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Abstract: 

Non-task fMRI has become one of the most popular noninvasive areas of brain mapping 

research for neuroscientists. In non-task fMRI, various sources of “noise” corrupt the 

measured blood oxygenation level dependent (BOLD) signal. Many studies have aimed 

to attenuate the noise in reconstructed voxel measurements through spatial and temporal 

processing operations. While these solutions make the data more “appealing,” many 

commonly used processing operations induce artificial correlations in the acquired data. 

As such, it becomes increasingly more difficult to derive the true underlying covariance 

structure once the data has been processed. As the goal of non-task fMRI studies is to 

determine, utilize and analyze the true covariance structure of acquired data, such 

processing can lead to inaccurate and misleading conclusions drawn from the data if they 

are unaccounted for in the final connectivity analysis. In this manuscript, we develop a 

framework that represents the spatiotemporal processing and reconstruction operations as 

linear operators, providing a means of precisely quantifying the correlations induced or 

modified by such processing rather than by performing lengthy Monte Carlo simulations. 

A framework of this kind allows one to appropriately model the statistical properties of 

the processed data, optimize the data processing pipeline, characterize excessive 

processing, and draw more accurate functional connectivity conclusions. 
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1. Introduction 

Spatiotemporal processing is a common practice in both task and non-task fMRI studies 

as a way to “improve” the resulting images. Although such processing makes the image 

data more “appealing” by alleviating it of “noise”, it could unknowingly lead to 

misguided conclusions as it alters the signal (mean) and noise (variance and correlation) 

properties of data. In recent studies, it has been shown that spatial processing operations, 

such as spatial filtering in both the spatial frequency space (k-space) and image space 

domains (Nencka et al., 2009), induce artificial correlations. Moreover, parallel MRI 

(pMRI) models, such as SENSitivity Encoding (SENSE) (Pruessman et al., 1999) and 

Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) (Griswold et al., 

2005), have been shown to induce artificial correlations between previously aliasedvoxels 

in the reconstructed images (Bruce et al., 2011; Bruce et al., 2012; Bruce and Rowe, 

2014; Karaman et al., 2013). Task and non-task fMRI studies typically employ both 

spatial and temporal filtering, together with additional signal regression operations 

(Glover et al., 2000). While these spatial and temporal processing operations could 

induce artificial correlations in the acquired data, traditional task and non-task fMRI 

models assume independence between voxels, and therefore do not account for the spatial 

correlation between voxels or temporal correlation within each voxel’s time series. As 
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these correlations are of no biological origin, they can result in increased Type I/Type II 

errors in task and non-task fMRI. Even though the structure of the induced correlations 

can be estimated through time consuming simulations, there is an apparent need for the 

development of tools that can precisely quantify the implications of spatial and temporal 

processing operations and means of accounting for these implications in the final 

analysis. If the effects that such operations have on the statistical properties of the 

acquired data are unaccounted for, neuroscientists could draw inferences from the 

processed data that are inconsistent with those of the original data. 
 

Many studies have considered means of evaluating preprocessing by either using time 

consuming Monte Carlo (MC) simulations (Barry and Strother, 2011; Strother, 2006; 

Della-Maggiore et al., 2002) or empirically optimizing the processing procedures 

(LaConte et al., 2003; Shaw et al., 2003). Such work aims to determine the best results 

through the evaluation of the effect of preprocessing on the computed time series 

statistics, while the true statistical properties of the data are not typically included into 

given task and non-task fMRI models. Bowman (2005) presented a spatiotemporal model 

that partitions voxels into functionally related networks and captures correlations between 

voxels through a simultaneous a spatial autoregression. Other promising work has shown 

that accounting for background spatial correlation inherent in neuroimaging data, that is 

caused by non-neurophysiologic associations and image processing, can improve 

functional connectivity measurements. (Patel et al., 2006). A study by Deshpande et al. 

(2009) introduced the measure of integrated local correlation for assessing local 

coherence and corrected the inherent correlation in fMRI data due to the image 

acquisition and reconstruction processes. Derado et al. (2010) proposed a two-stage 

model that accounts for both spatial and temporal correlations in fMRI data. However, 

these approaches either do not account for temporal correlations or do not provide a 

theoretical estimation of spatiotemporal correlations of the voxel measurements to be 

accounted for in the task and non-task fMRI models. 
 

