Improving the Accuracy of fMRI and fcMRI Analysis by Accounting for Spatiotemporal Processing Induced Correlations

M. Muge Karaman¹

Department of Mathematics, Statistics, and Computer Science Marquette University, Milwaukee, WI

meryem.karaman@marquette.edu

Joint with Daniel B. Rowe^{1,2} and Andrew S. Nencka²

Joint Statistical Meetings Boston, MA

August 2-7, 2014

1) Golby et al.: Brain 128: 773–787, 2005. 2) Greicius et al.: Proc Natl. Acad. Sci. U S A, 101(13): 4637–4642, 2004.

1) Golby et al.: Brain 128: 773–787, 2005. 2) Greicius et al.: Proc Natl. Acad. Sci. U S A, 101(13): 4637–4642, 2004.

M. Karaman

JSM 2014

August 5, 2014

Our Approach:

Our Approach:

Our Approach:

Background – Complex-valued image reconstruction

• In MRI, magnetic field gradients Fourier encode the complex-valued spatial frequencies of an object. \mathbf{k}_{v}

Background – Complex-valued image reconstruction

• In MRI, magnetic field gradients Fourier encode the complex-valued spatial frequencies of an object. $\uparrow k_v$ $\uparrow y$

Background – Complex-valued image reconstruction

Complex-valued 2D IFT

$$m=n=8$$

$$\begin{pmatrix} \Omega_{yR} + i\Omega_{yI} \end{pmatrix} * (s_R + is_I) * (\Omega_{xR} + i\Omega_{xI})^T = \rho_R + i\rho_I$$

$$+i +i +i +i = +i$$

Rowe, Nencka, Hoffman: JNM, 159:361-369, 2007.

JSM 2014

Background - Linear complex-valued image reconstruction

• $m \times n$ complex-valued k-space observation can be represented by a $2p \times 1$ vector

Rowe, Nencka, Hoffman: JNM, 159:361-369, 2007.

M. Karaman	JSM 2014	August 5, 2014

p = mn

Background – Linear complex-valued image reconstruction

⁶

Background – Individual Image Processing

JSM 2014

Time Series Analysis Framework

• The observed $m \times n$ k-space arrays in a time series of N points can be vectorized as in individual image processing framework.

Karaman, Nencka, Rowe: Proc. Intl. Soc. Magn. Reson.Med., 21:2232, Salt Lake City, Utah, USA, 2013.

Time Series Analysis Framework

• The operator, O_T , can then be pre-multiplied by vectorized s_T .

Time Series Analysis Framework

$$y_T = TIRKs_T = O_Ts_T$$

How much artificial spatial and/or temporal correlation do we induce by doing that?

Functional Correlations

- Assume $E(s_T) = s_{T_0}$ and $cov(s_T) = \Gamma$ $y_T = O_T s_T$
- Spatiotemporal covariance: $\Sigma = O_T \Gamma O_T^T$
- Spatiotemporal correlation: $\Sigma_R = D_T^{-1/2} O_T \Gamma O_T^T D_T^{-1/2}$ $D_T = diag(\Sigma)$
- Σ consists of diagonal blocks of dimension 2p×2p that contains covariance matrices of individual images.

Functional Correlations

- Assume $E(s_T) = s_{T_0}$ and $cov(s_T) = \Gamma$ $y_T = O_T s_T$
- Spatiotemporal covariance: $\Sigma = O_T \Gamma O_T^T$
- Spatiotemporal correlation: $\Sigma_R = D_T^{-1/2} O_T \Gamma O_T^T D_T^{-1/2}$ $D_T = diag(\Sigma)$
- Σ consists of diagonal blocks of dimension 2p×2p that contains covariance matrices of individual images.

Voxel time series covariance matrix (Temporal corr's):

SENSE and GRAPPA Induced Correlations

Default Mode Network

Number of citations: PubMed – 754 Google Scholar – 2423

M. Karaman

JSM 2014

Theoretical Operator Induced Correlations

- A single slice 96×96 image was considered in a time series of 490 repetitions.
- Data was assumed to be subsampled by an acceleration factor of A=3 with $N_C=4$ coils.

	Smoothing	Temp. Filt.	SENSE Recons.	Initial Voxel Covariance
Case. I:	1	0	1	0
Case. II:	1	0	1	1
Case. III:	1	1	1	0
Case. IV:	1	1	1	1

- Smoothing: Gaussian smoothing with fwhm of 3 pixels.
- Temporal Filtering: Band pass filtering at 0.08 Hz and 0.009 Hz.
- Programs are written in MATLAB on a dual quad-core PC with 48 gigabytes of RAM running Microsoft Windows 7.

