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Abstract 

By presenting visual targets around a fixed focus and 
observing the corresponding activation in the visual 
cortex with fMRI, an inverse map (retinopic) of the 
cortex to a circular disk can be obtained. This visual 
field diagram is potentially a 1-1 map of the visual 
cortex; however, the structure of the visual cortex 
means some points will be functional but not anatomic 
neighbors. When pathology due to disease or trauma is 
present in the visual cortex, there is reduced or zero 
response in corresponding areas of the visual map. In 
addition, if there are changes over time in the extent or 
magnitude of the pathology (recovery or progression), 
there should be detectable changes in the visual map. 
A spatial-temporal approach (discrete time realizations 
of the spatial process) is used to estimate the spatial 
mean, variance, and covariance, rather than the more 
common fMRI temporal-spatial approach (a spatial 
realization of discrete time series). Simulated lesions 
of differing extent and magnitude will be used to 
estimate the sensitivity and specificity of the model to 
changes in activation or regions not consistent with the 
surrounding area.  
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Introduction 
 
The visual field diagram (VFD) is formed by reverse 
mapping of areas of the visual cortex to the visual area 
stimulated by a dense array of visual targets and visual 
distracters. It is a mapping of the activated voxels of 
the visual cortex to a circular disk that corresponds to 
the visual field of the eye. The magnitude of the 
response is the magnitude of the activation in the 
cortex. The location is based on the location of the 
stimulus. If there is damage to the visual cortex, it may 
be represented by missing or abnormal responses in the 
induced visual field map. [Brefczynski] 
 
Analytic methods for changes in the VFD, have mainly 
been ANOVA based [Merriam, 2003]and do not make 
use of the spatial structure nor do they explore the 
correlations implicit in the spatial structure. 
[Hoffmann, 2004] 
 
 
 

The Visual Field Diagram 
 
The visual field diagram is formed by an inverse 
mapping of areas of the visual cortex to the retinopic 
area stimulated by an array of visual targets.  Figure 1 
(Brefczynski, 1999) shows the stimuli delivered to the 
targets, the corresponding areas of the brain that are 
stimulated and the map that forms the visual field 
diagram. 

.  
 
Figure 1 from “A physiological correlate of the 
‘spotlight’ of visual attention” Julie Brefczynski, Edgar 
DeYoe. Nature Neuroscience 4: 370ff. , 1999 
 
Different stimuli can be used, e.g. a random wedge, a 
random annulus, a random arc of a web, a wedge that 
rotates slowly or a wedge that rotates randomly for a 
shot period of time.   This would or could be analogous 
to an event related design of both the size and shape of 
the stimuli. 
 

Scientific Research Questions 
 

There are several different types of questions that can 
be about the visual field: (1) to detect changes in the 
visual response (VFD) over time or over different 
stimuli, (2) to detect changes in the response due to 
healing in stroke,  (3) to detect short term or long term 
changes due to a disease/condition such as  migraine or 
(4) is a blank spot or an area of reduced response in the 
visual field unusual (tumor, stroke) or within the usual 
variability? 
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Brefczynski and DeYoe show that distinct regions in 
the visual cortex are activated by different targeted 
tasks.  In the case of a normal response, the regions are 
distinct and non-overlapping nature. of the regions.  
Right and left visual stimuli induce corresponding non-
overlapping right and left regions of the visual cortex.  
 
 

 
 
 
The locations of the points, figure 3,  from the inverse 
map represent the center of a 3D voxel obtained from 
the fMRI scan.  This pattern differs across subjects, so 
to combine subject information, a geostatistical 
approach that allows interpolation from the observed 
points to a common set of points across all subjects is 
proposed by this study.  We will use repeated scans to 
establish the mean response and the variability in order 
to be able to determine random changes from 
significant trends.  
 

 
 
Figure 3. Location of the points for  single subject. 
 
An Areal approach to the data divides the regions of 
the visual field map into distinct “areas” or regions. 

Figure 4 below shows an areal summary of the 
magnitude of the activation data from repeated scans 
on two separate subjects.  Clearly there are similarities 
over time. Since the fMRI scan is not standardized to 
absolute levels of blood flow, how much of the 
differences in the figures are due to a need to detrend 
and center the data over time?  
 