Many studies have aimed to rid the data of “noise’ through both spatial and temporal 

processing. However, little attention is ever paid to the degree to which processing 

operations change the true statistical properties of the acquired data. Previous studies 

conducted by our group have incrementally developed the necessary tools to evaluate and 

incorporate the statistical impact of spatial and temporal processing operators into the 

final analysis of task and non-task fMRI data. A real-valued isomorphism of the 

complex-valued inverse Fourier transformation matrix operator was described by Rowe 

et al. (2007) in order to relate the signal and noise characteristics of k-space 

measurements and reconstructed voxel measurements. Representing Fourier 

reconstruction as a single matrix operator formed the basis for another study by Nencka 

et al. (2009) in which A Mathematical Model for Understanding the STatistical effects of 

k-space preprocessing (AMMUST-k), was developed to represent various spatial 

processing operations performed on the acquired spatial frequencies in terms of real-

valued linear isomorphisms. The AMMUST-k framework was further expanded to 

incorporate parallel MR reconstruction models, SENSE and GRAPPA, by representing 

each model as a series of real-valued matrix operators (Bruce et al., 2011; Bruce et al., 

2012; Bruce and Rowe, 2013). Representing the reconstruction and spatial processing in 

this way makes it possible to precisely compute the covariance (and ultimately 

correlation) induced by such operations into the image-space data. 

In this manuscript, we develop “A Mathematical Model for Understanding the STatistical 

effects of time series preprocessing” (AMMUST-t), by further advancing the AMMUST-
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k framework to include temporal processing of the data together with spatial processing 

and pMRI reconstruction operations.With a framework of this kind, one can precisely 

quantify the degree to which the mean and covariance between both voxels and time 

points are modified by each processing operation individually or by all processes 

collectively, without the need for lengthy simulations that can only approximate these 

changes. Such a framework can be used by neuroscientists to assess their processing 

pipelines by characterizing excessive processing, and ultimately aid in producing more 

accurate functional connectivity statistics. In this manuscript, we first develop time series 

operators for common processing operations such as image registration (Jenkinson et al., 

2002), and temporal filtering (Huettel et al., 2004), and illustrate the effects of these 

operators with a low dimensional example. We then demonstrate the effects of commonly 

used operations such as spatial smoothing, temporal filtering, and a SENSE image 

reconstruction with higher dimension theoretical data as well as on experimental phantom 

and non-task human subject data.  

2. Materials and Methods 

2.1. AMMUST-t Framework 

The real-valued inverse Fourier transformation (IFT) matrix operator 















RI

IR
, (1) 

was developed by Rowe et al. (2007) to quantify the precise linear combination of k-

space measurements that form each voxel value in the reconstructed image. The 

operators, ΩR and ΩI, are formed using the Kronecker product, , by  
 

ΩR = [(ΩyR⊗ΩxR) ‒ (ΩyI⊗ΩxI)] and ΩI = [(ΩyR⊗ΩxI) + (ΩyI⊗ΩxR)], (2) 

where the Fourier matrices, Ωx and Ωy Fourier reconstruct the columns and rows of the 

acquired k-space, respectively. The jk
th
 element of the n×n Fourier matrix Ωx can be 

written as 
))1()2/))((1()2/(()(  knjn

jkx w , where j and k are the indices from 1 to n 

and w=(1/n)exp(i2π/n). The matrix Ωy follows similarly with n replaced by m. In order to 

apply the IFT operator, Ω, in Eq. (1), the complex-valued spatial frequency matrix is 

reformatted into a real-valued vector which is formed by stacking the rows of the real 

components of on top of the rows of the imaginary components.  For an m×n image of 

p=mn voxels, the frequency space measurements can therefore be represented by a 2p×1 

column vector, s=(sR
Ꞌ
,sI

Ꞌ
)

Ꞌ
, where sR=(sR1,…,sRp)

 Ꞌ
 and sI=(sI1,…,sIp)

Ꞌ
 are p×1 real-valued 

column vectors that consist of the real and imaginary observations of p voxels, 

respectively. Applying the Ω operator to the real-valued frequency vector, 

y = Ωs,  (3) 

produces a vector, y, with all real reconstructed voxel values stacked by row on top of all 

imaginary reconstructed voxel values. The formalism in Eq. (3) can be generalized to 

y = Os,
 

 (4) 

where the operator O signifies an arbitrary series of linear processing operations (Nencka 

et al., 2009) and/or parallel reconstruction operators (Bruce et al., 2011; Bruce et 

al.,2012) expressed in matrix form. 

In the AMMUST-t framework, we extend the framework in Eq. (4) to combine temporal 

processing operations with the previously developed spatial processing and 
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reconstruction operations. In such a framework, the vector of the observed k-space 

observation can be represented as a concatenation of N k-space signal vectors, with each 

of these vectors representing one 2p×1 time point image vector. The time series 

frequency measurements can therefore be represented by a 2pN×1 column vector, 

sT=(s1R
Ꞌ
,s1I

Ꞌ
,…,sNR

Ꞌ
,sNI

Ꞌ
)

Ꞌ
 where stR and stI are the real and imaginary frequency space 

column vectors at time point t. The reconstructed and processed time series, yT, can then 

be obtained from the acquired signal vector, sT, by  

yT = OTsT. (5)                                               

The operator matrix, OT, is formed through the multiplication of a k-space processing 

operator, K, a reconstruction operator, R, an image-space processing operator, I, and 

finally a temporal processing operator, T, as  

OT = TIRK. (6) 

2.2. Time Series Operators 

As most of the existing spatial and temporal processes are linear in nature, or their 

application to the data can often be represented in a linear way, many commonly used 

processing operations can be integrated into the OT operator of the AMMUST-t 

framework. In this section, we demonstrate the construction of matrix operators for a 

collection of common processing operations that might be considered in this framework. 