Theoretical Operator Induced Correlations (Center Voxel)

Case I (Smoothing:1, Temp. Filt.: 0, SENSE: 1, Initial Vox. Cov.: 0)

Case II (Smoothing:1, Temp. Filt.: 0, SENSE: 1, Initial Vox. Cov.: 1)

M. Karaman

Theoretical Operator Induced Correlations (Center Voxel)

Case III (Smoothing:1, Temp. Filt.: 1, SENSE: 1, Initial Vox. Cov.: 0)

Case IV (Smoothing:1, Temp. Filt.: 1, SENSE: 1, Initial Vox. Cov.: 1)

M. Karaman

Experimental Illustration – Induced Correlations (Phantom)

- Spherical agar phantom on a 3.0-T GE Signa LX MR scanner.
- 510 TRs from 8 receiver coils.
- TR = 1 s., TE = 45.4 ms., $\phi = 45^{\circ}$, FOV = 24 cm, effective echo spacing = 0.816 ms., bandwidth = 125 kHz, 2.5 mm axial slices.
- 490 images from $N_C = 4$ equally spaced coils were utilized for SENSE.
- Data was assumed to be subsampled by an acceleration factor of A=3.
 <u>Processing operations:</u>
- Smoothing: Gaussian smoothing with fwhm of 3 pixels.
- Temporal Filtering: Band pass filtering at 0.08 Hz and 0.009 Hz.

Correlations:

- Spatial correlations were estimated over time series.
- Temporal correlations were estimated over 10 intervals of 49 TRs.

Experimental Illustration – Induced Correlations (Phantom)

Smoothing:0, Temp. Filt.: 0, SENSE: 1

Experimental Illustration – Induced Correlations (Phantom)

Smoothing:1, Temp. Filt.: 0, SENSE: 1

Experimental Illustration – Induced Correlations (Phantom)

Smoothing:1, Temp. Filt.: 0, SENSE: 1

 $\Sigma_{R_{\rho}} (\text{Re/Re}) \Sigma_{R_{\rho}} (\text{Im/Im}) \Sigma_{R_{\rho}} (\text{Re/Im}) \Sigma_{R_{\rho}} (\text{Mag}^{2}) \Sigma_{R_{\nu}}$

Smoothing:1, Temp. Filt.: 1, SENSE: 1

M. Karaman

Experimental Illustration – Induced Correlations (Human)

- Single subject on a 3.0-T GE Signa LX MR scanner.
- Non-task 96×96 human subject data for 510 *TR*s from 8 receiver coils.
- TR = 1 s., TE = 45.4 ms., $\phi = 45^{\circ}$, FOV = 24 cm, effective echo spacing = 0.816 ms., bandwidth = 125 kHz, 2.5 mm axial slices.
- 490 images from $N_C = 4$ equally spaced coils were utilized for SENSE.
- Data was assumed to be subsampled by an acceleration factor of A=3.
 <u>Processing operations:</u>
- Smoothing: Gaussian smoothing with fwhm of 3 pixels.
- Temporal Filtering: Band pass filtering at 0.08Hz and 0.009 Hz.

Correlations:

- Spatial correlations were estimated over time series.
- Temporal correlations were estimated over 10 intervals of 49 *TR*s.

Experimental Illustration – Induced Correlations (Human)

Smoothing:0, Temp. Filt.: 0, SENSE: 1

Experimental Illustration – Induced Correlations (Human)

Smoothing:1, Temp. Filt.: 0, SENSE: 1

Experimental Illustration – Induced Correlations (Human)

Smoothing:1, Temp. Filt.: 0, SENSE: 1

 $\Sigma_{R_{\rho}} (\text{Re/Re}) \quad \Sigma_{R_{\rho}} (\text{Im/Im}) \quad \Sigma_{R_{\rho}} (\text{Re/Im}) \quad \Sigma_{R_{\rho}} (\text{Mag}^2) \quad \Sigma_{R_{\nu}}$

Smoothing:1, Temp. Filt.: 1, SENSE: 1

Functional Activations

• Spatial and temporal processing alters the noise properties of the reconstructed and processed fMRI data.

