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Relaxation parameter estimation and brain activation detection are two main areas of study in magnetic
resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). Relaxation parameters can
be used to distinguish voxels containing different types of tissue whereas activation determines voxels that
are associated with neuronal activity. In fMRI, the standard practice has been to discard the first scans to
avoid magnetic saturation effects. However, these first images have important information on the MR
relaxivities for the type of tissue contained in voxels, which could provide pathological tissue
discrimination. It is also well-known that the voxels located in gray matter (GM) contain neurons that
are to be active while the subject is performing a task. As such, GMMR relaxivities can be incorporated into
a statistical model in order to better detect brain activation. Moreover, although the MR magnetization
physically depends on tissue and imaging parameters in a nonlinear fashion, a linear model is what is
conventionally used in fMRI activation studies. In this study, we develop a statistical fMRI model for
Differential T2⁎ ConTrast Incorporating T1 and T2⁎ of GM, so-called DeTeCT-ING Model, that considers the
physical magnetization equation to model MR magnetization; uses complex-valued time courses to
estimate T1 and T2⁎ for each voxel; then incorporates gray matter MR relaxivities into the statistical model
in order to better detect brain activation, all from a single pulse sequence by utilizing the first scans.
s, Statistics, and Compute
n, USA. Tel.: +1 414 288

we).

l rights reserved.
© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The spin density, longitudinal relaxation time, T1, and transverse
relaxation time, T2⁎, provide the three most intrinsic and basic
contrast mechanisms in MRI/fMRI. It is thus of interest to measure
and exploit differences in these parameters in order to develop
image contrast between different brain tissue since the resulting
measured values could be used for tissue characterization and
provide useful information on local environment interaction. The
quantization of the relaxation parameters helps to predict both the
signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) for
a given sequence and makes it possible to better understand the
contrast mechanism and the tissue characterization.

The Bloch equations describe the behavior of a magnetization
vector in the presence of an externally applied magnetic field subject
to the relaxation process [1]. According to the solution of the Bloch
equations, magnetization can be characterized by the tissue
parameters (T1, T2 or T2⁎, M0) and imaging parameters (TR, TE, ϕ)
r

where TR is the repetition time, TE is the echo time, and ϕ is the flip
angle. Thus, the signal change can be induced by a change in spin
density, T1, and/or T2⁎. In a T2⁎-weighted gradient echo (GRE) fMRI
experiment, for a stationary voxel, the magnetization after the tth

excitation, Mt, for a series of excitations is given by:

Mt ¼ Mt−1e
−TR

T1 cos ϕð Þ þM0 1−e
−TR

T1

� �h i
sin ϕð Þe−

TEt
T2�: ð1Þ

Accurate relaxation parameter estimation is essential in quanti-
tative MR applications as being a fundamental way of determining
image segmentation and tissue characterization as well as quanti-
fying absolute metabolites in NMR spectroscopy. A quantitative
analysis of T2 can give useful information for cancer discrimination
[2]. Moreover, tissue characterization may serve as a very important
source of information in detecting brain activation since it is
generally believed that gray matter tissue includes the neurons
that are to be active during the performance of a task. Considering
the fact that fMRI images are based on hemodynamic changes
related to neuronal activity, and not the electrical activity itself, the
accuracy of the brain activation statistics calculated from the
considered statistical fMRI activation model plays a major role for
the medical statements that could be drawn. As such, incorporation
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of the information of the tissue characteristics into the brain
activation detection process can provide more accurate activation
statistics by theoretically eliminating the false positives.

Using only themagnitude of complex-valuedmagnetic resonance
images has become the gold standard for the estimation of the
relaxation parameters although voxel time courses in fMRI are
complex-valued [3–8]. However, Baselice et al. recently presented a
statistical technique to estimate relaxation times exploiting com-
plex-valued MR images [9]. Wheaton et al. [10] reconstructed T1ρ
maps from partial k-space image data using linear regression, and
error was measured with relation to T1ρ maps created from the full
k-space images. Haldar et al. utilized the variable projection
algorithm for maximum likelihood estimation of T1 relaxation
parameters by reducing the four-dimensional minimization problem
to a two dimensional maximization problem, rather than iteratively
solving the 4-parameter curve fitting problem [4].

In fMRI, voxel time courses are complex-valued after Fourier, or
non-Fourier image reconstruction due to the phase imperfections as
a result of magnetic field inhomogeneities. Although important
functional information can be inferred from the phase [11–15], it has
been a common practice in fMRI to determine functional brain
activation from the magnitude-only data model which discards the
phase information [16,17]. A complex-valued fMRI activation model
was presented by Rowe and Logan [14] to determine functional brain
activation and it was shown that the use of complex-valued data
provides an improved power of detection at low SNRs and low CNRs.
Therefore, the statistical fMRI model for detecting activation
introduced in this study is based upon the complex-valued activation
model of Rowe and Logan.

In this manuscript, we develop a statistical fMRI model for
Differential T2⁎ ConTrast Incorporating T1 and T2⁎ of GM, so-called
DeTeCT-ING Model, to determine brain activation by incorporating
T1 and T2⁎ of gray matter [18]. The model considers the physical
nonlinear signal equation to model MR magnetization rather than
using a linear model; utilizes the first scans of the complex-valued
fMRI data to estimate each voxel’s T1 and T2⁎; and incorporates GM T1
and T2⁎ values into the activation statistics. A single pulse sequence is
utilizedwith three parts, where in the first two parts the subject does
not perform the task while in the third part the subject performs the
task as in a standard fMRI experiment. In the first part, several
images are acquired at a constant TE; in the second part, TE is varied;
and in the third part TE is constant. This pulse sequence allows one to
have the three parts for: a) T1 estimation, b) T2* estimation and c)
detecting activation, while all of themodel parameters are estimated
simultaneously using data from the entire scan. The parameter
setting in the first part allows the utilization of signal change
between data acquired during the transient state prior to T1
equilibrium and the steady state images since the volumes at the
beginning of fMRI block contains a transition signal and the signal of
the first EPI volume is M1 = M0e−TEt/T

2⁎. The second and third parts
of the pulse sequence differentiate the signal with TE and differential
task changes respectively since T2⁎ is influenced by TE, and activation
is modeled by differential signal change. Furthermore, a slightly
modified version of the DeTeCT-INGModel, so-called DeTeCTModel,
is developed by modeling the complex-valued observations accord-
ing to the physical magnetization equation, utilizing the first scans to
estimate the MR relaxivities, but not incorporating GM T2⁎and T1
values into the activation statistics in order to observe the benefits of
GM MR relaxivities incorporation on the computed activation
statistics. The Cramer–Rao Lower Bounds (CRLBs), which provide a
lower bound for the variance of unbiased parameter estimators, are
also numerically calculated for DeTeCT-ING and DeTeCT Models.

In order to observe the performance of the DeTeCT-ING model,
theoretical illustrations are implemented on 96 × 96 phantom data
through simulation and the model is compared with the conven-
tionally usedmagnitude-only (MO) and newer complex-valued (CV)
fMRI activationmodels by comparing themeans and variances of the
model parameters and activation statistics with the true parameter
values and CRLBs of the models. The DeTeCT-ING model is then
evaluated by deploying all four models, DeTeCT-ING, DeTeCT, MO,
and CV, in the acquired bilateral finger tapping fMRI data.

2. Theory

2.1. Complex-valued (CV) fMRI ActivationModel

After the inverse Fourier transform, images or voxel measure-
ments are complex-valued and still corrupted by noise in both real
and imaginary parts [14].

The complex-valued image measured over time in a given voxel
is:

yCVt
¼ MCV t cosθþ ηRt

� �
þ i MCV t sinθþ ηI t

� �
;

t ¼ 1;…;n
ð2Þ

where (ηRt, ηIt)′ ~ N (0, Σ), the true population magnitude is MCVt,
and θ is phase. It is generally assumed that Σ = σ2I2.

The data gathered during the course of an fMRI experiment are
comprised of a sequence of individual MR images acquired while the
subject performs a set of tasks. Throughout the experiment, the
subject generally alternates between performing no task and
performing a task allowing the task-related activations to be
detected by qualifying the relative changes in the measured signal
between individual images. The task-related activations are detected
by qualifying the relative changes in the measured signal between
individual images. Using periods of non-task scans is a common
means of establishing a baseline on which the assumption is made
that the brain activity scales in a linear fashion. A linear model is
generally used to describe the temporally varying magnitude MCVt:

MCVt ¼ x
′
tβ ¼ βt þ βtx1t þ ⋯þ βqxqt ; ð3Þ

where q is the number of non-baseline regressors, xt is the tth row of
an n × (q + 1) design matrix X, β is a (q + 1) × 1 vector of
magnitude regression coefficients, and the operator “′” denotes the
transpose of a vector. Thus, the observed complex-valued data at
time t can be represented by a 2 × 1 real-valued vector,

yRt

yI t

� �
¼ x

′
tβ cosθ

x
′
tβ sinθ

 !
þ ηRt

ηI t

� �
; ð4Þ

where yRt is the real part and yIt is the imaginary part of the observed
image-space data at time point, t.