 

2.2.1. Generalized k-space, Image-space and SENSE Reconstruction Operators 

In the AMMUST-k framework, k-space and image space processing operations, OK and 

OI, are temporally unvarying, and equivalently applied to each image in a time series. In 

AMMUST-t, applying such operators to the newly parametrized time series data requires 

an operator of higher dimensionality. If the same image processing steps are performed 

on all time points of an acquired k-space time series, the time series k-space and image 

space processing operators, K and I, can be formed as K=IN⊗OK 
and I=IN⊗OI, 

respectively. The resulting operators are block diagonal where each block corresponds to 

an instance of the processing operators. A generalization of the SENSE reconstruction 

operator, ΩSE, can be performed in a similar fashion to the k-space and image space 

processing operations by R=IN⊗ΩSE. 

2.2.2. Image Registration 

Image registration is used for motion correction in fMRI and performed by shifting each 

image according to independently determined motion parameters. In-plane motion 

correction can be performed by integrating the registration into the time-series 

reconstruction operator, R. For an image-space translation of (δx,δy) and in-plane rotation 

of ψ, the required image-space shift for a voxel at (x,y) in image space is ∆x=δx+x(cosψ-

1)-ysinψ, and ∆y=δy+y(cosψ-1)-xsinψ. Therefore, for a single image with the 

aforementioned motion parameters, the row of the IFT operator that represents the image-

space point (x,y) must have each element multiplied by the exponential term, exp(-

i2π(∆xkx/px+∆yyx/py)), where kx and ky are integers representing the k-space indices of the 

column of  the IFT operator, and px and py are the number of k-space points in the x and y 

directions, respectively. The complex-valued IFT operators for each time point can be 

formed by modifying the real valued isomorphism in Eq. (1) and then appropriately 

positioned along the diagonal of the time series reconstruction operator, R.  

2.2.3. Temporal Filtering 

The process of temporal filtering can be performed through an application of Fourier shift 

theorem. The temporal filtering process is mathematically identical to the line shifting 
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process used to correct Nyquist ghosts in EPI. First, the vector of reconstructed images 

can be reordered to a vector of reconstructed voxel time series through a permutation 

matrix, PT. Then, each time series can be Fourier transformed into the temporal frequency 

domain by a block diagonal matrix, ΩT, where each block is a real-valued isomorphism of 

a one-dimensional time series Fourier transform matrix. Each transformed time series can 

then be multiplied by a diagonal matrix, Φ, with diagonal elements comprised of 

frequency space weighting for temporal. The temporally filtered image time series vector 

then can be obtained through the inverse Fourier transformation and inverse permutation, 

T=PT
-1

ΩT
-1

Φ ΩTPT. 

 

2.3. Non-task FMRI 

In non-task fMRI, the null hypothesis assumes no correlation between voxels, and thus 

any statistically significant correlation observed in the data denotes a functional 

connection between voxels. With the amount of processing performed in non-task fMRI 

studies through operations, the statistical properties of the processed voxels are far 

removed from those of the acquired data. When time series processing operations, OT, are 

applied to a data vector in Eq. (5), sT=s0+η, which is comprised of a mean vector of 

complex-valued spatial frequencies, in a real-valued form, s0, added to a noise vector, η, 

with a mean of zero and a covariance of Γ, then the time series image vector, yT=OTsT has 

a mean and covariance of  

E[yT] =OTs0, and Σ = cov(yT) =OTΓOT
T
. (7) 

As the vector of images, yT, is comprised of a stack of N image space vectors, each length 

2p×1, the spatiotemporal covariance matrix, Σ, in Eq. (7) is of dimension 2pN×2pN. 
 

In a prior study to analyze the effects of processing, the covariance induced by a 

processing step was estimated using lengthy Markov Chain MC simulations (Barry and 

Strother, 2011; Strother, 2006; Della-Maggiore et al., 2009). As in many statistical 

technique applied in practice, the choice of sample size plays an important role in the 

accuracy of the covariance structure analysis. It has been cautiously suggested that the 

sample size should always be more than 10 times the number of free model parameters 

(Hu et al., 1992; Jaccard and Wan, 1996). The estimation of the spatiotemporal 

covariance structure with the use of MC simulations therefore would simulate a time 

series with at least 10pN data vectors from which the covariance in Eq. (7) would be 

estimated. The MC simulation approach, which determines only an approximation of the 

true induced covariance structure, would require increasingly large numbers of simulated 

data arrays when the dimensions of the frequency space measurements increase. 

