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Abstract 
The fMRI visual field map (VFM) is obtained by using a rotating-expanding visual target to identify the area of the 
retina that corresponds to activated visual cortex. Since fMRI data is (1) relative rather than absolute and (2) has a 
degree of noise that may mask the activation, identifying differences in VFMs requires a model that will differentiate 
changes in the underlying structure from differences due to imaging variability. The VFM produces a non-
homogenous, non-isotropic set of points on a disk that includes irregular features like the blind spot. A non-parametric 
mixture model, using a Dirichlet prior on a space of 2D density functions, will be used to model the VFM under 
experimental conditions where part of the visual field is masked by a circular wedge. The posterior probability of the 
difference in the models, will be used to quantify the probable location of the wedge.. 
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1.  Introduction 
 
The visual field map (VFM) is produced by mapping the active voxels of the visual cortex to a circular region 
corresponding to the points of a circular image.  It is a dynamic option to the Humphries map that ophthalmologists 
use to evaluate visual acuity.  The goal is to be able to use it to assess whether there are changes in the visual pathway 
due to a disease process, like migraine headaches, or where there have been changes due to an intervention, such as 
surgery for refractory epilepsy.   
     
The VFM, like the retina of the eye is spatially inhomogeneous as well as not isotropic.  There are more receptors near 
the center of vision which allows more sensitivity. There is a blind spot due to the presence of the optic nerve; although 
the visual cortex usually interpolates an image. 
 
An fMRI scan of the optical cortex produces voxels, small cubes that can be “classified” as activated or not by whether 
the cortical blood flow correlates with a visual pattern thatchanges over time.  By using an inverse transform the voxels 
in the visual cortex can be mapped onto a circular region corresponding to the cortex.  This is the Visual Field Map. 
(figure 1, Brefczynski, 1999).  This inverse mapping produces about 445500  ttoo  665500  ppooiinnttss  iinn  aa  VViissuuaall   FFiieelldd  MMaapp..  BBeeccaauussee  
ooff    tthhee  ““ wwiinnnneerr  ttaakkee  aall ll ””   rruullee  ffoorr  aassssiiggnniinngg  aaccttiivvaattiioonn,,      bbeeccaauussee  tthhee  vvooxxeell   mmaayy  ssppaann  ttwwoo  ddii ffffeerreenntt  rreeggiioonnss  ooff  tthhee  vviissuuaall   
ccoorrtteexx  aanndd  bbeeccaauussee  ooff  tthhee  nnooiissee  iinnvvoollvveedd  iinn  aa  rreeaall  ffMMRRII  ssiiggnnaall ,,    tthe resulting map has random points in the when it is 
assessed during different sessions.  One descriptor of these random points is to model them as a point process with an 
underlying spatial spatial intensity.  NNooiissee  iinn  tthhee  ssiiggnnaall   mmaayy  ccaauussee  mmaappppiinngg  ttoo  tthhee  wwrroonngg  ppllaaccee  oorr  eerrrroorr  iinn  tthhee  
aasssseessssmmeenntt  ooff  aaccttiivvaattiioonn..  
 
The purpose of this paper is to develop a model that will have sufficient flexibility to map this irregular surface  and 
provide a model for the underlying non-homogeneous intensity function.  Then on the basis of this model we expect to 
be able to identify whether the map has changed from one scan session to another. 
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1.1 The Visual Field Map 
The visual field diagram is formed by an inverse mapping of areas of the visual cortex to the retinotopic area stimulated 
by an array of visual targets. A series of circular annulus (doughnuts with a hole), expanding out from the center of the 
target plus a series of pie-shaped wedges rotating around the circular target are used to map the location on the retina to 
the location in the visual cortex. (figure 1, A Brefczynski, 1999).  
 

Figure 1: The functional field map is constructed by (a) comparing the time lag of the repeated 
fMRI signal (b) with the annulus information and the rotating wedge information1. 

  

 
The size of the circle surrounding the center point of the VFM is sometimes taken to be a measure of uncertainty of the 
inverse map.  For this paper, we will focus only on the mapping of the center point of the visual cortex to the VFM.  
Since the location of this point is not fixed under repeated scanning sessions, we will treat its location as a non-
homogeneous point process. 
 
