

2007;52,15–55. 

[11] Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S. Processing strategies for time-course 

data sets in functional MRI of the human brain. Magn. Reson. Med. 1993;30(2),161-173. 

[12] Cox, R.W., Jesmanowicz, A., Hyde, J.S. Real-time functional magnetic resonance imaging. 

Magn. Reson. Med. 1995;33(2),230-236. 

[13] Severini, T.A. Likelihood Methods in Statistics. Oxford, UK: Oxford University Press 2001.  

[14] Atlas, S. W. Magnetic Resonance Imaging of the Brain and Spine, Fourth Edition, Volume 

1. Philadelphia, USA: Lippincott Williams & Wilkins 2008. 



35 
 

[15] Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S. Processing strategies for time-course 

data sets in functional MRI of the human brain. Magn. Reson. Med. 1993;30(2),161-173. 

[16] Rowe DB, Logan BR. Complex fMRI analysis with unrestricted phase is equivalent to a 

magnitude-only model. Neuroimage. 2005;24:603-606. 

[17 Logan BR., Rowe DB. An evaluation of thresholding techniques in fMRI analysis. 

Neuroimage. 2004;22(1):95-108. 

 

 

    

http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&db=pubmed&cmd=Search&term=NeuroImage%5BJour%5D%20AND%2024%5Bvolume%5D%20AND%20603%5Bpage%5D


 
 

Marquette University 

 

 

 

 

 

 

 

 

 

This is to certify that we have examined this copy of the thesis by 

 

M. Muge. Karaman 

 

and have found that it is complete and satisfactory in all respects. 

 

This thesis has been approved by: 

 

 

_______________________________________________ 

Dr. Daniel B. Rowe, Department of Mathematics, Statistics, and Computer Science 

 

 

 

 

Approved on 

 

___________________________________ 