However, the linear framework in Eq. (7), which involves the generation of sparse and/or 

block diagonal matrices, provides a precise quantification of the exact induced covariance 

structure directly without the need to generate a single data vector. The 2p×2p blocks 

along the diagonal of Σ in Eq. (7) contain the spatial covariance matrices for the 

individual images, and are partitioned into quadrants that contain the real by real, real by 

imaginary, and imaginary by imaginary covariances. The spatiotemporal correlation 

matrix is obtained from the covariance matrix by 
1/2 1/2

0 0corr( ) T

R T T Ty D O O D     , (8) 

where D0 is a diagonal matrix of the variances drawn from the diagonal of the covariance 

matrix. To deduce the covariance induced solely by the operation OT, one merely 

assumes an inherent identity covariance in the data, Γ=I. 

It is a common practice in non-task fMRI to use the 2p×2p spatial covariance matrix, Σρ, 

that is estimated from time series observations. It can be shown that the average of the 

diagonal blocks of the large spatiotemporal covariance matrix, Σ, is the expected value of 
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the spatial covariance matrix, Σρ. For functional connectivity analysis, the spatial 

covariance matrix, Σρ, is converted into a spatial correlation matrix, ΣRρ. Another practice 

in non-task fMRI is to analyze the temporal covariance matrix, Σv, which represents a 

single voxel’s time series covariance matrix. Although the large covariance matrix Σ 

contains the components necessary to compute Σv, Σ must be permuted by a matrix, P, 

which reorders the reconstructed data from a vector of N vectors of p observations 

stacked above each other to the reconstructed time series vector of p vectors of N 

observations stacked above each other. The reordered covariance matrix is thus 

11 1

1

p

T

T

p pp

P P

  
 

     
   

, (9) 

where each block Σij is a 2N×2N temporal covariance matrix between spatial elements i 

and j. The diagonal blocks of ΣT are the temporal covariance matrices for the p individual 

voxels, Σv. The v
th
 voxel covariance matrix is of the form 

vRR vRI

v

vRI vII

  
     

. (10) 

3. Results 
 

3.1. Theoretical Illustration 

To illustrate the linearization of the aforementioned time series processing operations, 

and to quantify the correlations induced by such operations, a time series of 490 images 

was generated with a single 96×96 slice of true noiseless brain phantom with a maximum 

magnitude of 10. The operations that we choose to illustrate within this illustration are 

spatial smoothing, SENSE reconstruction, and temporal filtering, which have data-

independent parameter settings and are commonly used in many non-task fMRI studies. 

For an effective illustration of the statistical impacts of the SENSE reconstruction in time 

series images, the k-space data was subsampled by an acceleration factor of A=3 with 

NC=4 coils in the light of the findings of the previous studies (Bruce et al., 2011; Bruce et 

al., 2012; Bruce and Rowe 2013; Bruce and Rowe, 2014). After reconstruction, spatial 

filtering was performed with a Gaussian smoothing kernel with an fwhm of three pixels. 

A temporal filtering operator was generated to band-pass filter the voxel time series to 

observe frequencies below 0.08 Hz and above 0.009 Hz as it is a common practice in 

non-task fMRI studies to eliminate BOLD signal changes correlated with physiological 

effects such as respiration (Biswal et al., 1995).  

 

 
Figure 1: Time series operators for an acquisition of N = 8 repetitions of a 6×6 ROI. (a) SENSE 

reconstruction operator, R = IN⊗ΩSE from NC=4 coils with an acceleration factor of A=3. (b) 

Smoothing operator, I, with fwhm = 3. (c) Temporal filtering operator, T=PT-1ΩT
-1

ΦΩTPT.  
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To closely illustrate the time series processing operators, a 6×6 region of interest (ROI) 

was selected within the brain phantom in the first 8 time points of the generated data. As 

the data was subsampled by A=3 with NC=4 coils, the SENSE reconstruction operator is 

of dimension 576×768, and the spatial smoothing and temporal operators are of 

dimension 576×576. Figs. 1(a)-(c) show the time series operators for SENSE 

reconstruction, spatial smoothing, and temporal filtering that were used to compute the 

operator induced spatiotemporal correlation matrices, assuming an underlying k-space 

identity covariance structure, Γ=I. 
 

Illustrated in Figs. 2(a)-(c) are the theoretical correlation matrices that are induced by the 

SENSE reconstruction, spatial smoothing, and temporal filtering, respectively. The first, 

second and third columns of Fig. 2 illustrate the correlation matrices calculated from the 

large covariance matrix, Σ, spatial covariance matrix, Σρ, and temporal covariance matrix, 

Σv, about the center voxel, respectively. Fig. 2(d) shows the overall correlation matrices 

when SENSE reconstruction, spatial smoothing, and temporal filtering are considered 

together. Figs. 2(a2) and 2(b2) show that the SENSE reconstruction induces spatial 

correlations between voxels that are previously aliased with each other, while smoothing 

induces correlations in the neighborhood of the voxels, as expected. Temporal filtering 

does not alter spatial correlations, as shown in Fig. 2(c2), as the process is purely 

temporal. Temporal correlations are only altered by temporal filtering, as seen in Figs. 