1.2 Simulating Surgical Interventions on the VFM 
The visual target that is used to obtain the VFM is composed of two parts. The first is a semicircular (180 degree) 
checkerboard pattern that rotates around a 360 degree circle. In order to “simulate” the effect of surgery, a wedge was 
cut out of the semicircular pattern. The second part of the target was a set of annuli (rings around the center of the 
visual field) that went from the center out to the edge of the visual field. Wedges were used to mask part of the visual 
field when the data was collected from a subject. The wedges were 0, 18, 27, 36, 45 and 90 degrees.nn  oorrddeerr  ttoo  ssiimmuullaattee  
ddii ffffeerriinngg  eeff ffeeccttss  ooff  ssuurrggeerryy..  ((ff iigguurree  22))..    TThhee  ddii ffffeerriinngg  aanngguullaarr  ssiizzee  ooff  tthhee  wweeddggeess  wwaass  uusseedd  ttoo  tteesstt  tthhee  sseennssii ttiivvii ttyy  ooff  tthhee  ooff   
tthhee  mmeetthhooddss  ttoo  iiddeennttii ffyy  ddeeffeeccttss  iinn  tthhee  vviissuuaall   ccoorrtteexx..   
 

Figure 2: TThhee  mmaasskkss  wweerree  wweeddggeess  ooff  00,,  1188,,  2277,,  3366,,  4455  aanndd  9900  ddeeggrreeeess 
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1.3 Additional Sources of  Variability 
BBeeccaauussee  ooff    tthhee  ““ wwiinnnneerr  ttaakkee  aall ll ””   rruullee  ffoorr  aassssiiggnniinngg  aaccttiivvaattiioonn  aanndd    bbeeccaauussee  tthhee  vvooxxeell   mmaayy  ssppaann  ttwwoo  ddii ffffeerreenntt  rreeggiioonnss  
aanndd  tthhee  nnooiissee  iinnvvoollvveedd  iinn  aa  rreeaall   ffMMRRII  ssiiggnnaall   The resulting map has random points in the area of the wedge. NNooiissee  iinn  tthhee  
ssiiggnnaall   mmaayy  ccaauussee  mmaappppiinngg  ttoo  tthhee  wwrroonngg  ppllaaccee..    OOtthheerr  ddii ff ff iiccuull ttiieess  iinn  aannaallyyzziinngg  tthhee  ddaattaa  ff rroomm  tthhee  vviissuuaall   ff iieelldd  mmaapp  aarree  
ff ii rrsstt,,  cchhaannggeess  iinn  ppoossii ttiioonn  bbeettwweeeenn  sseessssiioonnss  ccaann  cchhaannggee  tthhee  llooccaattiioonn  ooff  tthhee  ppooiinnttss..  MMoorreeoovveerr,,  ssiinnccee  ffMMRRII  pprroovviiddeess  aa  
rreellaattiivvee  aasssseessssmmeenntt  ooff  aaccttiivvaattiioonn,,  tthhee  oovveerraall ll   nnuummbbeerr  ooff  ppooiinnttss  aaccttiivvaatteedd  ddeeppeennddss  oonn  mmoorree  tthhaann  tthhee  uunnddeerrllyyiinngg  ssppaattiiaall   
iinntteennssii ttyy..    FFiigguurree  33  sshhooww  tthhee  ddii ffffeerreennccee  iinn  tthhee  nnuummbbeerr  ooff   ppooiinnttss  ffrroomm  77  ssccaannss  oovveerr  aa  ppeerriioodd  ooff  ttiimmee  wwii tthh  aa  ff iixxeedd  
tthhrreesshhoolldd  ffoorr  aaccttiivvaattiioonn..    VVaarryyiinngg  tthhee  mmaaggnnii ttuuddee  ooff  tthhee  tthhrreesshhoolldd  tthhaatt  ddeeffiinneess  aaccttiivvaattiioonn  ccaann  aallssoo  cchhaannggeess  tthhee  nnuummbbeerr  ooff  
aaccttiivvee  ppooiinnttss..      
 