This model can also be written more generally as

yCV ¼ X 0
0 X

� �
β cosθ
β sinθ

� �
þ η

2n � 1 2n � 2 q þ 1ð Þ 2 q þ 1ð Þ � 1 2n � 1
ð5Þ

where the observed vector of data yCV = (y′R, y′I)′ is the vector of
observed real values stacked on the observed imaginary values and
the vector of errors η = (η′R, η′I) ~ N (0, Σ ⊗ Φ) is similarly defined.
It is generally assumed that Σ = σ2I2 and Φ = In.

FMRI does not directly measure the electrical activity of the
neurons, but the change in blood oxygenation indirectly caused by
that activity. Thus, model parameters are estimated under the
appropriately constrained null and alternative hypotheses, H0: C
β = 0 versus H1: C β ≠ 0, after which activation is determined with
a generalized likelihood ratio statistic.
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Unrestricted MLE’s of the parameters, phase, θ̂, regression
coefficients, β̂, and variance, σ̂2, under the alternative hypothesis,
H1: C β ≠ 0, can be derived by maximizing the logarithm of the
likelihood function and yields

θ̂ ¼ 1
2
tan−1

2β̂
′

R X
′
X

� �
β̂I

β̂
′

R X ′X
� �

β̂R−β̂
′

I X ′X
� �

β̂I

2
4

3
5

β̂ ¼ β̂R cosθ̂ þ β̂I sinθ̂

σ̂ 2 ¼ 1
2n

y− Xβ̂ cosθ̂
Xβ̂ sinθ̂

0
B@

1
CA

2
64

3
75
′

y− Xβ̂ cosθ̂
Xβ̂ sinθ̂

0
B@

1
CA

2
64

3
75

ð6Þ

where the estimate of the regression coefficients from the real part of
the time series under the alternative hypothesis is βR̂ = (X'X)−1X'yR
and the estimate of the regression coefficients from the imaginary
part of the time series under the alternative hypothesis is βÎ =
(X'X)−1X'yI [14,15,20].

The MLE’s of the parameters, phase, θ̃, regression coefficients, β̃,
and variance, σ̃2, under the constrained null hypothesis, H0: C β = 0,
can also be derived by maximizing the logarithm of the likelihood
function with the Lagrange multiplier term Ψ′ (C β − 0) and yields

θ̃ ¼ 1
2
tan−1

2β̂
′

RΨ X
′
X

� �
β̂I

β̂
′

RΨ X ′X
� �

β̂R−β̂
′

IΨ X ′X
� �

β̂I

2
4

3
5

β̃ ¼ Ψ β̂R cos θ̃ þ β̂I sin θ̃
h i

σ̃ 2 ¼ 1
2n

y− X β̃ cos θ̃
X β̃ sin θ̃

0
@

1
A

2
4

3
5′

y− X β̃ cos θ̃
X β̃ sin θ̃

0
@

1
A

2
4

3
5

ð7Þ

where Ψ is

Ψ ¼ I qþ1− X
′
X

� �−1
C

′
C X

′
X

� �−1
C

′
� 	−1

C ð8Þ

[14,15,20].
Denoting the maximum likelihood estimators under the alterna-

tive hypothesis using hats, and those under the null hypothesis using
tildes, the generalized likelihood ratio statistics for the CV model,
−2logλC, can be derived as,

−2 logλC ¼ 2n log
σ̃ 2

σ̂ 2

 !
; ð9Þ

where λC is the likelihood ratio statistics and n is the number of time
points in the fMRI experiment.

This statistic has an asymptotic χr
2 distribution in large samples,

where r is the difference in the number of constraints between the
alternative and the null hypotheses or the full row rank of C. Note
that, when r = 1, two-sided testing can be performed using the
signed likelihood ratio test given by

ZC ¼ sign C β̂
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2 logλC

q
ð10Þ

which in large samples has an approximate standard normal
distribution under the null hypothesis [14,19].

With the given distributional specifications, the CRLBs can be
computed from the likelihood of the complex-valued data [20].
2.2. Magnitude-Only (MO) fMRI Activation Model

In fMRI, complex-valued time courses are almost exclusively
converted to magnitude and phase time courses, then the
magnitude-only activation is detected while phase voxel time
courses are discarded [16,17]. This typical method to compute the
activation using only the magnitude at time t, denoted by yMOt

is
written as

yMOt
¼ MMOt

cosθþ ηRt

� �2 þ MMOt
sinθþ ηI t

� �2� 	1
2

; ð11Þ

where (ηRt
, ηIt)′ ~ N (0, σ2I2) and true populationmagnitude,MMOt

, is
given by Eq. (3).

The magnitude of a complex-valued observation at time t is not
normally distributed but is Ricean distributed [21,22,14]. The Ricean
distribution of the magnitude yMOt

at time t becomes normal with
mean x′tβ and variance σ2 at high SNRs.

This model can also be written as

yMO ¼ X βþ ε
n � 1 n � 1 q þ 1ð Þ q þ 1ð Þ � 1 n � 1 ; ð12Þ

where ε ~ N (0, σ2Φ), Φ is the temporal correlation matrix often
taken to be Φ = In after pre-whitening of the data.

Assuming a normal distribution for the errors in Eq. (12), the
unconstrained maximum likelihood estimates of the parameters (β,
σ2) can be derived as

β̂ ¼ X
′
X

� �−1
X

′
m

σ̂ 2 ¼ m−Xβ̂
� �

′
m−Xβ̂
� �

=n:
ð13Þ

In order to construct a generalized likelihood ratio test of the
hypothesis H0: C β = 0 versusH1: C β ≠ 0, where C is a full row rank
matrix, the likelihood under the constrained hypothesis is maxi-
mized. The constrained MLE’s can be derived as

β̃ ¼ Ψβ̂
σ̃ 2 ¼ m−X β̃

� �′
m−X β̃
� �

=n;
ð14Þ

where Ψ is defined as in Eq. (8).
Similarly with the complex activation model, the likelihood ratio

statistics for the MO are given by,

−2 logλM ¼ n log
σ̃ 2

σ̂ 2

 !
: ð15Þ

The likelihood ratio test has an asymptotic χ1
2 distribution and is

asymptotically equivalent to the usual t tests for activation given by

t ¼ β̂2

SE β̂2

� � : ð16Þ

With the given distributional specifications, the CRLBs can be
computed from the likelihood of the magnitude-only data [20].

2.3. DeTeCT-ING and DeTeCT fMRI Activation Models

2.3.1. Modeling fMRI Data
The temporally varying magnitude of the signal can be repre-

sented by incorporating the effect of the task execution to the
magnetization. In the DeTeCT-ING and DeTeCT Models, the



Fig. 1. Anatomical mask with ROIs.
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temporally varying magnitude,Mt, for an individual voxel, is defined
as

Mt ¼ Mte
−TR

T1 cos ϕð Þ þM0 1−e
−TR

T1

� �h i
sin ϕð Þe−

TEt
T2�þδzt þ xtβ1: ð17Þ

where x′tβ1 = β1xt.
In this model, δ is the differential signal change, which is a

coefficient for a reference function zt related to a block experimental
design. As noted before, brain activation causes changes in blood
oxygenation leading to changes in decay parameter, T2⁎. Therefore,
the parameter δzt is included with the decay parameter T2⁎ in the
exponential function. The coefficient β1 is the coefficient for a time
trend t for all voxels.

The complex-valued observations at time t can then be described
as

yt ¼
Mt−1e

−TR=T1 cos ϕð ÞþM0 1−e
−TR=T1

� �� �
sin ϕð Þe−TEt=T2

�þδztþxtβ1

h i
cosθt þ i sinθtð Þ þ ηRt

þ iηI t

� �
ð18Þ

where (ηRt, ηIt)′ ~ N (0, Σ) and it can be assumed that Σ = σ2I2 as in
Eq. (5).