2(a3), 2(b3) and 2(c3). The correlation maps in the case that the processes are considered 

together may appear to be dominated by individual processes, as seen in Fig. 2(d1)-2(d3). 

However, the correlation map is not a simple superimposition of the individual processes, 

which highlights the advantage of the proposed AMMUST-t framework that provides an 

exact quantification of the final correlation structure. 

 

 
Figure 2: Theoretical 

spatiotemporal correlation 

matrices that are induced by the 

consideration of (a) SENSE 

reconstruction from NC=4 coils 

with an acceleration factor of 

A=3, (b) spatial smoothing, (c) 

temporal filtering, (d) SENSE 

reconstruction, spatial 

smoothing, and temporal 

filtering. First column: large 

correlation matrix, ΣR. Second 

column: spatial correlation 

matrix, ΣRρ. Third column: 

center voxel’s temporal 

correlation matrix, ΣRv. 

 

In order to observe the effects of the processing operations on the spatiotemporal 

correlation structure of the data, we computed both theoretical and MC simulated spatial 

and temporal correlations between the real components (real/real), between the imaginary 

components (imaginary/imaginary), and between the real and imaginary (real/imaginary) 

components of the reconstructed voxel values. Correlations are analyzed for the spatially 

smoothed SENSE reconstructed images with and without the application of band pass 
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filtering under the assumption of identity or non-identity intrinsic k-space covariance 

structure. In the case of the non-identity spatial covariance, the intrinsic k-space 

covariance structure was designed in such a way that three ROIs are assumed to be 

inherently correlated with each other with a magnitude of 0.9. These regions are selected 

in the areas that are similar to the motor cortices and supplementary motor area, as 

presented in Figs. 3(b5) and 3(d5). Our MC simulation results have shown that the spatial 

and temporal correlation maps, with and without an inherent correlation, are visually the 

same as the theoretical operator induced correlations after applying a threshold of ±0.15, 

and thus only operator induced correlations are shown in Fig. 3. The center voxel has 

been picked as the seed voxel to present the operator induced spatial and temporal 

correlations although a similar correlation structure can be observed around any voxel. 

 
Figure 3: Presented on a magnitude brain phantom underlay are theoretical operator induced 

real/real, imaginary/imaginary, real/imaginary spatial correlations, and temporal correlations of the 

center voxel under the assumption of SENSE reconstruction and smoothing with (a1)-(a4) identity 

intrinsic k-space covariance, (b1)-(b4) nonidentity intrinsic k-space covariance, band-pass filtering 

with identity intrinsic k-space covariance, (d1)-(d4) band-pass filtering with nonidentity intrinsic k-

space covariance. The intrinsic spatial correlation masks for the cases are illustrated in (a5)-(d5). 

 

The first three vertical panels of Fig. 3 denote the theoretical operator induced real/real, 

imaginary/imaginary, and real/imaginary spatial correlations for the various cases. Figs. 

3(a) and 3(c) show the correlation results for the smoothed SENSE reconstructed data 

with and without band pass filtering under the assumption of an identity inherent spatial 

correlation, respectively. It is apparent in Figs. 3(a) and 3(c) that the induced spatial 

correlations appear in cluster of the voxels instead of individual voxels, as a result of the 

smoothing operation. It is of note that the center voxel shows negative real/real and 

imaginary/imaginary correlations with a cluster of voxels in the center of the upper and 

lower folds due to the choice of A=3. The increased spatial correlation between the center 

voxel with its neighbors can also be observed in real/real and imaginary/imaginary 

correlations. It can be seen in Figs. 3(a3) and 3(c3) that there is no correlation induced 

between the center voxel’s real and imaginary measurements. As expected, temporal
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filtering does not alter the spatial correlation structure since Figs. 3(a1)-3(a3) are identical 

to Figs. 3(c1)-3(c3). 

 

Figs. 3(b) and 3(d) show the correlation results for the smoothed SENSE reconstructed 

data with and without band pass filtering under the assumption of a non-identity inherent 

spatial correlation, respectively. As in Figs. 3(a3) and 3(c3), there is no correlation 

induced between the center voxel’s real and imaginary measurements either with or 

without band-pass filtering. One can see in Figs. 3.3b1, 3.3b2, 3.3d1 and 3.3d2 that the 

real/real and imaginary/imaginary spatial correlations between the voxels that are in the 

originally correlated ROIs are spread to adjacent voxels by the smoothing operator. 

Additionally, there is a negative real/real and a negative imaginary/imaginary correlation 

between the three clusters of correlated voxels and the respective regions from the top 

and bottom folds. This structure underlines that the inherent true correlation can be 

observed both in its original location and in the regions that were previously aliased with 

this original region. This artificially amplified and induced correlation structure could be 

misinterpreted as a network of functional connectivity in the brain if no steps were taken 

to identify processing induced correlations. 
 