Figure 3: The Normalization Problem: 1 Subject at 7 Different Times 

 

 

Number 
Of 

Activated 
Points 

 
479 
295 
433 
588 
428 
418 
619 

 

 
2. Statistical Methods 

 
2.1 The Point Process Model 
WWee  wwii ll ll   mmooddeell   tthhee  ddaattaa  wwii tthh  aa  ppooiinntt  pprroocceessss..    AA  ppooiinntt  aappppeeaarrss  ii ff   ii tt  iiss  aabboovvee  aa  tthhrreesshhoolldd  ddeetteerrmmiinneedd  bbyy  ccoorrrreellaattiinngg  tthhee  
ffMMRRII  ssiiggnnaall   wwii tthh  tthhee  ppaatttteerrnn  ooff  tthhee  mmaasskk..    TThhee  ddaattaa  iiss  {{   YY((ssii))::    ii   ==  11,,  ..  ..  ..  NNkk  }} ,,  wwhheerree  ssii  iiss  tthhee  llooccaattiioonn  ooff  tthhee  ppooiinntt  II   aanndd  
YY((ssii))  ==  11  ii ff   tthhee  ppooiinntt  iiss  aaccttiivvaatteedd..      

  
TThhee  nnuummbbeerr  ooff  tthhee  eevveennttss  ooccccuurrrriinngg  wwii tthhiinn  aa  ff iinnii ttee  rreeggiioonn  AA  ccaann  bbee  mmooddeelleedd  aass  aa  nnoonn--hhoommooggeenneeoouuss  PPooiissssoonn  pprroocceessss  
wwii tthh  mmeeaann  
    
                
  
  
  
Given the total number of events N occurring within an area A, the intensity of the process is λ(s).  Parametric models 
for the spatial density for the VFM are developed in Hoffmann, 2007.  
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2.2 Evidence for a Mixture Model 
Using a kernel smoother to empirically estimate the spatial intensity function (figure 4) suggests that the effect of 
removing a wedge from the spatial intensity can requires more than a single Poisson spatial intensity function.  The 
irregular shape of the process also suggests that choosing a Poisson model may oversmooth the data.  Thus we choose a 
non-parametric approach to modeling the underlying spatial intensity.  
 

Figure 4: The smoothed data with wedges  show multi-modal behavior 
 

 

 
2.3 Using a Non-Parametric Model for the First Order Intensity 
A non-homogeneous Poisson mixture model can be the weighted sum of more than one asymmetric Poisson intensity .  
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Of course, the location of the centers also needs to be estimated. 
 
2.1.1 The Dirichlet Process 
A more generalized non-parametric spatial model is a Bayesian non-parametric spatial model where the number of 
components can vary as the number of points. Gelfand, Kottas and MacEachern (2005) introduced a Dirichlet Process 
as a prior mixing distribution on a family of densities  DP(ν G0).  Central to the DP is the notion of a random 
probability measure on the space of distribution functions defined on the space Θ (with σ field Β).   
 
The family  DP(ν G0) is indexed by ν > 0,   a scalar precision parameter that controls the amount of clustering in the 
spatial measure on Θ and  G0 which is the specified base distribution.  Although DP(ν G0) is almost certainly discrete 
on the set of points, Y(s1) …Y(sN) it can be countably or uncountably infinite because of the order (ℵ1) of the space we 
are modeling. 
 
We will assume that G0, the base density, is bivariate normal, with constant variance and covariance; however, this is 
not a necessary assumption (Duan, Guindani and Gelfand 2007).  This gives the representation (it is almost surely 
discrete and finite) 

                                            ∑
∞

=1

)(
i

ii θδω  

where 
�

i  is the location of the point mass, �( ) is the Dirac delta function, and the �i  are the weights. 
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Because this gives a model that is too bumpy, a DDP, a Dependent Dirichlet Process, is actually used to smooth the 
process.  Instead of having i represent each of the points in {Y(s)}, it represents the index value or the center of the 
bivariate N(�, �) distribution, G0.  Another approach to eliminating the bumpiness is to convolve the DP(ν G) with a 

pure error process.  This will create a process F with continuous support on A 2ℜ⊆ . The priors for the DDP are a 2D 
uniform circular prior on 

�
i, the location parameter for each of the component clusters, an inverse gamma on the 

precision of the bivariate normal G0 and a gamma prior on the mixing parameter � . 
 