2.3.2. Estimation of the Model Parameters
Least Squares (LS) estimation is a method of estimating

parameters by minimizing the squared discrepancies on the
observed data and their expected values. Working in the complex
domain with the data having normally distributed noise and dealing
with an over determined system allows for the use of a LS estimator,
which is a computationally convenient measure of fit. As the
unknown parameters of this model, (M0, T1, T2⁎, δ, β1, θ) are
nonlinear in the representation of the magnetization given by
Eq. (18), a nonlinear LS estimation can be implemented.

The nonlinear LS estimator, Γ̂ (M0, T1, T2⁎, δ, β1, θ) is obtained by
minimizing the function,

σ2
M0;T1;T2

�
; δ;β1; θ

� ��yRt
; yI t ;TR;ϕ;TEt ; ztÞ

¼ 1
2n

Xn
t¼1

yRt
−Mt cosθ

� �2 þ yI t−Mt sinθ
� �2� 	

; ð19Þ

with respect to the unknown parameters, M0, T1, T2⁎, δ, β1, θ; where
Mt is given by Eq. (17). In this objective function, yt = yRt

+ iyIt is the
observed signal of an individual voxel at time t; and Mtcosθ and
Mtsinθ are the expected real and imaginary parts of the signal.

It is well known that the LS procedure corresponds to the
maximum likelihood estimate (MLE) when appropriate probabilistic
assumptions about underlying error distributions can be made, as in
the proposed model. Since the nonlinear LS problem has no closed
solution and is usually solved by iterative refinement, the param-
eters of the model will be determined numerically.

2.3.3. fMRI Activation
The main issue in analyzing functional MRI images is

comparing images in a statistically meaningful way. In this
study, the simple matter of detecting ‘activation’, the local increase
in the effect of the task, with most of the brain unaffected by the
task, is the primary focus of study. The model parameters are
estimated under appropriately constrained null and alternative
hypotheses, after which activation is determined, which is
characterized by differential T2⁎ contrast, δ, with a generalized
likelihood ratio statistic.

According to the parameterization in the setting of the DeTeCT-
ING Model, “active” or “on” regions in the brain contain voxels with

(18)
values T1 = T1GM
, T2⁎ = T2⁎GM

and δ ≠ 0 while “inactive” or “off”
regions contain voxels with T1 = T1GM

, T2⁎ = T2⁎GM
and δ = 0 where

T1GM
and T2⁎GM

are GM T1 and T2⁎ values.
Maximum likelihood estimates of the parameters (M0, T1, T2⁎, δ,

β1, θ) can then be determined for both restricted alternative and null
hypotheses. The hypotheses pair,

H0 : T1 ¼ T1GM
;T2

� ¼ T2
�
GM

; δ ¼ 0 vs

H1 : T1 ¼ T1GM
;T2

� ¼ T2
�
GM

; δ≠0

ð20Þ

detects task related voxel activation in GM.
According to the parameterization in the setting of the DeTeCT

Model, “active” or “on” regions in the brain contain voxels with
values δ ≠ 0 while “inactive” or “off” regions contain voxels with
δ = 0. Maximum likelihood estimates of the parameters (M0, T1, T2⁎,
δ, β1, θ) can be determined for both restricted alternative and null
hypotheses. The hypotheses pair,

H0 : δ ¼ 0vs: H1 : δ≠0 ð21Þ

detects task related voxel activation without consideration of the
tissue type.

Parameter estimates under the null hypothesis, (M̃0, T ̃1, T2̃⁎, δ̃, β1̃,
θ̃), and the alternative hypothesis, (M̂0, T̂1, T̂2⁎, δ̂, β̂1, θ̂), for themodels
can be determined by numerical minimization of Eq. (19) with
respect to the parameters. The generalized likelihood ratio statistics,
λC, the ratio of restricted null over alternative hypotheses lead to the
large sampleχ1

2 distributed statistic,−2logλC that is given in Eq. (9).
Two-sided testing can then be performed using the signed likelihood
ratio test given by Eq. (10).

3. Methods and materials

3.1. Simulated data

3.1.1. Part I: Simulated Phantom Data with the Fixed Parameter Setting
The first part of the simulation study theoretically illustrates the

properties of the parameter estimates for the introducedmodels. For
this part, a 96 × 96 slice of the human head with two 7 × 7 region of
interests (ROIs) was realistically simulated according to the Shepp–
Logan phantom standards [23]. Data for all models were generated
to simulate voxel activation from a bilateral finger tapping fMRI
block design experiment. The block design consisted of 20 s off
followed by sixteen epochs of 15 s on and 15 s off with TR = 1 s. The
simulation consisted of n = 510 time points where the true
activation structure is known to be within ROIs so that the model



able 1
pin density and the relaxation times in milliseconds for the Shepp–Logan Phantom.

Tissue M0 T1 T2⁎

CSF 1 4000 2200
Gray Matter (GM) 0.83 1331 42
White Matter (WM) 0.71 832 49
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T
S

can be evaluated. The considered ROIs that are designated to have
activation are shown in Fig. 1. The presented results for this part of
our simulation study are calculated over 500 simulations.

The spin density and the relaxation parameter values of the
simulated tissues measured at 3.0-T are given in Table 1 [24]. The
parameter values of the voxels that consist of different kinds of tissue
were obtained by averaging their values. For all voxels inside the
phantom in this simulation, the phase and the flip angles were
generically selected to be θ = 45°, ϕ = 90° while β1 = .01 and σ =
.01. The differential T2⁎ contrast, δ, was given a constant value of 1 for
the voxels in ROIswhile defined to be zero for the inactive regions. The
true maps of the true spin density, M0; longitudinal relaxation, T1;
transverse relaxation, T2⁎; differential T2⁎ contrast, δ; linear trend, β1,
and phase angle, θ are illustrated in Figs. 2a, b, c, d, e and f, respectively.

Simulated fMRI data are generated according to the proposed
model given by Eqs. (17) and (18). An fMRI block design experiment
with an acquisition of 510 repetitions was used to estimate the
model parameters. For each voxel, time depending echo time, TEt,
was assumed to consist of three parts. In the first part, it is fixed as
having a value of 42.7 ms at the first 10 time points. In the second
part, the first 5 TE values are equispaced in the interval
[42.7 ms,52.7 ms] that consists of the following TE values: 42.7,
45.2, 47.7, 50.2, 52.7, and this procedure is repeated again for the
next 5 time points. Finally, the last 490 TE values are fixed as 42.7 ms
Fig. 2. True parameter maps for DeTeCT and DeTeCT-ING Models generated according to 2D
in s., c) true T2⁎ map in s., d) true δ map, e) true β1 map, f) true θ map.
as illustrated in Fig. 3a. The time trend X is a column of counting
numbers, where the reference function, zt, which is illustrated in
Fig. 3b, consists of blocks of 0’s and 1’s, as being related to the block
experimental design. It can be noted here that a better simulation
may be performed with an assumption of very short T2⁎ (b10−6 ms.)
values outside the phantom image.

3.1.2. Part II: Simulated Data of Two Voxels with the Varying Parameter
Setting

In this simulation study, we evaluate the performances of the
considered models for detecting activation with the use of the data
generated from one active GM voxel as in an ROI area and one
inactive GM voxel from outside of the ROIs at varying parameter
settings. For an effective evaluation of the models’ performances,
we created two sets of scenarios in which we vary a specific
parameter and analyze the models’ detection performances under
these settings. These scenarios were created with the following
parameter settings: a) to analyze the models at different levels of
the effect of the neural activity in the signal: differential T2⁎

contrast, δ, values of the active voxel varying from 0 to 1 with
increments of 0.01, σ = 0.5, and threshold significance level, α =
0.05; b) to analyze the sensitivity of the models to the pre-specified
α level: threshold significance level, α, varying from 0.01 to 0.1
with steps of 0.0009, σ = 0.5, and δ = 0.1 for the active voxel. The
values of the fixed σ and δ were selected as 0.5 and 0.1,
respectively to better observe the efficacy of the models in the
presence of high standard deviation noise level and low neural
activity effect in the signal. All the other imaging parameters were
selected as the same as the ones in Part I. The number of
simulations that were performed for both voxels in each scenario
was 1000. This simulation was used to measure the accuracy of
each model in recognizing the presence of the activation and
Shepp–Logan phantom standards for a 96 × 96 slice. a) TrueM0 map, b) true T1 map

image of Fig.�2


Fig. 3. Imaging parameters. a) Echo time, TEt; b) reference function, zt.
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inactivation in order to compare the accuracy of the models’
outcomes with the known activation schemes.

