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Our Approach: 
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Our Approach: 
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• In MRI, magnetic field gradients Fourier encode the complex-valued spatial 

frequencies of an object. 
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Background – Complex-valued image reconstruction 
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Rowe, Nencka, Hoffman: JNM, 159:361-369, 2007. 
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Background – Complex-valued image reconstruction 
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• m×n complex-valued k-space observation can be represented by a 2p×1 vector 
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Background - Linear complex-valued image reconstruction 
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Nencka, Hahn, Rowe: JNSM, 181:268-282, 2009. 

y    s

y  O  s

Background – Linear complex-valued image reconstruction 

Examining the Statistical Effects of Spatiotemporal Processing 



M. Karaman JSM 2014 August 5, 2014 

8m n 



7 

Rs

Is

2 1p2 2p p2 1p

Ry

Iy

IO 
KO

Nencka, Hahn, Rowe: JNSM, 181:268-282, 2009. 

Image 
processing 

k-space 
processing 

y    s

y  O  s

IO 
KO

Background – Individual Image Processing 

Examining the Statistical Effects of Spatiotemporal Processing 



• The observed m×n k-space arrays in a time series of N points can be vectorized as in individual 

image processing framework. 
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Time Series Analysis Framework 

N

Examining the Statistical Effects of Spatiotemporal Processing 

Karaman, Nencka, Rowe: Proc. Intl. Soc. Magn. Reson.Med., 21:2232, Salt Lake City, Utah, USA, 2013. 



• The operator, OT, can then be pre-multiplied by vectorized  sT. 
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How much artificial spatial and/or temporal correlation 

do we induce by doing that? 
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Time Series Analysis Framework 

Examining the Statistical Effects of Spatiotemporal Processing 



M. Karaman JSM 2014 August 5, 2014 

• Assume                        and  
 

• Spatiotemporal covariance: 

• Spatiotemporal correlation:                       
 

• Σ consists of diagonal blocks of dimension 2p×2p that contains covariance 

matrices of individual images. 
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SENSE and GRAPPA Induced Correlations 
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Anderson, JS et al. PNAS 2010;107:20110-20114 
Greicus, MD et al. PNAS 2003;100:4637-4642 
 

Number of citations: 
PubMed – 754  
Google Scholar – 2423 

Bruce, Karaman, Rowe: MRI, 30(8):1143-1166, 2012. 
Bruce, Rowe: IEEE, 33(2):495-503, 2014. 
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Theoretical Operator Induced Correlations 

• A single slice 96×96 image was considered in a time series of 490 repetitions. 
 

• Data was assumed to be subsampled by an acceleration factor of A=3 with 

NC=4 coils. 

 

 

 

 
 

 

 

• Smoothing: Gaussian smoothing with fwhm of 3 pixels. 
 

• Temporal Filtering: Band pass filtering at 0.08 Hz and 0.009 Hz. 
 

• Programs are written in MATLAB on a dual quad-core PC with 48 gigabytes of 

RAM running Microsoft Windows 7. 

Smoothing Temp. Filt. SENSE Recons. Initial Voxel Covariance 

Case. I: 1 0 1 0 

Case. II: 1 0 1 1 

Case. III: 1 1 1 0 

Case. IV: 1 1 1 1 

Examining the Statistical Effects of Spatiotemporal Processing 



 

 

 

 
 

M. Karaman JSM 2014 August 5, 2014 14 

Theoretical Operator Induced Correlations (Center Voxel) 
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Case I (Smoothing:1, Temp. Filt.: 0, SENSE: 1, Initial Vox. Cov.: 0)    
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Case II (Smoothing:1, Temp. Filt.: 0, SENSE: 1, Initial Vox. Cov.: 1)    
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Theoretical Operator Induced Correlations (Center Voxel) 
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Experimental Illustration – Induced Correlations (Phantom) 

• Spherical agar phantom on a 3.0-T GE Signa LX MR scanner. 
 

