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Abstract

The fMRI visual field map (VFM) is obtained by ugim rotating-expanding visual target to identife @érea of the
retina that corresponds to activated visual cor&rce fMRI data is (1) relative rather than absoland (2) has a
degree of noise that may mask the activation, ifjémg differences in VFMs requires a model thatlwlifferentiate
changes in the underlying structure from differencue to imaging variability. The VFM produces anho
homogenous, non-isotropic set of points on a digk includes irregular features like the blind sgohon-parametric
mixture model, using a Dirichlet prior on a spade2D density functions, will be used to model th&N under
experimental conditions where part of the visualdfis masked by a circular wedge. The posteriobgbility of the
difference in the models, will be used to quantiify probable location of the wedge..
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1. Introduction

The visual field map (VFM) is produced by mapping the active voxelstlodé visual cortex to a circular region
corresponding to the points of a circular imageis la dynamic option to thdumphries map that ophthalmologists
use to evaluate visual acuity. The goal is tolide # use it to assess whether there are changhe visual pathway
due to a disease process, like migraine headaoheghere there have been changes due to an intemesuch as
surgery for refractory epilepsy.

The VFM, like the retina of the eye is spatialljpidmogeneous as well as not isotropichere are more receptors near
the center of vision which allows more sensitivithiere is a blind spot due to the presence of fitie aerve; although
the visual cortex usually interpolates an image.

An fMRI scan of the optical cortex produces voxslsall cubes that can be “classified” as activatedot by whether
the cortical blood flow correlates with a visuattpen thatchanges over time. By using an inversesform the voxels
in the visual cortex can be mapped onto a circtdgion corresponding to the cortex. This is theudl Field Map.
(figure 1, Brefczynski, 1999). This inverse mampproduces abou50 to 650 pointsin a Visual Field Map. Because
of the “winner take all” rule for assigning activation, because the voxel may span two different regions of the visual
cortex and because of the noise involved in areal fMRI signal, the resulting map has random points in the whés it
assessed during different sessions. One descdptbese random points is to model them as a gointess with an
underlying spatial spatial intensityNoise in the signal may cause mapping to the wrong place or error in the
assessment of activation.

The purpose of this paper is to develop a modellihhave sufficient flexibility to map this irgular surface and

provide a model for the underlying non-homogeneotensity function. Then on the basis of this nlogle expect to
be able to identify whether the map has changed frne scan session to another.
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1.1 TheVisual Field Map

The visual field diagram is formed by an inverseppiag of areas of the visual cortex to the retipét@rea stimulated
by an array of visual targets. A series of circaanulus (doughnuts with a hole), expanding ouhftbe center of the
target plus a series of pie-shaped wedges rotatimgnd the circular target are used to map thditmtan the retina to
the location in the visual cortex. (figure 1, A Breynski, 1999).

Figure 1: The functional field map is constructed by (a) comparing the time lag cépleated
fMRI signal (b) with the annulus information and the rotating wedge infoomati
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The size of the circle surrounding the center pofrthe VFM is sometimes taken to be a measuraenoéainty of the
inverse map. For this paper, we will focus onlytbe mapping of the center point of the visual oo the VFM.
Since the location of this point is not fixed undepeated scanning sessions, we will treat itstimecaas a non-
homogeneous point process.

1.2 Simulating Surgical Interventionson the VFM

The visual target that is used to obtain the VFMadsnposed of two parts. The first is a semicirc {880 degree)
checkerboard pattern that rotates around a 36@degircle. In order to “simulate” the effect of gery, a wedge was
cut out of the semicircular pattern. The second phthe target was a set of annuli (rings aroumal ¢enter of the
visual field) that went from the center out to treige of the visual field. Wedges were used to maskof the visual
field when the data was collected from a subjebe Wwedges were 0, 18, 27, 36, 45 and 90 degremder to simulate
differing effects of surgery. (figure 2). The differing angular size of the wedges was used to test the sensitivity of the of
the methods to identify defectsin the visual cortex.

Figure 2: The masks werewedges of 0, 18, 27, 36, 45 and 90 degrees

Full stimulus 90 degree mask 45 degree mask 36 degree mask 27 degree mask 18 degree mask
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1.3 Additional Sourcesof Variability

Because of the “winner take all” rule for assigning activation and because the voxel may span two different regions
and the noiseinvolved in areal fMRI signal The resulting map has random points in the areébeoivedgeNoise in the
signal may cause mapping to the wrong place. Other difficulties in analyzing the data from the visual field map are
first, changes in position between sessions can change the location of the points. Moreover, since fMRI provides a
relative assessment of activation, the overall number of points activated depends on more than the underlying spatial
intensity. Figure 3 show the difference in the number of points from 7 scans over a period of time with a fixed
threshold for activation. Varying the magnitude of the threshold that defines activation can also changes the number of
active points.

Figure 3: The Normalization Problem: 1 Subject at 7 Different Times
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2. Statistical M ethods

2.1 The Point Process Model

We will model the data with a point process. A point appears if it is above a threshold determined by correlating the
fMRI signal with the pattern of the mask. Thedatais{ Y(s): i =1, ... N}, where s isthe location of the point | and
Y (s) = 1if the point is activated.