2.1.2 Implementation  
The DPpackage library in R implements Bayesian non-parametric density estimation with Dirichlet Processes, 
Dependent Dirichlet Processes, Polya Trees, Mixtures of Triangular distributions, and Random Bernstein polynomials.  
This package was developed by Alejandro Jara.  It quite flexible and optimized to produces estimates quite rapidly.  It 
took 5 to 10 minutes on a 1.33 GHz Pentium 3 to run a single chain with a 5000 point burn in, a skip factor of 20 and 
10,000 points for the estimation. 
 

3. Results 
 
Figure 6 shows the results of fitting a DPM model to the points from a complete Visual Field Map.  Note the marginal  
 

Figure 6: The estimated posterior density for a visual field plot with a 0o wedge  
(a) the marginal density of x (b) the marginal density of y (c) a contour plot of the bivariate 

density and (d) a 3D perspective plot of the bivariate DPM density 
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distributions are symmetric with no evidence of multimodality.  The contour plot is oval and the 3D perspective plot is 
smooth. 
 
Figure 7 displays the results for the most extreme data set, one with a 90 degree wedge.  The marginal distributions 
show strong evidence of bimodality and asymmetry.  The contour plot shows not only the bimodality, but also suggest 
that even a simple mixture of two processes would have difficulty modeling the asymmetry of the spatial intensity.  The 
3D perspective plot shows the two peaks quite clearly.  The asymmetry of a gradual increase on the side opposite the 
wedge and the sharp increase on the side where the wedge models what we would expect.  For the most part, there 
doesn’t seem to be a lot of overshoot or “ringing” which is often observed when one is attempting to model a spatial 
density with an abrupt transition.  
 

Figure 7: The estimated posterior density for a visual field plot with a 90o wedge  
(a) the marginal density of x (b) the marginal density of y (c) a contour plot of the bivariate 

density and (d) a 3D perspective plot of the bivariate 
 

 

 
 

 
 

 

 

 
 

Figure 8 demonstrates that even with a smaller wedge, the DPP has the ability to detect differences in the underlying 
intensity.  There are multiple peaks in the estimated spatial intensity.  The 3D perspective plot displays this quite 
clearly.   
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Figure 8: The estimated posterior density for a visual field plot with a 36o wedge  
(a) the marginal density of x (b) the marginal density of y (c) a contour plot of the bivariate 

density and (d) a 3D perspective plot of the bivariate 
 

 

 

 
 

 

 

 

 

 
4. Discussion 

 
The use of the DDP to estimate the posterior intensity of a point process is quite flexible.  The DDP has the ability to 
bridge the shape from a Gaussian to a  quite irregular intensity 
 
 
An important question is whether these results are robust to the shape of the underlying distributions that are chosen.  
The DPpackage makes it possible to address this question; however, we have not yet examined how much the choice of 
the basis distribution affects the results. 
 
The next step is to examine the ratio of the posterior densities under the different masks to estimate the posterior 
probability of a change.   

Section on Statistical Computing – JSM 2008

3788



 
Acknowledgements 

 
Supported in part by NCRR-00058, the Medical College of Wisconsin GCRC. 
 

References 
 
Albert J.  Bayesian Computation with R.. Springer, 2007. 
 
Brefczynski J, DeYoe EA “A physiological correlate of the ‘spotlight’ of visual attention”. Nature Neuroscience 4:370 

ff. 1999 
 
Diggle PJ and Ribeiro PJ, Model-based Geostatistics.  Springer, 2007. 
 
Duan JA, Guindani M and Gelfand AE. “Generalized spatial Dirichelt process models“. Biometrika 94:809-825, 2007. 
 
Gelfand J, Bayesian “Nonparametric Spatial Modeling with Dirichlet Process Mixing”. JASA, 2005. 100:1021-1035. 
 
Hoffmann RG,  Hoffmann TJ, Deyoe EA, Rowe DB. “Estimation of Pre-Post Surgical Changes in the fMRI Visual 

Field Map” In JSM Proceedings, Statistical Computing Section. Alexandria, VA. 2007. 
 
Rizzo, ML. Statistical Computing with R. CRC Press, New York. 2008. 
 

Section on Statistical Computing – JSM 2008

3789