Furthermore, in order to better analyze the overall performances
of the models by presenting the connection between the CRLBs and
computed sample variances, we created Scenario “c” in which the
data of the single active voxel were generated similarly to Scenario
“a”, with δ values varying from 0 to 1 with increments of 0.1 and
threshold significance level, α = 0.05. For this scenario, we selected
σ to be 0.01 in order to get the same signal properties in our
phantom simulation in Part I. The number of simulations that were
performed in Scenario “c” was 1000.
3.2. Human Subject Data

To observe the performance of the proposed model in experi-
mental data, an fMRI experiment was performed on a single subject
on a 3.0-T General Electric Signa LX magnetic resonance imager. A
bilateral finger-tapping task was performed with a visual cue
indicating whether to tap or rest. The paradigm followed a block
design with an initial 20 s rest followed by 16 epochs of 15 s on and
15 s off. The data sets were composed of seven 2.5-mm-thick axial
slices that are 96 × 96 in dimension for a 24-cm FOV, with the phase
encoding direction oriented as posterior to anterior (top–bottom in
images). A single slice was selected for analysis. Acquired for a series
of 510 TRs, the data sets had a TR of 1 s, a flip angle of 90° and an
acquisition bandwidth of 125 kHz. A time varying TE array as it was
explained in the theoretical methods was utilized.

As a common practice in fMRI studies, the first 3–5 observations
are normally discarded and the reference function is usually
designed to be related to a block design consisting of epochs of on
and offs starting at the 10th time point with a constant TE. As such,
the signal that is acquired for the DeTeCT and DeTeCT-ING Models
at the 10th–19th time points is not acquired for MO and CV
Models. In order to imitate this common practice, the first 20
observations were excluded before applying CV and MO Models to
both simulated and acquired human brain data. Unlike traditional
studies, these first observations were not discarded in the DeTeCT
and DeTeCT-ING Models as they contain information on different
tissue characterization. Parameter estimates of the DeTeCT and
DeTeCT-ING Models were determined by numerical minimization
of Eq. (19) with the use of MATLAB’s optimization toolbox.
Activation from −2logλ likelihood ratio statistics which are given
in Eq. (15) for MO Model and Eq. (9) for CV, DeTeCT and DeTeCT-
ING Models, was thresholded at a 5% Bonferroni family-wise error
rate [25]. All programs were written in the MATLAB programming
language on a dual quad-core PC with 24 gigabytes of RAM running
Microsoft Windows 7.

4. Results

4.1. Analysis

To observe the performance of the proposed methods, the true
parameter values and the theoretical minimum standard deviations
are compared to the sample means and sample standard deviations
of the model parameters computed from the simulation study
presented in Part I of Section 3.1.The parameter values that are
used to generate data for our simulation study are used for the true
values of the parameters the DeTeCT and DeTeCT-ING Models have.
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Table 2
The average voxel values of the CV Model mean maps.

MEAN β0 β1 β2 θ σ2

β0 True β0 Alt β0 Null β1 True β1 Alt β1 Null β2 True β2 Alt β2 Null θ True θ Alt θ Null σ2 True σ2 Alt σ2 Null

GM 2.708 2.708 2.708 0.01 0.0100 0.01 3.80E-16 −4.41E-08 0 0.7854 0.7854 0.7854 0.0001 9.96E-05 0.0001
WM 2.758 2.758 2.758 0.01 0.0100 0.01 1.64E-16 2.95E-07 0 0.7854 0.7854 0.7854 0.0001 9.96E-05 0.0001
CSF 2.757 2.757 2.757 0.01 0.0100 0.01 2.09E-16 −2.06E-06 0 0.7854 0.7854 0.7854 0.0001 9.96E-05 0.0001
Out 1.25E-14 −1.02E-06 −4E-07 1E-17 −2.38E-09 −2.1E-09 6.16E-31 1.24E-06 0 0.0000 0.0002 −0.0005 0.0001 9.95E-05 0.0001
ROI 2.7076 2.7076 2.8322 0.0100 0.0100 0.0100 0.2542 0.2542 0 0.7854 0.7854 0.7854 0.0001 9.96E-05 0.0082

Table 3
The average voxel values of the CV Model standard deviation maps.

SD β0 β1 β2 θ σ2

β0 Min.
Theo.

β0 Alt β0 Null β1 Min.
Theo.

β1 Alt β1 Null β2 Min.
Theo.

β2 Alt β2 Null θ Min.
Theo.

θ Alt θ Null σ2 Min.
Theo.

σ2 Alt σ2 Null

GM 0.0006 0.0006 0.0005 3E-06 3.19E-06 3.19E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 4.5E-06
WM 0.0006 0.0006 0.0005 3E-06 3.2E-06 3.2E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 4.5E-06
CSF 0.0006 0.0006 0.0005 3E-06 3.19E-06 3.18E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 4.5E-06
Out 0.0006 0.0008 0.0006 3E-06 4.12E-06 4.13E-06 0.0009 0.00117 0 4E + 10 0.907 0.9015 5E-06 4.5E-06 4.5E-06
ROI 0.0006 0.0006 0.0005 3E-06 3.2E-06 3.2E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 5.7E-05

Table 4
The average voxel values of the MO Model mean maps.

MEAN β0 β1 β2 σ2

β0 True β0 Alt β0 Null β1 True β1 Alt β1 Null β2 True β2 Alt β2 Null σ2 True σ2 Alt σ2 Null

GM 2.708 2.708 2.708 0.01 0.0100 0.01000 2.047E-16 −1.6E-06 0 0.0001 9.938E-05 9.96E-05
WM 2.758 2.758 2.758 0.01 0.0100 0.01000 2.1858E-16 −1E-06 0 0.0001 9.934E-05 9.95E-05
CSF 2.757 2.757 2.757 0.01 0.0100 0.01000 3.3307E-16 −3.4E-06 0 0.0001 9.936E-05 9.96E-05
Out 0.000 0.013 0.013 1E-17 0.0000 0.00000 6.163E-31 2.98E-07 0 0.0001 4.266E-05 4.27E-05
ROI 2.708 2.708 2.832 0.01 0.0100 0.00998 0.25421653 0.254215 0 0.0001 9.941E-05 0.016244

Table 5
The average voxel values of the MO Model standard deviation maps.

SD β0 β1 β2 σ2

β0 Min. Theo. β0 Alt β0 Null β1 Min. Theo. β1 Alt β1 Null β2 Min. Theo. β2 Alt β2 Null σ2 Min. Theo. σ2 Alt σ2 Null

GM 0.0006 6E-04 0.0005 3E-06 3E-06 3.19E-06 0.000904 0.000904 0 6E-06 6.369E-06 6.38E-06
WM 0.0006 6E-04 0.0005 3E-06 3E-06 3.2E-06 0.000904 0.000904 0 6E-06 6.357E-06 6.36E-06
CSF 0.0006 6E-04 0.0005 3E-06 3E-06 3.18E-06 0.000904 0.000904 0 6E-06 6.358E-06 6.36E-06
Out 0.0006 4E-04 0.0003 3E-06 2E-06 2.09E-06 0.000904 0.000592 0 6E-06 2.894E-06 2.9E-06
ROI 0.0006 6E-04 0.0005 3E-06 3E-06 3.2E-06 0.000904 0.000905 0 6E-06 6.364E-06 0.000115
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For the parameter that only CV and MO Models have, the
analytically driven MLEs are used to compute true parameter
values from the data with no added noise. Furthermore, the
analytically driven CRLBs are used to calculate the theoretical
minimum standard deviations for CV and MO Models [20,26,27]
whereas the CRLBs of the DeTeCT and DeTeCT-ING Models are
numerically calculated. The derivations of the analytical expres-
sions for the derivatives of the likelihood function of the DeTeCT
and DeTeCT-ING Models, which are used to numerically compute
THE CRLBs of the model parameters, are given in Appendix A.
CLRBs provide a quantitative measure of the attainable precision of
the parameter estimates from a given set of observations. They give
insight into the potential performance of the estimators, the
performance of the implementation and computation of the
estimation models, and the efficiency of the estimators.
In order to better compare the estimated results and the
theoretical values, the average voxel values of the descriptive
statistics for each tissue type (GM: gray matter, WM: white
matter, CSF, Out: outside brain, and ROI) for the parameters
estimated under the alternative and null hypotheses are presented
in Tables 2–9.The first columns that correspond to each parameter
represent the true value/theoretical minimum standard deviation
values, the second and third columns represent the sample mean/
standard deviation values computed from the null (Null) and the
alternative (Alt) hypothesis, respectively. In the tables, the power
of the estimation is given with a formatting code as regular
represents the theoretical value, italic represents a “good”, bold
represents a “fair”, and bold italic represents a “poor” estimate.