The fourth panel of Fig. 3 denotes the operator induced temporal correlations. Figs. 3(a4) 

and 3(b4) show the temporal correlation matrix of the center voxel when only SENSE 

reconstruction and smoothing are considered under the assumption of identity and 

nonidentity initial spatial correlation, respectively. As expected, the temporal correlation 

structure is not altered by SENSE reconstruction or smoothing as it is shown to be 

identity for the center voxel. It can be seen in Figs. 3(c4) and 3(d4) that the temporal 

correlation structure within the real and imaginary components is altered by temporal 

filtering with and without presence of initial spatial correlation. Such altered correlations 

arise from the convolution of the temporal filtering kernel with the voxel time series. 
 

While the AMMUST-t linear framework could provide a tool for neuroscientists to 

precisely quantify the correlations induced by spatial and temporal processing, it requires 

the multiplication of a series of linear matrix operators of very large dimensionality. As 

such, we have developed computationally efficient algorithms by employing parallel 

computing, matrix partitioning, and sparse matrix multiplication techniques. The linear 

operators introduced in this framework have been implemented in Matlab (The 

Mathworks, Natick, MA). 

3.2. Experimental Illustration 

In order to analyze the statistical implications of time series processing, two sets of data 

were acquired for a series of 510 TRs from an array of eight receiver coils in a 3.0T 

General Electric Signa LX MR imager. Due to the computational load, the data set was 

reduced to only NC=4 evenly spaced coils by using every other coil, starting with the coil 

in the anterior. The first set of data imaged a spherical agar phantom, while the second set 

was of a non-task human subject. Both data sets were comprised of seven 2.5 mm thick 

axial slices that are 96×96 in dimension for a 24.0 cm FOV, with the phase encoding 

direction oriented as anterior to posterior. The data set had a TR of 1 s, an echo time (TE) 

of 45.4 ms, an effective echo spacing of 0.816 ms, a flip angle of 45°, and an acquisition 

bandwidth of 125 kHz. As the data was acquired with time varying TE in the first 20 

TRs, the remaining 490 images from NC=4 equally spaced coils were used in the SENSE 

reconstruction. Data was acquired with an EPI pulse sequence and reconstructed using 
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locally developed software. Subsampling was simulated for A=3 by deleting lines of k-
space in each of the acquired data sets.  

We present experimentally computed spatial and temporal correlations about the seed 

voxel for three different cases. The correlation maps that are presented in Figs. 4(a) and 

5(a) are computed from SENSE reconstructed images without spatial smoothing or 

temporal filtering. The SENSE reconstructed images that were used to compute the 

correlations presented in Figs. 4(b) and 5(b) have been spatially filtered by a Gaussian 

smoothing kernel operator whereas the ones that were used to compute the correlations 

given in Figs. 4(c) and 5(c) have been both spatially filtered and band-pass filtered with 

cut-off frequencies at 0.009 Hz and 0.08 Hz (Biswal et al., 1995). Presented spatial 

correlations between the real/real, imaginary/imaginary and real/imaginary as well as the 

spatial correlations for magnitude-squared data were estimated over the time series. The 

magnitude-squared correlation structure is observed here because it is asymptotically 

equivalent to the correlations of magnitude data and linear in nature when magnitude 

correlations are not. To estimate the temporal correlation maps, both the spherical agar 

phantom and non-task human subject time series data were divided into 10 sequential 49 

time point experiments after removing the first 20 time points. The resulting data was 

then used to calculate the sample temporal correlation matrix of the center voxel for the 

various cases. 
 

3.2.1. Phantom Data 

The spherical phantom data was considered for an experimental analysis in order to 

bridge the gap between the theoretical illustration and the application to human subject 

data, as the phantom is not prone to physiological effects and subject movement. The 

center voxel was selected as the seed voxel to experimentally analyze the induced 

correlation structure by spatiotemporal processing in order to be consistent with the 

presented theoretical induced correlation analysis.  
 

Presented in Figs. 4(a1)-(a4), 4(b1)-(b4)and Figs. 4(c1)-(c4) are the real/real, 

imaginary/imaginary, real/imaginary, and magnitude-squared spatial correlations between 

the center voxel and all the other voxels that were computed from SENSE reconstructed 

data with and without the application of spatial smoothing and low-pass temporal 

filtering. The correlations presented in Fig. 4 were threshold at ±0.35 (p~0.05) (Greicius 

et al., 2003). As the center voxel was selected as the seed voxel, two fold regions are 

expected to exhibit correlations with the center voxel due to the choice of A=3. Two pink 

circles are placed around the corresponding previously aliased voxels, upper and lower 

folds, in Fig. 4 where the seed voxel is indicated by a small green circle.  It can be 

observed in Figs. 4(a1), 4(a2) and 4(a4) that there is a negative real/real, a negative 

imaginary/imaginary, and a positive magnitude-squared correlation between the voxels in 

the lower and upper folds and the seed voxel. The correlations in the circles appear to be 

at individual voxels although additional imaginary and magnitude-squared spatial 

correlations can be observed around the center voxel as well. This may be due to B-field 
inhomogeneities that have not been completely corrected. 