However

• fMRI model assumes independence between voxels:

CV Model:
$$\begin{pmatrix} y_{R_j} \\ y_{I_j} \end{pmatrix} = \begin{pmatrix} C_j X_j \beta_j \\ S_j X_j \beta_j \end{pmatrix} + \begin{pmatrix} \eta_{R_j} \\ \eta_{I_j} \end{pmatrix}, \quad \left(\eta_{R_{ij}}, \eta_{I_{ij}} \right)' \sim N\left(0, \sum_{v_j}\right)$$
$$C_j : \cos(\theta_j) I_n$$
$$S_j : \sin(\theta_j) I_n$$

Data processing can corrupt the neuroscientific conclusions drawn from the data if they are unaccounted for.

Rowe and Logan: Neuroimage, 2004; 23(3):1078-1092.

М	Karaman
	Karaman

usually

 $\sigma_i^2 I_2 \otimes I_n$

assumed to be

Functional Activations

• Spatial and temporal processing alters the noise properties of the reconstructed and processed fMRI data.

However
fMRI model assumes independence between voxels:

MO Model:
$$y_{m_j} = X_j \beta_j + \varepsilon_j, \qquad \varepsilon_j \sim N(0, \Sigma_{v_j})$$

voxel-by-voxel

Data processing can corrupt the neuroscientific conclusions drawn from the data if they are unaccounted for.

Bandettini, Jesmanowicz, Wong, Hyde: MRM, 1993; 30(2):161-173.

M.	Karaman
	inter annun

usually

 $\sigma_i^2 I_n$

7

assumed to be

Generalized CV-fMRI Activation Model

• A larger regression model can be developed.

 $\eta \sim N(0, \Sigma_{T})$

Generalized MO-fMRI Activation Model

• A larger regression model can be developed.

Generalized MO-fMRI Activation Model

- Assume that a "spatial" operation is performed: $\Sigma_{T_{MO}} = \Sigma_{\rho} \otimes I_n$ $y_P = X\beta + \varepsilon$ $\varepsilon \sim N(0, \Sigma_{T_{MO}})$ ٠
- In our model, $X_1 = X_2 = \dots = X_p = X_v$: $X = I_p \otimes X_v$ $p \times p$ spatial cov. matrix •

Generalized Least Squares (GLS) solution for the regression coefficients, β :

$$\hat{\boldsymbol{\beta}} = \left[\left(\boldsymbol{X}^{T} \left(\boldsymbol{\Sigma}_{T_{MO}} \right)^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{T} \left(\boldsymbol{\Sigma}_{T_{MO}} \right)^{-1} \right] \boldsymbol{y}_{P}$$

$$\hat{\boldsymbol{\beta}} = \left[\left(\left(\boldsymbol{I}_{p} \otimes \boldsymbol{X}_{v} \right)^{T} \left(\boldsymbol{\Sigma}_{\rho}^{-1} \otimes \boldsymbol{I}_{n} \right) \left(\boldsymbol{I}_{p} \otimes \boldsymbol{X}_{v} \right) \right)^{-1} \left(\boldsymbol{I}_{p} \otimes \boldsymbol{X}_{v} \right)^{T} \left(\boldsymbol{\Sigma}_{\rho}^{-1} \otimes \boldsymbol{I}_{n} \right) \right] \boldsymbol{y}_{P}$$

$$\hat{\boldsymbol{\beta}} = \left[\boldsymbol{I}_{p} \otimes \left(\boldsymbol{X}_{v}^{T} \boldsymbol{X}_{v} \right)^{-1} \boldsymbol{X}_{v}^{T} \right] \boldsymbol{y}_{P} \longrightarrow \begin{array}{l} \text{Ordinary Least Squares (OLS) Solution} \\ \text{No gain in estimating the system jointly!} \end{array}$$

Multiple comparisons adjustment techniques can be used to account for the ٠ spatial processing induced correlations.

Generalized MO-fMRI Activation Model

- Assume that a "spatial and temporal" operation is performed: $\Sigma_{T_{MO}} = \Sigma_{\rho} \otimes \Psi$
- In our model, $X_1 = X_2 = \dots = X_p = X_v$: $X = I_p \otimes X_v$

 $n \times n$ temporal cov. matrix

• Generalized Least Squares (GLS) solution for the regression coefficients, β :

WLS can still be used to account for temporal processing induced correlations.

 $\mathbf{V} \mathbf{0}$

Discussion

- Data processing improves the appearance of the data, however induces correlations of no biological origin.
- Such correlations can increase false negatives and positives in fcMRI analysis.
- AMMUST-*t* framework
 - allows one to precisely quantify artificial correlations induced by data processing,
 - provides tools to draw more accurate and reliable functional connectivity activity results.
- Additional processing operations can be linearized and adopted into the AMMUST-*t* framework.

Thank You!