For the quantitative analysis of the activation detection perfor-
mances of the models, the simulation results presented in Part II of



Table 6
The average voxel values of the DeTeCT Model mean maps.

MEAN M0 T1 T2⁎ δ

M0 True M0 Alt M0 Null T1 True T1 Alt T1 Null T2⁎ True T2⁎ Alt T2⁎ Null δ True δ Alt δ Null

GM 0.83 0.834 0.833 1.331 1.327 1.327 0.042 0.0426 0.0425 0 7.37E-06 0
WM 0.71 0.711 0.711 0.832 0.830 0.830 0.049 0.0495 0.0495 0 6.74E-06 0
CSF 1 1.030 1.025 4 4.025 4.021 2.2 9.6711 14.079 0 1.317 0
Out 1E-11 0.0004 0.0006 1000 1001.76 1001.88 1000 773.346 921.512 1E-17 -57.17 0
ROI 0.83 0.8563 9.446 1.331 1.3205 0.0783 0.042 0.0407 0.0120 1 3.8058 0

β1 θ σ2

β1 True β1 Alt β1 Null θ True θ Alt θ Null σ2 True σ2 Alt σ2 Null

GM 0.01 0.0100 0.0100 0.7853 0.7853 0.7853 0.0001 9.95E-05 9.96E-05
WM 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 9.94E-05 9.95E-05
CSF 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 9.95E-05 9.96E-05
Out 1E-17 −3.48E-09 −3.50E-09 0 0.0004 0.0004 0.0001 9.96E-05 9.96E-05
ROI 0.01 0.0099 0.0100 0.7853 0.7853 0.7853 0.0001 9.95E-05 0.008020

Table 7
The average voxel values of the DeTeCT Model standard deviation maps.

SD M0 T1 T2⁎ δ

M0 Min. Theo. M0 Alt M0 Null T1 Min. Theo. T1 Alt T1 Null T2⁎ Min. Theo. T2⁎ Alt T2⁎ Null δ Min. Theo. δ Alt δ Null

GM 0.0857 0.0856 0.0851 0.0358 0.0367 0.0365 0.0052 0.0055 0.0054 0.00023 0.000253 0
WM 0.0537 0.0537 0.0534 0.0237 0.0240 0.0238 0.0053 0.0055 0.0054 0.00024 0.000259 0
CSF 0.0718 0.8674 0.1191 0.0158 3.9971 0.5101 8.8591 20.285 25.833 0.46598 24.77650 0
Out 0.2807 1.1572 4.3318 3.14E-13 74.257 75.814 1.14E-19 7140.6 1203.4 5.65E-20 5053.601 0
ROI 0.0857 0.0586 3.0724 0.0358 0.0370 0.0271 0.0052 0.0029 0.0020 3.2462 6.813494 0

β1 θ σ2

β1 Min. Theo. β1 Alt β1 Null θ Min. Theo. θ Alt θ Null σ2 Min. Theo. σ2 Alt σ2 Null

GM 3.08E-06 3.08E-06 3.08E-06 1.44E-04 1.44E-04 1.44E-04 4.43E-06 4.41E-06 4.42E-06
WM 3.08E-06 3.08E-06 3.08E-06 1.42E-04 1.42E-04 1.42E-04 4.43E-06 4.41E-06 4.41E-06
CSF 3.08E-06 3.03E-06 3.03E-06 1.41E-04 1.41E-04 1.41E-04 4.43E-06 4.42E-06 4.43E-06
Out 9.54E-07 3.91E-06 3.91E-06 6.72E-12 8.33E-01 8.32E-01 4.43E-06 4.42E-06 4.42E-06
ROI 3.08E-06 3.05E-06 3.68E-06 1.38E-04 1.38E-04 1.39E-04 4.43E-06 4.41E-06 5.63E-05

Table 8
The average voxel values of the DeTeCT-ING Model mean maps.

MEAN M0 δ β1 θ σ2

M0 True M0 Alt M0 Null δ True δ Alt δ Null β1 True β1 Alt β1 Null θ True θ Alt θ Null σ2 True σ2 Alt σ2 Null

GM 0.83 0.8299 0.829 0 1.18E-06 0 0.01 0.0100 0.0100 0.7853 0.7853 0.7853 0.0001 9.96E-05 9.97E-05
WM 0.71 1.0801 1.079 0 −2.44E-05 0 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 9.98E-05 9.99E-05
CSF 1 1.0881 1.086 0 −0.00019 0 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 0.000112 0.000112
Out 1E-11 1.91E-06 3.79E-06 1E-17 45.1519 0 1E-17 −2.83E-09 −3.26E-09 0 0.0001 0.0002 0.0001 9.95E-05 9.96E-05
ROI 0.83 0.8300 1.382 1 1.0169 0 0.01 0.0099 0.0100 0.7853 0.7853 0.7853 0.0001 9.96E-05 0.008096

Table 9
The average voxel values of the DeTeCT-ING Model standard deviation maps.

SD M0 δ β1 θ σ2

M0

Min.
Theo.

M0 Alt M0 Null δ Min.
Theo.

δ Alt δ Null β1 Min.
Theo.

β1 Alt β1 Null θ Min.
Theo.

θ Alt θ Null σ2 Min.
Theo.

σ2 Alt σ2 Null

GM 0.0857 0.004836 0.004430 0.000233 0.000232 0.000000 0.000003 0.000003 0.000003 0.000144 0.000144 0.000144 0.000004 0.000004 0.000004
WM 0.0537 0.004828 0.004427 0.000244 0.000178 0.000000 0.000003 0.000003 0.000003 0.000142 0.000142 0.000142 0.000004 0.000004 0.000004
CSF 0.0718 0.004829 0.004420 0.492673 0.000176 0.000000 0.000003 0.000003 0.000003 0.000141 0.000141 0.000141 0.000004 0.000005 0.000005
Out 0.2807 0.006374 0.005879 0.000000 709.298 0.000000 0.000001 0.000004 0.000004 0.000000 0.837543 0.857975 0.000004 0.000004 0.000004
ROI 0.0857 0.004812 0.004418 3.246212 0.136426 0.000000 0.000003 0.000003 0.000003 0.000138 0.000138 0.000139 0.000004 0.000004 0.000056
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Section 3.1 were evaluated by utilizing three criteria. The first two
are the true positive rate (TPR), proportion of the times that an
active is correctly detected as active, and false positive rate (FPR),
proportion of the times that an inactive voxel is incorrectly
detected as active. The third criterion is the receiver operator
characteristic (ROC), which is a plot FPR (one minus the specificity)
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on the x-axis versus TPR (sensitivity) on the y-axis, which gives the
tradeoff between the cost of failing to detect the activity against the
cost of raising false positives. For the first two criteria, we generate
Fig. 4. Calculated sample mean maps of the DeTeCT Model parameters. a) μ(M0̂) and μ(M̃0)
μ(θ̂) and μ(θ̃), g) μ(σ̂ 2) and μ(σ̃ 2).
the TPR and FPR versus the parameters varied, δ and α, curves for
Scenarios “a” and “b”, respectively, introduced in Part II of Section
3.1. For the ROC curves, each varying parameter value (δ or α)
, b) μ(T̂1) and μ(T̃1) in s., c) μ(T2̂⁎) and μ(T2̃⁎) in s., d) μ(δ̂) and μ(δ̃), e) μ(β̂1) and μ(β1̃), (f)
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Fig. 4 (continued)
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determines a (x, y) point on the curve. To generate the ROC curves
for Scenarios “a” and “b”, TPR and FPR for a fixed δ or α value are
computed from the data of the selected active and inactive voxels,
respectively. These are then averaged across 1000 simulated
images to generate the (x, y) point. This is repeated for the
considered range of the varied parameter values to generate a
curve. ROC curves range from (0, 0) to (1, 1), and a good model is
ideally expected to have a curve that is as close to the upper left
quadrant (1, 0) as possible.

In order to better evaluate the efficiency of the models’
estimators, the single voxel simulation that is performed under
Scenario “a” is used for the analyses of the properties of the
parameter estimates. The first criterion of such analysis is to compare
the computed CRLBs and the sample variances of the parameters at
varying δ, whereas the second criterion is to compare mean squared
errors (MSEs) of the estimators, which incorporate both the variance
and the bias of the estimators, at varying δ.
All computations were performed on an HP Z600 with dual-
quad core Xeon X5570 2.93 GHz processors, 24 GB of DDR3 RAM,
1 TB SATA-300 hard drive, 64 bit, Windows 7 in Matlab 2012. The
computation times of the DeTeCT and DeTeCT-ING Models for the
estimation of the model parameters and the activation statistics of
a 96 × 96 human subject data that were acquired with the setting
given in Section 3.2 were found to be 77.36 min and 9.23 min,
respectively. The reason for having a higher computation time for
the DeTeCT Model can be explained by the computational
complexity of this model resulting from simultaneous estimation
of seven parameters.