The correlations between the previously aliased voxels and the seed voxel are spread to 

clusters of voxels with the application of smoothing, as presented in Figs. 4(b1), 4(b2), 

4(b4), 4(c1), 4(c2), and 4(c4). While the correlation structure in the folds and in the center 

exhibits an oval shape due to the overlap in the reduced FOV image and Nyquist ghosting 

that has not been completely removed, it can be seen that the neighborhoods of the seed 

voxel and the upper and lower folds still exhibit the strongest correlation. It is important 

to note that while there is no real/imaginary correlation between the center voxel and the 
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other voxels as seen in Fig. 4(a3), real/imaginary correlations can be observed in the 

center, upper and lower folds with the application of smoothing. By comparing Figs. 

4(b1)-4(b4) with Figs. 4(c1)-4(c4), it can be seen that temporal filtering slightly alters the 
spatial correlation structure. 
 

 
Figure 4: Presented on a magnitude spherical agar phantom underlay are estimated real/real, 

imaginary/imaginary, real/imaginary, magnitude-squared spatial correlations, and temporal 

correlations of the center voxel throughout the time series of 490 images with (a1)-(a5) SENSE 

reconstruction; (b1)-(b5) SENSE reconstruction and smoothing; (c1)-(c5) SENSE reconstruction, 

smoothing, and band-pass filtering. Correlations are presented with a threshold of ±0.35. 

 

The temporal correlation matrix of the center voxel after SENSE reconstruction without 

smoothing is given in Fig. 4(a5). Presented in 4(b5) and 4(c5) are the temporal correlation 

matrices for the center voxel computed from SENSE reconstructed and spatially 

smoothed time series data with and without band-pass filtering. It is apparent when 

comparing Figs. 4(b5) and 4(c5) that band-pass filtering induces local temporal 

correlations as the main diagonal is widened and the correlations before filtering are 

smoothed. As expected, spatial smoothing does not alter the temporal correlation 

structure. It is of note that, while such a correlation structure in the processed time series 

data can be expected, a precise theoretical quantification would allow one to account for 

processing induced correlations in the final analysis of their data. 

3.2.2. Human Subject Data 

As with the theoretically generated brain phantom data and experimental spherical 

phantom data, the center voxel was selected as the seed voxel for the correlation analysis 

in the human subject data. Figs. 5(a1)-(a4) show the real/real, imaginary/imaginary, 

real/imaginary, and magnitude-squared spatial correlations for the seed voxel that were 

computed from SENSE reconstructed time series. Presented in Figs. 5(b1)-(b4), and Figs. 

5(c1)-(c4) are the spatial correlations about the seed voxel computed from SENSE 

reconstructed and spatially smoothed data with and without the application of temporal 
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band pass filtering. Similarly with the spherical phantom data results, two small pink 

circles are placed around the previously aliased voxels in Fig. 5 while the seed voxel is 

indicated by a small green circle. 

 
Figure 5: Presented on a magnitude spherical agar phantom underlay are estimated real/real, 

imaginary/imaginary, real/imaginary, magnitude-squared spatial correlations, and temporal 

correlations of the center voxel throughout the time series of 490 images with (a1)-(a5) SENSE 

reconstruction; (b1)-(b5) SENSE reconstruction and smoothing; (c1)-(c5) SENSE reconstruction, 

smoothing, and band-pass filtering. Correlations are presented with a threshold of ±0.35. 

 

The experimental spatial correlations, which exceed a threshold of ±0.25, show a 

negative real/real and imaginary/imaginary correlation and a positive magnitude-squared 

correlation between the seed voxel and the upper and lower folds, as shown in Figs. 5(a1), 

5(a2) and 5(a4). While there are no correlated voxels in real/imaginary theoretical 

correlation structure in Fig. 3(a3), as well as the experimental spatial correlations 

computed from spherical phantom in Fig. 4(a3), there is a nonzero real/imaginary 

correlation structure in Fig. 5(a3). It can be seen in Figs. 5(b1)-5(b4) and 5(c1)-5(c4) that 

spatial smoothing further spreads the SENSE-induced correlations in the folds and 

induces positive correlation in the neighborhood of the seed voxel.While it is primarily 

the amplified SENSE-induced spatial correlations, real/real spatial correlation maps given 

in Figs. 5(b1) and 5(c1) exhibit an oval shape of clusters in the fold regions and seed voxel 

region. This may be due to the noise amplification in the un-aliased images. Similarly 

with the experimental real/imaginary correlation results of the spherical phantom data, 

both positive and negative real/imaginary correlations can be observed throughout the 

images in Figs. 5(b3) and 5(c3). This may be a result of Nyquist ghosting that has not been 

completely removed and that the brain occupies a small portion of the full FOV which 

results in aliasing between the center voxel and the voxels in space. By comparing Figs. 

5(b1)-5(b4) with Figs. 5(c1)-5(c4), it is interesting to note that the spatial correlation 

structure is significantly scattered throughout the image after band-pass filtering. 