 
Figure 4: An Areal map of the activation obtained by 
averaging over the somewhat arbitrarily defined areas 
of the VFD. 
 
Areal analysis, for the segments can be modeled by a 
GEE with a general correlation structure. 
 

Y ijt = µ + νi + αj + τt + εijt     and 
 

Var(Y) = I σ2 +  Σρ 

� where νi is the subject effect 

� αj is the segment effect 

� τt is scan run (time)  

� εijt     is the (correlated) error and 
� I is the identity matrix and Σ is the correlation 

matrix. 
This type of statistical model potentially allows 
considerable flexibility in spatial correlation among the 
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segments and over time when an unstructured error 
model is used to estimate the links among the 
segments. [Hoffmann, 2004]. 
 

The Geostatistical Model 
 
The geostatistical approach to spatial data uses each 
point in the segment. There are 450 to 650 points in a 
Visual Field.  The data is spatially rich and temporally 
poor.  The sample run has five temporal scans.  This is 
quit different form many of the  spatial-temporal 
models that have been based on climate or atmospheric 
pollutant data (Huerta - Mexican City ozone levels, 
Carroll – Texas Ozone exposure, Peng – wildfire risk, 
Hartfield – daily or hourly temperature).  For example, 
Carroll et al have a very long time series of 24 hourly 
values x 365 days x 14 years at 11 stations.  Winkle’s 
study of ocean winds uses remote sensing data to 
obtain both spatially dense information and temporal 
data.  However, he is able to use a dynamic model for 
the propagation of the winds from one point to another 
that is usually not available for most space-time 
modeling situations.   Their goal is often to identify 
spatial heterogeneity in the seasonal components.  
Thus considerable complexity is invoked in the 
temporal modeling. 
    With only a few repeated scans, the temporal part of 
an fMRI spatial-temporal model will be substantially 
simpler in this application.  However, the ability to 
assess differences in the spatial pattern over time 
(scan) is the one of the key goals.   The innate 
correlation of the regions of the visual field makes it 
necessary to consider a spatial correlation model 
together with a (simple) model of the correlation over 
scan.  Clearly, this correlation is the correlation of the 
residuals after the trends due to experimental 
stimulations have been removed. 
 
However, this model has short time series 
corresponding to only a few tasks or conditions per 
session – for example, Brefzinski is using  5 per 
session.  Multiple sessions can conceptually be used 
either to test for the effect of an innovation such as a 
migrane headache or for changes in the visual field due 
to stroke recovery.  Because the time courses are 
usually short, we will use fairly simple models for 
temporal modeling for the residuals.  A simple 
autocorrelation model – AR(1) or AR(2) is 
conceptually the limit longitudinally diring the session.    
Since fMRI can show a drift over time, we use a 
discrete model µi(t) = µit which essentially models the 
average baseline shift of each baseline. This differs 
from climatologic models which usually have very 
long time series so they can model the spatial 
variability of similar time series.  
 

We can only do the second in the following model: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The spatial trend ( , )s tαµ can be modeled as a low 

order polynomial or estimated non-parametrically with  
a 2D smoother – kriging.  There are many choices for  
the type of kriging: simple, block,  ordinary, universal, 

etc.  The spatial-temporal trend { ( ), }g Y s tβ  will 

include the innovation terms that appear from task to 
task or from session to session as well as the global 

spatial normalization terms γi(t) from scan to scan or    
session to session.  For repeated scans within a single 

session, we will use a discrete model γi(t) = γit 
which essentially models the average baseline shift or 
drift over time.  For scans over multiple sessions, we’ll 
use a random effects model for the session. 
 

The error processes ( , ) ( , )W s t s tξ σε+  will usually 

be broken into several components.  We will assume 

initially that ( , )W s tξ  can be separated into a spatial 

process and a temporal process.  Because the time 
courses are usually short, we will use fairly simple 
models for the temporal modeling of the residuals.  A 
simple autocorrelation model – AR(1) or AR(2) is 
conceptually the limit longitudinally during the 
session.  By estimating the AR(1) parameters 
separately for each location and smoothing the result, 
the spatial homogeneity of the temporal process can be 
determined.    
 