4.2. Simulated Data Results

4.2.1. Part I: Simulated Phantom Data with the Fixed Parameter Setting
The true value and the theoretical minimum standard deviation

maps of the parameters of the CV and MO Models were produced

image of Fig.�4
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according to MLEs and CLRBs of the model by using the noiseless
complex fMRI data [20,26].The average voxel values of the true
values as well as the calculated sample mean maps of the estimated
parameters under the null and alternative hypothesis for each tissue
type are given in Table 2 for CV Model, and in Table 4 for MO Model.
Similar tables for the theoretical minimum and computed sample
standard deviation maps of the CV and MO Models are also given in
Tables 3 and 5, respectively. It can be observed that CV and MO
Modelsmostly yield “good” results. However, it should be noted here
that the results of these two models are compared with the true
value and theoretical minimum standard deviation maps calculated
from the considered models themselves. Furthermore, the CV and
MO Models do not provide the proton spin density and relaxation
parameter estimates unlike the DeTeCT and DeTeCT-ING Models.

The true parameter maps of the DeTeCT and DeTeCT-ING Models
are given in Fig. 2(a)–(f). The calculated sample mean of the
estimated parameters,M0, T1, T2⁎, δ, β1, θ, σ2, from the DeTeCT Model
are given in Fig. 4(a)–(g) (left: alternative, right: null hypothesis),
Fig. 5. Calculated sample mean maps of the DeTeCT-ING Model parameters. a) μ(M0̂) an
respectively. It can be observed that the estimated parameters under
the alternative hypothesis appear to be similar to the true parameter
values given in Fig. 1 except for the blurring that is the result of the
noise in the signal as well as the systematic error of the numerical
optimization procedure. It can also be seen that the most apparent
difference between the null and alternative hypotheses estimation
results occurs in ROIs which become especially significant in M0, T1,
δ, and σ2 results given in Fig. 4(a), (b), (d) and (g) since the only
difference in the hypothesis setting given in Eq. (21) occurs in ROIs.
Table 6 provides a better comparison between the true value and the
sample mean estimated parameter values. One can observe that the
difference between the calculated sample means of the parameters
such as T2⁎ and δ is higher compared to the difference for the other
parameters in GM tissue and outside brain. The poor estimation that
appears in such tissues could be considered as the result of having a
nonlinear objective function given in Eq. (19) and six different
parameters to be optimized in this system. Table 7 illustrates a
comparison between the theoretical minimum standard deviations
d μ(M̃0), b) μ(δ̂) and μ(δ̃), c) μ(β1̂) and μ(β̃1), (d) μ(θ̂) and μ(θ̃), e) μ(σ̂ 2) and μ(σ̃ 2).
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Fig. 5 (continued)

20 M.M. Karaman et al. / Magnetic Resonance Imaging 32 (2014) 9–27
of the parameters that were calculated according to the numerically
calculated CRLBs and the computed sample standard deviations of
the estimated parameters. Although the sample standard deviations
of T2⁎ and δ are higher compared to the related CRLBs, the DeTeCT
Model mostly produces “good” results in terms of the variances of
the estimated parameters.
Fig. 6. First row: Calculated sample means of the activation statistics (Z or t) of the models.
Model) Second row: Calculated sample standard deviations of the activation statistics (Z o
μ(Z) (DeTeCT-ING Model).
The sample mean of the estimated parameters, M0, δ, β1, θ, and
σ2, of the DeTeCT-ING Model under the null and alternative
hypotheses is shown in Fig. 5(a)–(e) (left: alternative, right: null
hypothesis), respectively. The average voxel values of the true
parameter values and the calculated sample mean maps are given in
Table 8 whereas the CRLBs and the calculated sample standard
a) μ(Z) (CV Model), b) μ(t) (MOModel), c) μ(Z) (DeTeCT Model), d) μ(Z) (DeTeCT-ING
r t) of the models. e) (Z) (CV Model), f) μ(t) (MO Model), g) μ(Z) (DeTeCT Model), h)

image of Fig.�5
image of Fig.�6


Table 10
Minimal theoretical standard deviation values of the CV and MO Model parameters

SD MO CV

β0 β1 β2 σ2 β0 β1 β2 θ σ2

GM 0.0006 3E-
06

0.0009 6E-
06

0.0006 3E-
06

0.0009 1E-04 5E-
06

WM 0.0006 3E-
06

0.0009 6E-
06

0.0006 3E-
06

0.0009 1E-04 5E-
06

CSF 0.0006 3E-
06

0.0009 6E-
06

0.0006 3E-
06

0.0009 1E-04 5E-
06

Out 0.0006 3E-
06

0.0009 6E-
06

0.0006 3E-
06

0.0009 4E + 10 5E-
06

ROI 0.0006 3E-
06

0.0009 6E-
06

0.0006 3E-
06

0.0009 1E-04 5E-
06

Table 11
Minimal theoretical standard deviation values of the DeTeCT and DeTeCT-ING Mode

SD DeTeCT

M0 T1 T2⁎ δ β1 θ

GM 0.0857 0.0358 0.0052 0.00023 3.08E-06 1.44
WM 0.0537 0.0237 0.0053 0.00024 3.08E-06 1.42
CSF 0.0718 0.0158 8.8591 0.46598 3.08E-06 1.41
Out 0.2807 3E-13 1.14E-19 5.65E-20 9.54E-07 6.72
ROI 0.0857 0.0358 0.0052 3.2462 3.08E-06 1.38
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.

deviations are shown in Table 9. Fig. 5 as well as Tables 7 and 8 show
that the DeTeCT-INGModel has a high statistical power in estimating
the parameters. One can observe that the only “fair” and “poor”
estimates appear to be in WM M0 and δ outside the phantom.
However, better δ estimates can be seen in Fig. 5(b) compared to
Fig. 4(d). It should be noted here that no signal areas, such as outside
of the brain, have not been masked after estimation. It is thus
expected that the parameters for the voxels outside the phantom
may not have been estimated precisely as we expect.

As previously noted, activations are calculated from the likelihood
ratio statistics −2logλM for MO Model and−2logλC for CV, DeTeCT,
and DeTeCT-INGModels given in Eqs. (9) and (15). The samplemean
and the standard deviation of the activation statistics maps, Z-
statistics for CV, DeTeCT and DeTeCT-ING Models and t-statistics for
MO Model, which were thresholded at a 5% Bonferroni family-wise
error rate are given in Fig. 6(a)–(d) and (e)–(h), respectively. None of
the models appears to produce false positives due to the low
uncertainty in the simulated data. However, Fig. 6(e)–(h) shows that
DeTeCT-INGModel produces lower variance in all tissue types in the
phantom compared to the other models.

We give a comparison between the CRLBs, which provide a
quantitative measure of the attainable precision of parameter
estimates, of the considered models in Tables 10 and 11. It can be
observed from Table 10 and the results of a previous study [26] that
the CRLB for the variance of the estimate of the observation variance
is two times larger in the MO model than in the CV model. Table 11
shows that the CRLBs of the estimates of the common parameters of
the DeTeCT and DeTeCT-INGModels are the same since thesemodels
have the same likelihood functions. It can also be seen from Tables 10
and 11 that the common parameters of all fourmodels such as β1 and
θ appear to have the same CRLBs. The minimal theoretical standard
deviations of the estimates of M0, T1 and T2⁎ are higher compared to
those of the other parameters. The DeTeCT and DeTeCT-ING Models
appear to have higher CRLBs of the estimate of δ in CSF and ROI areas
compared to the other areas. It should be noted here that the CRLBs
of MO and CV Models and the DeTeCT and DeTeCT-ING Models are
not based on the same number of TRs since the first 20 observations
are excluded for MO and CV Models.
l para

E-04
E-04
E-04
E-12
E-04
4.2.2. Part II: Simulated Data of Two Voxels with the Varying Parameter
Setting

Figs. 7(a), (b) and 8(a), (b) illustrate the TPR and FPR plots
against the varied parameter, δ and α under Scenarios “a” and “b”,
respectively. Furthermore, Fig. 8c shows the ROC curves plotted
whileα is are varied under Scenario “b”. ROC curve at varying δ is not
presented because the FPR computed from the inactive voxel is not
affected by the varying parameter, δ, as it is zero for the inactive
voxel. In the plots presented in Figs. 7 and 8, the colors red, green,
blue and black represent the models CV, MO, DeTeCT and DeTeCT-
ING, respectively.