Illustrated in Figs. 5(a5), 5(b5) and 5(c5) are the temporal correlation maps about the 

center voxel computed from the SENSE reconstructed data without spatial smoothing or 
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temporal filtering, with only spatial smoothing, and with both spatial smoothing and 

temporal filtering, respectively. Similarly with the theoretical induced correlation results 

and experimental agar phantom results, the temporal filtering process alters the time 

series correlation structure by widening the main diagonal, which implies local temporal 

correlations. The theoretical operator induced correlations in Fig. 3 were calculated under 

the assumption of independence between time points. As such, the temporal correlation 

structure in Fig. 5(c5) is the smoothed version of the existing temporal correlations in the 

data in Fig. 5(b5) rather than exhibiting only a widened main diagonal as in Fig. 3(d4). 
 

The experimental spatial and temporal correlation results of both the agar phantom and 

human subject align with the theoretical illustration in Fig. 3, and illustrate that SENSE 

reconstruction and smoothing induce spatial correlations that could result in false positive 

and negatives in a functional connectivity analysis and misinterpreted if they are not 

precisely quantified or accounted for. Furthermore, the temporal correlations induced by 

temporal operators, such as low-pass and high-pass filtering, as well as artificially 

induced spatial correlations could result in false positive and negatives in fMRI activation 

statistics as they would make the assumption of independency between voxels invalid. As 

it becomes increasingly more difficult to derive the true correlation structure with the use 

of lengthy MC simulations or the parametric covariance functions once the data has been 

processed, the accuracy of the final analysis of the processed data can be significantly 
improved with the use of the proposed theoretical linear framework. 

4. Discussion and Conclusion 

In this work, we develop a mathematical framework that allows one to analytically 

observe the effects of commonly used spatial and temporal preprocessing on observed 

voxel measurements in non-task fMRI. This framework represents the processing 

pipeline as a linear isomorphic matrix operator by breaking up each process into a 

sequence of steps that can be carried out through a collection of matrix operators. With 

the entire processes represented in this way, the exact correlation structure induced by 

each operation both spatially between voxels and temporally within each voxel’s time 

series can be precisely quantified. We also present the techniques for linearizing common 

processing operations such as image registration, temporal filtering, and generalizing 

individual k-space and image space processing as well as image reconstruction. Although 

the statistical impacts of spatial smoothing, SENSE pMRI reconstruction, and temporal 

filtering on the processed data has been presented in detail, additional processing 

operations can be represented as linear operators and adopted into the AMMUST-t 

framework. For instance, regressing out the average signal from different regions of the 

brain such as white matter and CSF or from whole-brain with the use of global signal 

regression techniques have been commonly used in non-task fMRI studies. White matter 

and CSF signal regression is used to remove the non-neural fluctuations such as subject 

motion and physiological effects while the global signal regression is used to remove the 

spontaneous BOLD fluctuations common to the whole brain. As the mean white matter, 

CSF or whole brain time series are used as temporal covariates and removed from the 

data through linear regression in these processing steps; they can also be represented by 

linear operators, and included into the Ammust-t framework. While most existing 

processes are linear in nature, there are select image registration (Poldracket al., 2011), 

spatial normalization (Ashburner and Friston, 1999), spatial smoothing (Smith and 

Brady, 1997), and high-pass filtering (Marchini and Riley, 2000) operations that can be 

nonlinear. Although such operations typically use nonlinear calculations to determine 

various parameters, their application to data is (in most instances) linear. As such, linear 
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representations for nonlinear processes that are widely used in biomedical image 

processing software can also be included into the AMMUST-t framework. 
 

Data acquired for non-task fMRI studies has a true inherent, but unknown, spatiotemporal 

covariance structure. As the goal of these studies is to determine, utilize and analyze this 

structure, it becomes increasingly more difficult to derive the true covariance once the 

data has been processed. This manuscript provides the researchers a means of retaining 

knowledge of the processing steps performed on the acquired data and guidance to be 

aware of the presence of these correlations between spatial regions and time points they 

may be investigating. As such, the implementation of the AMMUST-t framework 

provides neuroscientists with a means of determining whether or not their selection of 

reconstruction and processing operations is excessive by observing the artificial 

correlations that they have induced into their data. In order to provide a benchmark 

analysis of the operator induced correlation structure, we utilize the AMMUST-t 

framework to compute spatial covariance matrix and an individual voxel’s temporal 

covariance matrix, both commonly used non-task fMRI analysis studies, from an 

analytically derived spatiotemporal covariance matrix. As the proposed method can 

easily be applied to data sets in which the implications of processing have been noted, it 

provides a novel informative tool for preventing possible false positive rates that can 

result from processing and reconstruction operators. The application of the framework 

could enable neuroscientists to reap the benefits of spatial and temporal processing while 

simultaneously determining an acceptable data processing pipeline and identifying the 

true statistical interpretation of their data. 
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