Example 
 
The pattern is not the same for each subject.  Although 
there appear to be gaps in the Visual Field Diagram, 
these do not correspond to blind spots or damage to the 
retina of these control subjects.  They are instead due 
to the discrete voxelated nature of the information 
about the activation of the visual cortex obtained from 
fMRI.  Figure 5 shows the differences in the location 

α

β

ξ

( , ) ( , ) { ( ), } ( , ) ( , )

    where Z(space,time) is composed of

    µ (s,t) is the spatial trend

    g {Y(s),t} is the temporal process 

             which may also vary spatially

    W (s

Z s t s t g Y s t W s t s tα β ξ σµ ε= + + +

σ

,t) is the spatial temporal error process 

             with 0 mean

    ε (s,t) is the random field with 0 mean
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of the points across subjects.  Clearly interpolation of 
the location data is needed. 

 

 
 

Figure 5.  Differences in the location of the activation 
points across subjects. 

 
 

 Kriging is the geostatistical term for a class of 
methods for predicting the values between the 
observed points which is critical in terms of being able 
to combine results across subjects. [Bailey, Cressie] 
 
Simple kriging assumes that the first order component 
µ(s) is known a priori and does not have to be 
estimated from the data.  Then the values for the 
process a unobserved points can be determined from 
the known spatial trend and a linear combination of the 
observed residuals using weighted least squares.  The 
weights depend on the known spatial covariance 
structure. 
 
In practice, we need to estimate both the trend surface 
and the spatial covariance structure.  Ordinary kriging 

extends this process to estimating the trend and 
covariances under the assumption that the spatial trend 
is a constant independent of location.  Universal 
kriging takes the process a step further to the 
assumption that we are estimating a trend X(s)β from 
the data and the covariances; however, universal 
kriging implicitly estimates this surface by generalized 
least squares and, thus, does not allow testing of 
whether a specified model fits the data.  An alternative 
strategy if the focus is on estimation of the spatial 
process is block kriging which estimates the 
covariances in a local neighborhood of the data so that 
the spatial trend can be ignored.  For this method to 
work, a dense set of observed spatial data is needed.  
Consequently, it is not very useful in the ozone 
climatology model and while there are enough points 
in the usual VFD map, the gaps in the points suggest 
that it is not a good choice for fMRI data either. Since 
the innovation in fMRI will usually be known, an good 
alternative to kriging is to estimate the trend surface by 
general least squares and then use the residuals to 
examine the spatial process.   
 

 
Figure 6. Slightly smoothed replications using Splus/R 
 
The data that will be used to estimate the parameters of 
the model under spatial and temporal homogeneity are 
based on 5 repeated scans in each of two subjects.  A 
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smoothed version of the data is displayed in figure 6.  
Similarities in the global pattern, the trend surface, can 
be seen both over time within a subject and across 
subjects.  The 2 subjects with the 5 replicates without 
an intervention allow estimation of the spatial and 
temporal autocorrelation. 
 

Spatial Analysis Software Available in R 
 
The libraries in R are continually bein added to and 
developed.  There are many R libraries that are 
primarily associated with spatial point data, such as 
spatial, spatstat, splancs, etc.  An overview of some of 
these libraries can be found in Ripley. 
 
R libraries that are particularly useful for geostatistical 
data analysis are: 
 
spatial (part of MASS) – the library spatial, 
documented in Venebles and Ripley, is particularly 
useful for determining trend surfaces: polynomial trend 
surfaces, lowess trend surfaces and kriging. 
 
gstat – the library gstat [Pebesma] is designed for 
multivariate geostatistical modeling.  It provides 
simple kriging, block kriging, cokriging (kriging with 
multiple variates making up the surface). It will 
compute variograms and cross-variograms, even when 
the multivariable data are not measured at the same 
points.  In addition, it will simulate spatial data from a 
Gaussian random field with a given variogram  
 
geoR – The library geoR implements methods for 
Gaussian (and transformed Gaussian) models.  In 
addition to methods for exploratory analysis geoR 
implements simple, ordinary, universal and external 
trend kriging.  It implements conditional simulation 
and simulations for Bayesian inference when 
predicting a a specified location. [Ribeiro] 
 
geoRglm – The library geoRglm is an extension of 
geoR to linear spatial models using MCMC (Markov 
Chain Monte Carlo) methods to implement conditional 
simulation for the Poisson and Binomial generalized 
linear models. 
 