Fig. 7(a) and (b) shows the plots of TPR and FPRs for each model
against δ for an α= 0.05 significance level, which are based on 1000
simulated time series with σ = 0.5. As seen in Fig. 7(a), even
though TPRs of the models seem to coincide with each other; the
MO and CV models have slightly higher TPRs especially at low δ
values. However, there seems to be a trade-off between the TPRs
and FPRs of the CV and MO Models, as Fig. 7(b) shows that FPRs of
the CV and MOmodels are also higher than the DeTeCT and DeTeCT-
ING Models’ FPRs. This may be explained by the fact that our
simulations are based on the data generated from Eq. (17) which is
closer to the physical magnetization of the signal than the linear
model that the MO and CV models use. One can observe that the
FPRs of the DeTeCT and DeTeCT-ING Models do not converge to the
significance level of α = 0.05 in Fig. 7(b), possibly due to some kind
of bias that might have been created during the nonlinear numerical
optimization process.

Fig. 8(a)–(c) shows the plots of TPR and FPRs for each model
against significance level,α, as well as the ROC scatter plot generated
at varying α for δ = 0.1 for the active voxel, which are based on
1000 simulated time series with σ = 0.5. TPR plots of the CV,
DeTeCT and DeTeCT-ING Models seem to slightly differ from each
other whereas the MO model has insignificantly higher TPRs at
almost all α values. As expected, it can be observed in Fig. 8(b) that
the FPRs of the models increase with significance level, α. Moreover,
the DeTeCT and DeTeCT-ING Models show lower FPRs than the MO
and CV Models at all α levels. ROC scatter plots in Fig. 8(c) show the
full picture of trade-off between the TPR and FPR across a series of α
values. Since more accurate activation detection model is expected
to have a closer ROC curve to the upper-left border of the ROC space,
the DeTeCT and DeTeCT-ING Models can be observed to be more
accurate as producing less trade-off between FPR and TPRs. It can
also be seen in Fig. 8(c) that the FPRs of the DeTeCT and DeTeCT-ING
Models are not as high as the ones of MO and CV models at any
significance level, α.

Fig. 9 shows the plots of CRLBs and sample variances of the
models’ parameters against δ for the single active voxel data
generated based on Scenario “c” in which α = 0.05, σ = 0.01 and
δ varying from 0 to 1 with increments of 0.1. Since the CV and MO
models do not include M0, T1, T2⁎ and δ; the MO model does not
include θ; and the DeTeCT and DeTeCT-INGmodels do not include β0

and β2, the corresponding panels of Fig. 9 do not include such
parameters. Further, Fig. 10 shows the plots of sample means and
meters.

DeTeCT-ING

σ2 M0 δ β1 θ σ2

4.43E-06 0.0857 0.000233 3.08E-06 1.44E-04 4.43E-06
4.43E-06 0.0537 0.000244 3.08E-06 1.42E-04 4.43E-06
4.43E-06 0.0718 0.492673 3.08E-06 1.41E-04 4.43E-06
4.43E-06 0.2807 0.000000 9.54E-07 6.72E-12 4.43E-06
4.43E-06 0.0857 3.246212 3.08E-06 1.38E-04 4.43E-06



Fig. 7. (a) TPR and (b) FPR plots against the varied parameter, δ, under Scenario “a” in
which σ = 0.5, and α = 0.05.
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Fig. 8. (a) TPR, (b) FPR plots against the varied parameter, α, and (c) ROC curve under
Scenario “b” in which σ = 0.5, and δ = 0.1.
MSEs of the estimated σ2’s under each model against δ that are
computed from the same single voxel data generated under Scenario
“c”. We prefer to present the MSE plots of the parameter σ2 only
since the MSEs of the other parameters are significantly close to the
variance plots presented in Fig. 9 as a result of low bias of the
estimators. In the plots presented in Figs. 9 and 10, the colors red,
green, blue and black represent the sample variances, MSEs or
sample means of the CV, MO, DeTeCT and DeTeCT-ING models,
whereas in Fig. 9, pink, cyan, and yellow represent the CRLBs of the
CV, MO, and DeTeCT/DeTeCT-ING models, respectively. As noted
before, the DeTeCT and DeTeCT-ING Models have the same CRLBs
since these models have the same likelihood functions.

It can be seen in Fig. 9(a), (c) and (d) that the sample variances of
the estimatedM0, T2⁎ and δ for the DeTeCT model (in blue) appear to
be close but not coincident to the CRLB values (in yellow) whereas
the sample variances of the estimated M0 and δ for the DeTeCT-ING
model (in black) can be observed to be lower than CLRBs (in yellow)
at all δ values. The sample variance plot of the estimated T1 that is
given in Fig. 9(b) appears to coincide with its CRLB atα values higher
than 0.4. It can be seen in Fig. 9e that the variances of β1 for all
models achieve their CRLBs. It should be noted here that the DeTeCT
and DeTeCT-ING models’ CRLBs (yellow) are lower than the CV and
MO models’ CRLBs (pink) for the coefficient β1. In Fig. 9(f) and (g),
the variance of θ appears to achieve its CRLBs for all models
considered. Further, the variances of the coefficients β0 and β2 for the
CV andMOmodels (in red and yellow), presented in Fig. 9(h) and (i),
appear to achieve their CRLBs (in pink). Error variance estimate,

image of Fig.�7
image of Fig.�8


Fig. 9. CRLB and sample variance plots of the parameters against δ for the single active voxel data generated based on Scenario “c” in which α = 0.05, σ = 0.01. a M0, b)T1, c) T2⁎, d) δ, e) β1, f) θ, g) β0, h) β2, and i) σ2.
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Fig. 10. (a) Sample mean, and (b) MSE plots of σ2 against δ for the single active voxel
data generated based on Scenario “c” in which α = 0.05, σ = 0.01.
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given in Fig. 9(j), is approximately twice as large for the MO model
than for the CV, DeTeCT and DeTeCT-ING models. This observation
was verified by the fact that the CRLB for the variance of the
observation variance is two times larger in the magnitude only data
than the complex-valued data [26]. As such, the CRLBs for the
Fig.11. Estimated M0, T1, and T2⁎ maps from the alternative hypo
variance of σ2 in the DeTeCT and DeTeCT-ING models are also found
to be very close to the CRLBs for the variance of σ2 in CV model.
Furthermore, the estimated variances of all models appear to be very
close to their corresponding CRLBs.

In Fig. 10(a), we present the computed sample means of σ2 for all
models as well as the true σ2 value that we used when generating
the data. Furthermore, we present the MSEs of σ2 for the models at
varying δ in Fig. 10(b). It can observed in Fig 10(a) that the sample
means of σ2 computed from the CV, DeTeCT and DeTeCT-INGmodels
appear to be very close to each other and also to the true σ2 value.
MO model seems to produce a lower error compared to the other
models mostly at higher δ points. However, as a result of the MO
model’s higher minimal theoretical error variance, the MSE of σ2 for
the MO model appears to be higher than the other models, as it can
be seen in Fig. 10(b). Further, the DeTeCT and DeTeCT-ING models
seem to have slightly lowerMSEs for σ2 than the CVmodel. Since the
MSE decomposes into a sum of the bias and variance of the
estimator, the MSE of the estimators needs to be as small as possible
in order to achieve a good estimation performance.