The number of the events occurring within a finite region A can be modeled as a non-homogeneous Poisson process
with mean

_[ A(s)ds

Given the total number of events N occurring withimarea A, the intensity of the procesi(s). Parametric models
for the spatial density for the VFM are developedHbffmann, 2007.
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2.2 Evidencefor a Mixture Model

Using a kernel smoother to empirically estimate spatial intensity function (figure 4) suggeststttiee effect of
removing a wedge from the spatial intensity carumeg more than a single Poisson spatial interfaitgtion. The
irregular shape of the process also suggests hioaising a Poisson model may oversmooth the détas We choose a
non-parametric approach to modeling the underlgjpatial intensity.

Figure4: The smoothed data with wedges show multi-modal behavior

0 degree mask 45 degree mask 90 degree mask

2.3 Using a Non-Parametric Model for the First Order Intensity
A non-homogeneous Poisson mixtunedel can be the weighted sum of more than onmmgjric Poisson intensity .

3
A(s) = ZC‘% exp{u +a,X + aziiz + By + /Bzyiz + Y XY, +Y,X yiz + ysiizyi
=

where thew, arethe weightsapplied to thecomponentsof the mixture and
where X; andy,arethedistancesfrom thecentersof up to k - 3mixture components

Of course, the location of the centers also nestie testimated.

2.1.1 The Dirichlet Process

A more generalized non-parametric spatial model Bayesian non-parametric spatial model where thmber of
components can vary as the number of points. Gélfidattas and MacEachern (2005) introduceidachlet Process

as a prior mixing distribution on a family of dess DP¢ Gy). Central to the DP is the notion of a random
probability measure on the space of distributiancfions defined on the spa@e(with o field B).

The family DPy Gy) is indexed by > 0, a scalar precision parameter that conttidsamount of clustering in the
spatial measure o® and G which is the specified base distribution. AlthbugP§ Gy) is almost certainly discrete
on the set of points, Y{B...Y(sy) it can be countably or uncountably infinite bezmof the orderl{,) of the space we
are modeling.

We will assume that §the base density, is bivariate normal, with canstariance and covariance; however, this is

not a necessary assumption (Duan, Guindani anda@kl2007). This gives the representation (it imost surely
discrete and finite)

> @e(@)

where®; is the location of the point mass,) is the Dirac delta function, and the are the weights.

3785



Section on Statistical Computing — JSM 2008

Because this gives a model that is too bumpy, a DDBependent Dirichlet Process, is actually usesntooth the
process. Instead of having i represent each opthets in {Y(s)}, it represents the index value tbe center of the
bivariate Nfi, X) distribution, G. Another approach to eliminating the bumpines® isonvolve the DR(G) with a

pure error process. This will create a processtR eontinuous support on Al 02. The priors for the DDP are a 2D
uniform circular prior ong;, the location parameter for each of the compomdmters, an inverse gamma on the
precision of the bivariate normal@nd a gamma prior on the mixing parameter

2.1.2 Implementation

The DPpackage library in R implements Bayesian merametric density estimation with Dirichlet Proses
Dependent Dirichlet Processes, Polya Trees, Mistofelriangular distributions, and Random Bernsfmitynomials.
This package was developed by Alejandro Jarauitedlexible and optimized to produces estimateisegrapidly. It
took 5 to 10 minutes on a 1.33 GHz Pentium 3 toawingle chain with a 5000 point burn in, a slkiptér of 20 and
10,000 points for the estimation.

3. Results

Figure 6 shows the results of fitting a DPM modelie points from a complete Visual Field Map. &ltite marginal

Figure 6: The estimated posterior density for a visual field plot with adlige
(a) the marginal density of x (b) the marginal density of y (c) a contouofplbe bivariate
density and (d) a 3D perspective plot of the bivariate DPM density
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distributions are symmetric with no evidence of timubdality. The contour plot is oval and the 3Dqmective plot is
smooth.

Figure 7 displays the results for the most extrela@ set, one with a 90 degree wedge. The mardisaibutions

show strong evidence of bimodality and asymmefrize contour plot shows not only the bimodality, blso suggest
that even a simple mixture of two processes woakeHlifficulty modeling the asymmetry of the sphitidensity. The

3D perspective plot shows the two peaks quite ljleaFhe asymmetry of a gradual increase on the sjgposite the
wedge and the sharp increase on the side wheredtige models what we would expect. For the modt fgeere

doesn’t seem to be a lot of overshoot or “ringimgiich is often observed when one is attempting tal@ha spatial
density with an abrupt transition.

Figure 7: The estimated posterior density for a visual field plot with°anggige
(a) the marginal density of x (b) the marginal density of y (c) a contouofplbg bivariate
density and (d) a 3D perspective plot of the bivariate
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Figure 8 demonstrates that even with a smaller wettge DPP has the ability to detect differenceth@underlying
intensity. There are multiple peaks in the estadaspatial intensity. The 3D perspective plot ldigp this quite
clearly.
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Figure 8: The estimated posterior density for a visual field plot with°ad&ige
(a) the marginal density of x (b) the marginal density of y (c) a contouofplbg bivariate
density and (d) a 3D perspective plot of the bivariate
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4. Discussion

The use of the DDP to estimate the posterior it a point process is quite flexible. The DBb&s the ability to
bridge the shape from a Gaussian to a quite itaegutensity

An important question is whether these resultsrabeist to the shape of the underlying distributithvegt are chosen.

The DPpackage makes it possible to address thiignehowever, we have not yet examined how mhbetchoice of
the basis distribution affects the results.

The next step is to examine the ratio of the pastatensities under the different masks to estinthée posterior
probability of a change.
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