sgeostat – The modeling tools in sgeostat are chiefly 
concerned with the prediction, with known confidence, 
of a spatial stochastic process, {Z(s): s (is in) D}, at an 
arbitrary location, s0, from data, {z(s1),...,z(sn)} by 
characterizing the spatial dependence of the process 
from the data and using a model of the dependence to 
construct a predictor that minimizes the mean squared 
prediction error. The spatial dependence is 
characterized through the variogram. The empirical 

variogram is used in exploratory analysis, parametric 
variogram model fitting, and spatial prediction. The 
exploratory techniques include many of those 
described in section 2.2 of Cressie (1993), including 
lagged scatter plots, variogram cloud scatter plots and 
variogram cloud box plots.  

Estimation of Spatial Trend  
 
Exploring the trend surface using both polynomial 
assumptions and kriging allows evaluation of some of 
the different techniques available in R.  Using the R 
library spatial we can test the effect of the order 
polynomial on the estimated trend surface 
 
Comparison of the fifth order polynomial over time 
and across subjects can be observed in the following 
figure 7.   The R code to create the surface, set the plot 
boundaries and perform a contour plot of the data is for 
a second order polynomial is 
 
j11.2 <-surf.ls(2,j11$plotx,j11$ploty,j11$LC0) 
trs11.2 <-trmat(j11.2,0, 6.5, 0, 6.5, 30) 
contour(trs11.2) 
title("order 2 polynomial trend") 
 
 

 
Figure 7: Different order polynomial trends. 
 
Comparisons of the polynomial trend surfaces for two 
different scans and for the two subjects are displayed 
in figure 8.  The similarity of the fifth order 
polynomials shows its effectiveness at modeling the 
trend surface over replicates of the scans with no 
innovations.  Potentially the fifth order polynomial is 
also including some of the noise process because of the 
differences in the fine detail over time. 
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Figure 8. Polynomial trend surfaces at different scans 
and for the two subjects 
 
Figures 7 and 8 do not take the spatial structure into 
account.  Using general least squares with an estimated 
correlation model or using universal or block kriging 
allows models that incorporate this aspect of the VFD.  
 

Estimation of Spatial Correlation 
 
The variogram allows estimation of the spatial 
correlation by examining all pairwise comparisons of 
the points.  Using the R library spatial, we can easily 
create the variograms for scan replicates for each of the 
sample VFD’s in figure 9. 
 

 
Figure 9. Variogram estimates within and across 
subjects. 
 
 
 
 
 

 
Of course, since the data is spatial, the correlation may 
depend on the direction that it is examined.  A VFD 
that has the same spatial correlation in each direction is 
said to be isotropic.  Clearly this is desirable from  a 
modeling point of view.  Isotropy can be examined 
with the directional variogram which partitions the 
correlation estimation into different directions.  
Traditionally this is done in terms of the 4 angles 0, 45, 
90 and 135 degrees.  The library gstat will do this 
automatically and the result for subject 1 - scan 1 is 
displayed in figure 10. 
 
 

 
 
Figure 10.  Directional Variogram for a single subject 
and a single scan. 
 
If the variograms were different, the spatial process 
would be termed anisotropic.  However the similarities 
are quite evident.   
 
Combined Estimation of Spatial Trend and Spatial 

Correlation 
 
Using generalized least squares or universal kriging we 
can combine the estimation of the spatial trend and the 
estimation of the spatial correlation.  The results of this 
using the R library spatial is displayed in figure 11. 
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Figure 11.  General least squares prediction and 
correlation on the residuals are displayed on the right 
side of the figure.  The surface and the standard effort 
of the surface from a fifth degree universal kriging is 
displayed on the left side of the figure. 
 

Future Directions 
 
Use a known innovation on top of a known spatial 
trend with a variogram similar that estimated from this 
example data to test the ability to identify spatial 
temporal changes due to innovations as well as 
differences in the spatial structure.   Identify outliers or 
unexpected changes in the trend surface using either 
robust kriging or using the residuals from the global 
spatial temporal fit.  
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