In general, the parameter estimates for the CV, DeTeCT and
DeTeCT-INGmodels appear to bemore efficient than theMOmodel at
the considered δ levels. It should also be noted here that the DeTeCT
and DeTeCT-ING models have superior benefits than the CV and MO
models in terms of extracting more information from fMRI data by
providing M0, T1 and T2⁎ estimates as well as activation detection.
Lower variance and bias of the variance estimator, σ2 imply a more
stable variance of the model. Furthermore, lower mean of the
variance estimatorσ2 provides better stability of the other parameter
estimates since the CRLBs of all estimators depend on σ2. As such, a
better accuracy and stability of the DeTeCT and DeTeCT-ING Models
can lead to better activation detection by providing lower FPRs,
higher TPRs and ROC curves closer to the left quadrant, especially at
extreme situations such as at low δ and very low or high α levels.
4.3. Human Subject Data Results

Data acquired for a human subject are corrupted by noise as a result
of physiological effects and possible motion. Nonlinearity and the
number of the parameters to be estimated in the system aswell as the
noise in the acquired data may pose computational difficulty when
performing the nonlinear LS estimation. However, such problem can
be overcome by choosing reasonable initial values of the parameters
for the iterative search. In order to develop a more hybrid approach to
the nonlinear estimation, the MLEs of M0, β1, and θ were analytically
driven under the restricted null hypothesis of the DeTeCT-ING Model
to be used as initial values. The derivations of the MLEs of the null
hypothesis of the DeTeCT-ING Model are given in Appendix B.
thesis of the DeTeCT Model. a) M0, b) T1 (in s.), c) T2⁎ (in s.).
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Fig. 12. Activation images thresholded at 5% FWE rate from a) CV, b) MO, and c) DeTeCT-ING Models.
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The tissue parameter maps, M0, T1, and T2⁎, estimated from the
alternative hypothesis of the DeTeCT Model given in Eq. (21) by
using the numerical nonlinear are shown in Fig. 11(a)–(c).
Fig. 12(a)–(c) shows activation images using the likelihood ratio
test from the CV, MO and DeTeCT-ING Models, respectively. It can be
observed that M0, T1, and T2⁎ values are highly indicative of GM
bordered in Fig. 11(a)–(c). Fig. 12 shows a high correspondence
between decay coefficients deemed to be GM and bordered active
areas that should be in GM. It can be observed that GM T1 values are
higher than WM T1 values as it is given in Table 1. Corresponding
tissues can also be seen in T2⁎ map in Fig. 11(c). It is evident that the
CV and DeTeCT-ING Models demonstrate superior power of
detection over the MO model in left motor cortex and supplemen-
tary motor area in which the activation occurs. A higher power of
detection can be seen in the bordered left motor cortex in Fig. 12(c)
compared to the corresponding areas in Fig. 12(a) and (b). This
observation is consistent with the outcomes of our simulation study
presented in Fig. 8 in Part II of Section 4.2 which shows that the
DeTeCT-ING model has a better activation detection power than the
CV andMOmodels. Fig. 12(c) also shows that the DeTeCT-INGmodel
produces no false positives outside brain unlike the CV model. Even
though the false positive detections of this kind, which are distant
from the tissues, can be easily masked, this outcome can be
considered as the evidence of the DeTeCT-ING model’s benefit of
theoretically eliminating false positive rates without the need of
researchers’ decision formanualmasking after the statistical analysis
of the observed fMRI data. A few false positives that are not present
in the CV or MOmodels can also be observed in the upper left side of
the brain which is very close to no signal area. Such false positives
can be caused by the signal changes due to non-uniform sources of
noise and artifact that are hard to be described and modeled.
Furthermore, the assumption of independence of the observations in
time or space may not be true in the human subject data. Such
assumptions that are difficult to be satisfied can cause poor estimates
and thus false positive rates especially in the areas near the edges of
the brain. As such, these voxels that are incorrectly detected as active
most possibly have task related signal changes that are not of
biological origin.
5. Discussion

This work proposes a new statistical fMRI model for differential
T2⁎ contrast, so called the DeTeCT-INGModel, by incorporating T1 and
T2⁎ of gray matter tissue, considering the fact that the active voxels
are located in gray matter. Furthermore, the physical magnetization
equation was included into the model rather than using a linear
model to describe the magnetization. Unlike the previously
presented fMRI activation models, the first scans of fMRI data were
not discarded since they have the biological information of the brain,
including the tissue parameters such as relaxation parameter and
spin density of the tissues.

The selection of the imaging parameters, TR, TE and flip angle,
plays an important role for determining accurate measure of tissue
parameters. The acquisition parameters for this study were selected
to be appropriate for both T1 and T2⁎ estimation and brain activation
detection since we perform them from a single pulse sequence. The
selection of 90° flip angle was made in order to simplify the
temporarily varying magnitude Mt, given in Eq. (17) so that the
magnetization at time for the DeTeCT and DeTeCT-ING Models does
not depend on themagnetization at previous time point. As such, the
computational complexity of the numerical optimization of the log
likelihood function is relatively reduced. It should be noted here that
it is possible to reduce TR and TE to increase T1 and T2⁎ contrast since
T1 and T2⁎ are influenced by TR and TE, respectively. Discarding the
computational complexity of the problem, the optimum flip angle
that can give the optimum T1 and T2⁎ estimates in terms of the
accuracy of the measurements would be the one that makes the
signal weighted equally on T1 and T2⁎.

There are three main contributions of the developedmodel to the
current studies in the field by utilizing the aforementioned neglected
information. First, the proposed method provides a significant step
to modeling the fMRI data closer to that actually seen in the real
experiments with the use of physical magnetization equation.
Second, utilization of the gray matter tissue relaxation parameters
in the statistical fMRI activation model provides a theoretical
elimination of the possible false positives in the process of
hypothesis testing while computing activation statistics. As such,
the DeTeCT-ING Model provides more accurate and significant
activation statistics. Third, the model allows one to simultaneously
estimate the relaxation parameters which could be used for tissue
characterization, by utilizing the information in the first few images.

The proposed model in this study can be applied to improve the
sensitivity to detect brain activation in fMRI by theoretically
restricting the search volume of the statistical analysis to the grey
matter only. The primary application of the method can be fMRI
analysis for the diagnosis of grey matter diseases such as degener-
ative diseases by automatically segmenting grey matter to limit
analysis to grey matter voxels. The method can be useful in the
analysis of fMRI data that are prone to produce false positive rates as
a result of thermal noise, physiological noise, or correlated noise in
the data.

image of Fig.�12


26 M.M. Karaman et al. / Magnetic Resonance Imaging 32 (2014) 9–27
Appendix A. CRLBs of the DeTeCT and DeTeCT-ING Models

The CRLB for the variance of an unbiased estimate of a model parameter requires the second derivatives of the logarithm of the likelihood
function, LL, with respect to the model parameters. The logarithm of the likelihood function of the DeTeCT and DeTeCT-ING Models can be
written as

LL ¼ −n log 2πð Þ−
Xn
t¼1

logrt−n logσ2− 1
2σ2

Xn
t¼1

rt
2 þMt

2−2Mt
2−2Mtrt cos ϕ−θð Þ

h i
ðA:1Þ

where the temporarily varying magnitude Mt, given in Eq. (17), becomes
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when the flip angle, ϕ, is assumed to be π/2 as in our calculations.
By substituting Eq. (A.2) into Eq. (A.1), the logarithm of the likelihood is
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Eq. (A.3) can be alternatively represented by the vector multiplications as follows

LL ¼ −n log 2πð Þ−
Xn
t¼1

logrt−n logσ2− 1
2σ2

r−X1β1ð Þ′ r−X1β1ð Þ þ 2 r−r�ð Þ′X1β
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where r* has tth element of rt [cos (ϕ − θ)], and s* has tth element of exp TEt

T2
�þδzt
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.

Maximizing this likelihood with respect to the parameters is the same as maximizing the logarithm of the likelihood denoted LL with
respect to the parameters and yields
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The CRLB for the variance of an unbiased estimate of a model parameter requires the symmetric Hessianmatrix, generally denoted by H and
is formed from second derivatives of the log likelihoods LLwith respect to themodel parameters. The second derivatives can be computed from
the first derivatives of LL given in Eqs. (A.5)–(A.11).
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The matrix of CRLBs can be found via the inverse of the Fisher information matrix. By taking expectations of the block elements of the
Hessian matrices, the CRLBs can be found. The Fisher information matrices, generically denoted by I, are − E [H|M0, T1, T2⁎, δ, β1, σ2] for the
DeTeCT and DeTeCT-ING Models that are the expectation of the Hessian matrix H with respect to yR and yI given M0, T1, T2⁎, δ, β1, σ2.
Appendix B. MLEs of the DeTeCT-ING Model under the Null Hypothesis

The MLEs of the DeTeCT-ING Model under the restricted null hypothesis, H0: T1 = T1GM
, T2 = T2GM

, δ = 0, are computed maximizing the
likelihood with respect to parameters, M0, β1, θ and σ2. Maximizing this likelihood with respect to the parameters is the same as maximizing
the logarithm of the likelihood, LL, with respect to the parameters. By setting the derivatives that are given in Eqs. (5), (9), (10) and (11), equal
to zero and solving, the MLE’s under the null hypothesis can be found as follows
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ŝ
′
�X1

′
� �−1

X1
′
r̂ �−X1

′
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ŝ�M̂ 0 1− exp −TR=T1GM

� �� �� �
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where r̂* has tth element of rt[cos (ϕ − θ̂)], and ŝ* has tth element of exp TEt
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