• 510 TRs from 8 receiver coils. 
 

• TR = 1 s., TE = 45.4 ms., ϕ = 45o, FOV = 24 cm, effective echo spacing = 0.816 ms., 

bandwidth = 125 kHz, 2.5 mm axial slices. 
 

• 490 images from NC = 4 equally spaced coils were utilized for SENSE. 
 

• Data was assumed to be subsampled by an acceleration factor of A=3 . 
 

Processing operations: 
 

• Smoothing: Gaussian smoothing with fwhm of 3 pixels. 
 

• Temporal Filtering: Band pass filtering at 0.08 Hz and 0.009 Hz. 
 

    Correlations: 

• Spatial correlations were estimated over time series. 

• Temporal correlations were estimated over 10 intervals of 49 TRs. 
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Experimental Illustration – Induced Correlations (Phantom) 
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Experimental Illustration – Induced Correlations (Phantom) 
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Experimental Illustration – Induced Correlations (Human) 

• Single subject on a 3.0-T GE Signa LX MR scanner. 
 

• Non-task 96×96 human subject data for 510 TRs from 8 receiver coils. 
 

• TR = 1 s., TE = 45.4 ms., ϕ = 45o, FOV = 24 cm, effective echo spacing = 0.816 ms., 

bandwidth = 125 kHz, 2.5 mm axial slices. 
 

• 490 images from NC = 4 equally spaced coils were utilized for SENSE. 
 

• Data was assumed to be subsampled by an acceleration factor of A=3 . 
 

Processing operations: 
 

• Smoothing: Gaussian smoothing with fwhm of 3 pixels. 
 

• Temporal Filtering: Band pass filtering at 0.08Hz and 0.009 Hz. 
 

    Correlations: 

• Spatial correlations were estimated over time series. 

• Temporal correlations were estimated over 10 intervals of 49 TRs. 
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Experimental Illustration – Induced Correlations (Human) 
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Experimental Illustration – Induced Correlations (Human) 
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Experimental Illustration – Induced Correlations (Human) 
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• Spatial and temporal processing alters the noise properties of the reconstructed 

and processed fMRI data.  
 

      However 
 

• fMRI model assumes independence between voxels: 

 

 

 

 

 

  

 

 Data processing can corrupt the neuroscientific conclusions drawn from the data 

if they are unaccounted for. 
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• Spatial and temporal processing alters the noise properties of the reconstructed 

and processed fMRI data.  
 

      However 
 

• fMRI model assumes independence between voxels: 

 

 

 

 

 

  

 

 Data processing can corrupt the neuroscientific conclusions drawn from the data 

if they are unaccounted for. 

MO Model: 
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• A larger regression model can be developed. 
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• A larger regression model can be developed. 
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• Assume that a “spatial” operation is performed: 

 

• In our model, X1=X2=…=Xp =Xv: 

 

• Generalized Least Squares (GLS) solution for the regression coefficients, β:  

 

      

      

 

 
 

 

 

• Multiple comparisons adjustment techniques can be used  to account for the 

spatial processing induced correlations. 
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Generalized MO-fMRI Activation Model 
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• Assume that a “spatial and temporal” operation is performed: 

 

• In our model, X1=X2=…=Xp =Xv: 

 

• Generalized Least Squares (GLS) solution for the regression coefficients, β:  

 

      

      

 

 
 

 

 

 

• WLS can still be used to account for temporal processing induced correlations. 
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Generalized MO-fMRI Activation Model 
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• Data processing improves the appearance of the data, however induces 

correlations of no biological origin. 
 

• Such correlations can increase false negatives and positives in fcMRI 

analysis.  
 

• AMMUST-t framework 

• allows one to precisely quantify artificial correlations induced by data 

processing, 
 

• provides tools to draw more accurate and reliable functional 

connectivity activity results. 
 

• Additional processing operations can be linearized and adopted into the 

AMMUST-t framework. 
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